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Abstract. The supersymmetric path integral is constructed for quantum
mechanical models on flat space as a supersymmetric extension of the Wiener
integral. It is then pushed forward to a compact Riemannian manifold by
means of a Malliavin-type construction. The relation to index theory is
discussed.

Introduction

An interesting new branch of mathematical physics is supersymmetry. With the
advent of the theory of superstrings [1], it has become important to analyze the
quantum field theory of supersymmetric maps from R2 to a manifold. This should
probably be done in a supersymmetric way, that is, based on the theory of
supermanifolds, and in a space-time covariant way as opposed to the Hamiltonian
approach. Accordingly, one wishes to make sense of supersymmetric path
integrals. As a first step we study a simpler case, that of supersymmetric maps from
R1 to a manifold, which gives supersymmetric quantum mechanics. As Witten has
shown, supersymmetric quantum mechanics is related to the index theory of
differential operators [2]. In this particular case of a supersymmetric field theory,
the Witten index, which gives a criterion for dynamical supersymmetry breaking, is
the ordinary index of a differential operator. If one adds the adjoint to the operator
and takes the square, one obtains the Hamiltonian of the quantum mechanical
theory. These indices can be formally computed by supersymmetric path integrals.
For example, the Euler characteristic of a manifold M is supposed to be given by
integrating e~L, with
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over periodic φ's and ψ% φ being a map from S1 to M and ψ being its fermionic
counterpart [3]. These formal considerations have given rise to a rigorous method
of computing index densities by means of a quadratic approximation to the
operator, which is in fact independent of any considerations of supersymmetry
[4,5].

There is an intimate relation between supersymmetric quantum mechanics and
the geometry of loop spaces, as was noted by Atiyah and Witten in [11,15]. (The
reader may wish to look at [11] to understand some of the constructions in the
present paper.) They remarked that the generator of the supersymmetry trans-
formation (in the Lagrangian approach) can be formally represented by d + i^
acting on differential forms on the loop space ΩM of M. The super Lagrangian (for
N=\/2 supersymmetry) was identified as E + ω, where E is the energy of a loop
and ω is the natural presymplectic form on ΩM. The formal application of the
Duistermaat-Heckman integration formula gave the identification of the
Feynman-Kac expression for the index of the Dirac operator with the index
theorem expression (as an integral over M). This shows a connection between the
cohomology of loop spaces and the Wiener measure. We do not explore this
question, but instead study the supersymmetric path integral as an object in its
own right.

We wish to show that the supersymmetric path integral can be rigorously
defined. This is done by means of a Malliavin-type construction, after the flat space
supermeasure is constructed by hand. The organization of this paper is as follows:

Section I consists of a construction of the fermionic (Berezin) path integral.
Section II uses this to construct the N = 1/2 supermeasure for supermaps of R1

to a flat space.
Section III does the same for N=l supersymmetry with superpotential added

and shows the superinvariance of the supermeasure.
Section IV proves an index theorem for the operator corresponding to the

supercharge of the previous section, namely evde~v + e~vd*ev. This is done by
first performing the fermionic integral explicitly. The answer obtained is the same
as from the corresponding zeta function determinant, but with the relative sign
fixed. Then a semiclassical approximation is done, which in this case is equivalent
to the scaling of V used in [15]. We show that the quadratic approximation then
gives the exact formula for the index.

Section V extends the JV = l/2 supermeasure to the case of an arbitrary
compact spin manifold M. First, the supermeasure is considered as a linear
functional on the superfunctions on the supermanifold of maps from S1 '1 to M,
which is formally shown to be the cross-sections of the Grassmannian of the
tangent bundle of ΩM. The algebra of observables and its supermeasure are
constructed using the Cartan development. Superinvariance is shown and the
corresponding Hamiltonian operator is shown to be the square of the Dirac
operator. In terms of forms on ΩM, the algebra of observables is generated by the
pullback of Λ*M under yeΩM^γ(ήeM, when smoothed out in t. The
supertransformation is the aforementioned d + ir

Section VI covers the case of an added external connection which lies on a
vector bundle over M.
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Notation. For a vector space F, let C1(F) denote the Clifford algebra on V
generated by {y(v),γ(v')} = 2(v, vf). For a vector bundle E, let Λ*E denote the
Grassmannian of E and let Γ\A*E) denote its Ck sections. Let [M, JV]* denote the
Ck maps between two manifolds M and JV and if N is linear, let [M, JV]Q denote
those of compact support. Define h[atb]e[R9ΈL2n']co to be φ(x)eι for some
</> e C^(]R), with 0^0, supp0C[α,fo] and J 0 = 1. The Einstein summation
convention is used freely.

I. Fermionic Integrals

The fermionic integral given here is based on the work of [6], with some
modifications. Let V be a real 2n-dimensional inner product space and let M be an
invertible skew-adjoint operator on F. Consider M also as an element of Λ2(V*) by
M(VU V2) = {VuMV2y. Define a linear functional on Λ*(V), the Berezin integral,
by ηeΛ*(V)->fη = (the coefficient of the Λ2n(V) term of e*Mη).

Proposition 1. For {ι>J*= i e F,

ί = l

X X (_γ{ait...,ak)
dist inct pair ings

( Λ i , α 2 ) . («k-i , t fk) of (l,...,k)

(vai,M~ίva2)...(υak_l,M~1vak).

Proof. See [7]. •

We wish to generalize this integral to the case of an infinite-dimensional
Hubert space. Clearly, it no longer makes sense to pick out the highest term in
Λ*(V). However, it is possible to rewrite the finite-dimensional integral in a way
that will extend to infinite dimensions.

Let d: F-> F* be the map induced by the inner product on F. Construct the
Clifford algebra ^1F(F0F*) with the generating relationship

Denote the image of v1@d(v2) in ΛF by a(v1)@a*(v2) and define a duality on ΛF

generated by (φ1)®a*(v2))* = a(v2)®a*(vί). Put ψ(v) = a*(v) + a(-—;v ). Then

VIMI /
a*(vJ + a

M \ ( M \

) + {
and so ψ generates a monomorphism ψ: Λ*(V)-+AF. There is a unique pure state
< >, the Fock state, on ΛF which satisfies (xa(v)} = <α*(φc> = 0 for all xeΛF and
υeV.

Proposition 2. For allηeΛ*(V), <ψ(η)) =
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Proof. We have {ψ(v), a*(v')} = W(v) + a[]^Γ\v\ a^v'n^v^M'h). To prove

/ \/ k \
the desired formula, it suffices to compute / γ\ ψ{υ^). For k = 0 or 1, the truth of
the formula is clear. For k> 1, \ι = 1 I

k \ fk-i

UΦd)=( Π # * W
f = l / \ / = l

Assuming the truth for (degree η)^k— 1, we have

pairings (αi,α2)^^,(flk-3,«k-2
of {l,2,...,fc^T,...,fc-l}

V
Ϊ = 1

X j; (_)σ(α1,...,αfc)
pair ings (αi ,& 2 ) , . . . , ( « k - i,«k)

of {l,...,fc} s.t. ah- \—k — i, au = k

x(-)i+\vaι,M-\2)...(vak_3,M-\k_2)
— ί_\k/2 y (\σ{ai,...,ak)

pair ings ( α i , α 2 ) , . . . , (Λk- i,«k)
of {1,...,*}

x(ϋ β l ,M- 1 ϋ f l 2 ) . . .( ι? β k _ 1 ,M- 1 t ;J

The proposition follows by induction. Π

Note that the measurables are iaA*(V); the value of the state on the rest of AF is
immaterial.

Given a real Hubert space 3tfF and a bounded invertible real skew-adjoint
operator M on J^F, let <, > be the inner product on 2/f¥ defined by (vl9v2)
= (vl9\M\~1υ2). Form the CAR algebra AF based on 34?F with generating
relationship {a^{vγ\ a(v2)} = <t;1? u2>. Then there is a unique Fock state < >F on AF.

Put tp(ι ) = a*(v) + α ί ——- v I, and let stfF be the Banach subalgebra of AF generated

by {ψ(v)}. Define the normalized Berezin integral on srfF by \v\ — (j\)F (The use
of a CAR algebra here has nothing to do with the use of CAR algebras
in Hamiltonian formulations of fermion theories.)

When one wishes to quantize Majorana fermions, the above applies when the
Euclidean Dirac operator is real and skew-adjoint, that is, in spacetime dimensions
= 0,1,2 (mod 8), and one avoids the fermion doubling problem of [6].
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II. The Free N= 1/2 Supersymmetric Field

The Lagrangian for JV = l/2 super symmetry is
1 °° //dA dλ\ I dw\\

L= 2 L {{if9 If) ~~ \Ψ'Iτ))dT H e Γ e A' ωE^^2^o and ψ is formally
of odd degree (i.e., anticommuting). (For a more meaningful description, see

Sect. V.) If ε e [R, R ] °° is a real constant of odd degree then L is invariant under the
dA

infinitesimal variation δA = εψ, δψ = ε -—. In order to quantize this Lagrangian we
dT

wish to make sense of J e~LΘ(A, \p)£$A2\p with Θ being some functional of A and ψ.
For the A field this formal integral has a precise meaning using the Wiener measure
dμ on [R5 R

2 n ] ° , which can also be thought of as giving a state on the commutative
algebra U°(dμ). The supersymmetric Wiener integral should then be a linear
functional on the noncommutative algebra of measurables.

Definition. Put Hs = {fe£f'[R,]R2n~]: the Fourier transform F(f) of / has
J \k\2s\F(f)(k)\2dk < oo}. Let AB be the Weyl algebra based on H~ι with the relation

for vl9 v2, w l5 w2 e H~*. Let $tB be the commutative Banach subalgebra generated

by {U(υ90)}. Let M be the Hubert transform — acting on H~1/2. Form the

algebras AF and sdF of the previous section. The algebra of measurables is
stf = stfB®jtfF with the linear functional < > = < }B<S) < }F induced from the Fock
states on AB and AF.

As < }B is a faithful state, it gives a positive probability measure dμ on the
d

maximal ideal space A of $ίB. If y4(/)=—z—-
αε

t/(e/,O) then
dε

= —ilnU(f 0)(mod2π), and so A(f) is Borel measurable on A. Given a sequence
/ m \2 1/ m \2\

{/;.}^L1iniί"1,wehaveJdμ Π A(fd) = ( Π A(fd) ) which is finite by Wick's
\i=l / \\i=1 /IB

theorem and the fact that (A(f)A(f')} = (/, / ' ) _ x. Thus fl ^(/i) e L2(dμ) C L 1

Let < }B also denote integration on Lι(d). / = 1

Definition. The supersymmetry transformation S is a densely defined (graded)
derivation on l}(dμ)®s$F such that if {/JΓ=i a n d {gj}jLι are in the Fourier
transform of [ ^ I R 2 " ] ^ with F(fi)(0) = F(gj)(0) = 0, then

π ^ ω π ψ(gj) = Σ

J =

Proposition 3. For all 0eDom(S), <S^> = 0.
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m m'

Proof. Take Q— Π A(fy f] ψ(gX WLOG, assume that m and n are odd. Now

and

/ m' \ m'

ίw{fi)j\ψ{gήF = .Σ(-y+l<^(/χg;)>F (.D^fe/))

The proposition follows because

\f*j

F. •

This shows the supersymmetry of the vacuum state of the free theory. We will
also need the supersymmetric state given by making time periodic of period β. This
requires considering the conditional Wiener measure on paths from a point to
itself, and then integrating over R 2 w .

In the preceding, because of the masslessness of the fields, it was natural to
restrict to fermion fields of the form ψ(f)(0) = 0. This restriction can be evaded by
using the fact that only sέF expectations are taken and the rest of AF does not
matter. Thus the Hubert space used to define AF can be varied provided that the ψ
fields are changed accordingly.

Definition. Given - oo < a < b < oo, put H' = {fe [[α, b],IR2"]: feL2{[_a, b])} and
form the CAR algebra Ar based on H'. Define T'eB(H') by (Tf){x)

1 b

= -\ήgn{x-y)f{y)dy. Put ψ'(f) = a*(f) + a(T'f)eAF. and let these generate the
2 a

Grassmann algebra J / F > . Let < ) F , denote the linear functional on $ίΈ, induced
from the Fock state on AF>.

I m \ I m \

Lemma 1. For {gj}
fjl=1 as in Proposition 3, ( f] ψ(gj)) = ( Π ψXSj))

V=i IF \j=i IF'

Proof. By Wick's theorem, it suffices to show
Now

<ψ(g l)ψ(g 2)>F =

0 0

— oo

0 0

fel

ΐ
— oo

0 0

= ί ί

~ ] -.
Δ — co II

1

— 00 — 00
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and

<V>'(giMg2) V = <(α*(gi) + α(Γ'g l))(α*(g2) + α(T'g2))>F, = <a(T'gl)a*(g2))F,

— 00 — co Δ

It follows that L^rfμl^ b ])® J / F , has the supersymmetric linear functional
< > 5®< }F'. The point of using stfF. is that one can consider ψ(g) with JgφO.
Henceforth J / F , and < }F, will be used exclusively and the primes dropped.

We can now give the Hamiltonian version of the fermion path integral. In one
spacetime dimension the fermion Hamiltonian vanishes and all that matters is the
factor ordering.

Definition. Let {ei}fn = l be an orthonormal basis for R 2 M and put

so that y | π +i = l.

Proposition 4. Take {g, }7=i ί 0 ^ a sequence in [(α,fr),IR2π]? w/f/ι suppgi

n>. Then

m' \ m' 1

jΠtp(gJ )) f=2-"ίTrΠ i i^r(g JWτ 1 . . .rfrm,

Proof. Because the dimension of the spinor space is 2", the proposition is true for
m' = 0,1. By induction,

m' \ m' I m' \

Π v(g,)) = Σ (-y<vfei)v(gi)>F / Π vfe/)\
7=1 /F J=2 \j' = 2 I

3 = 1 L

χ\dτ2...ύf;...dτm/Ίτ π ^ r t e / ^ ')).
j'rj V2

J * j v

On the other hand, by anticommuting yig^T^) to the right,

m' 1 m' λ m' \

Tr Π -7=7(8/3}))= X (-) /^<g/T 7),g 1(T 1)>Tr Π -^7(g/(3}0),
J=l 1/2 J = 2 ^ j' = 2 1/2

and so

Π Ψigj)) = 2 - « j T r Π ±=y{gffl)dTi -dTm>. D
J = l IF J=l ]/2

Let dμxyβ be the conditional Wiener measure on {y4e[(0,jS),R2n]° with
y(O) = x, y(jδ) = >>}. Then integration gives a linear functional on L1(dμxyίβ). For

G G C 0 - ( R 2 " ) and / G [ ( O , / 0 , 1 R 2 X , X-J/(T)G(^(Γ))dT is in L«>(dμXtytβ).
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Definition. Let jtfFtβ be the Grassmann algebra generated by L2([α, &]) with a^O
<β<b. The linear functional < }Xty tβ on l}(dμXty9β)®s/Ptβ is defined by

We now give the Feynman-Kac formula relating the above expectation to the
heat kernel of an operator. Let S be the spinor bundle over R 2 " and let Φ denote the
Dirac operator, essentially s.a. on a dense subspace of L2(S). Let A denote the
position operator on L2(S): (ΛS)(x) = xS(x), and for v eR2n, let γ(v) denote Clifford
multiplication on L2(S):(y(υ)S)(x) = γ(v)S(x).

Corollary 1. Let {f)T=x and {g7 }JLi be sequences in [(0,j8), R 2 n ] ^ with supp/i
^ suppg! ^ supp/ 2 ^ . . . ^ suppgm. (Some elements can be considered missing in the
sequence.) Let {Gi}f=ί be a sequence in C^(R2"). Put H = ±U>2. Then

Π (ifi(Ti)Gί(A(TJ)dT^ψ(gi)

'HdT^(y,x).

(The trace is on the Clifford algebra component.)

Proof. This follows from Proposition 4 and the Feynman-Kac formula for the
Laplacian, as on R 2 n , $2 acts as V^V and commutes with Clifford
multiplication. •

Note. The appearance of the y2n + i i n &e Corollary is to ensure that the fermionic
integration is over formally periodic fields on [0, /}]. If all the fields are periodic
then the Lagrangian is formally superin variant, and one might expect that < }χ,Xtβ

is superinvariant. However, this is not the case. For example, with n = l,

The superinvariance is only recovered when one can integrate over x.

III. The N= 1 Supersymmetric Field

The Lagrangian for N = 1 supersymmetry is
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Here A, ψl9 ψ29 F e ^ R ^ R 2 " ] ^ and \pγ and xp2

 a r ? of °dd degree. L is for-
mally invariant under δA = ε1ψ1+ε2ψ2, δψ1=Aε1—Fε2, δ\p2 = Aε2 + Fε1,
δF = ε1ψ2 — ε2ψί, with εl9ε2 e [R,R]°° being odd degree constants. Just as before,
we can compute vacuum expectations of sums of products of the form
A(f)ψi(g)ψ2(g')F(h) with f^H1' £> &' e # ~ 1 / 2 and h eH°9 and show supersymme-
try of the vacuum state.

For the case when time is periodic we will not measure the F field and so
integrate it out immediately. By writing ψ1(g) + ψ2(g') as ψ(g(Bg')9 construct the
algebra stfF generated by (tpi(g)} and {ψ2(g}} for g e L2([α, £?]), with the linear
functional < >F. The algebra of measurables is Lco(dμx>y>β)(S)^F with the state
< >x,y,β given by

(f\ fn f ][
\k = i

Proposition 5 (Free Feynman-Kac Formula). For ueR 2 f i , let E(v) denote exterior
multiplication by v on L2(Ω*R2") and let I(υ) denote interior multiplication by v on
L2(Ω*R2 w). Let(-)F be the operator on L2(ί2*R2 n) which is ( - ) p on ΩpΈL2n and let
Fί — \A be the Laplacian, ess.s.a. on a dense domain in L2(ί2*R2"). Let {fi}T=i,
{gi}T=i, and {g;}Γ=1 be sequences in [ (0 ,β) ,IR 2 χ with

and let {GjΠ=i be a sequence in Q?(R2"). Then

m

n(ίMTi)Gι{A(Ti))dTίΨl(gi)ψ2(g'i))
l

U

~

(The local trace is over Ω*(R2")J

Proof. The same as for Corollary 1. Π

With JV = 1 supersymmetry one can add supersymmetric interactions. For
β

V{A)eC(Ό{]R2n), the term L i π t = f l-FjdjV(A)-iψίiψ2jdidjV(A)']dT is formally

superinvariant provided that the fields are periodic. Integrating out the F field
gives βrί η

Ant-^ J -IVVfW-iψuψydidjViA) \dT.
°L _

We wish to define (e~LintΘ}Xiyiβ for Θes$\ however, in general L i n t has no
hermiticity properties and e~Lixlt need not be in jtf. To circumvent this, one can use
the fact that < >F comes from the Fock state on AF, and is given by the vacuum
state |0>F in the Fock space HF = 0 £2fe(L2([α, fc])). One can show [6] that for fixed

A, Qxpi$ψίiψ2j(didjV)(A)dT is an operator on HF densely defined on the finite
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particle subspace of HF, and that on this subspace it is the strong limit of

Σ -Λi\wuW2βidjV){A)dT) . Furthermore, expif ψliψ2j(didjV)(A)dT for-
n=o n\ \ o / o
mally commutes with j / F .

Definition. For ΘeL\dμx^β)®stfF, define <β" L i n t ^> x > > ,^ to be

2«

I Π
k = 1

Proposition 6 (Feynman-Kac Formula). Wίί/z the sequences of Proposition 5,

and

r.

ί=Ί

one has

x J e- Γ/Ή 1 / ( £ _ / ) ( g ; .( 7 :" ) )^" H

ί /7;")J (y, x).

Proof. Put Hϋ = \{d + d*)2. Because (e~LiMΘ}x^β is continuous in {gj and {g[),
there is a Schwartz kernel which is given by

x ( e ~ L i n t Π GiiAiTi
ι=l

In

X <0FI Π

/ β \

Π VI(ΪJ')V2(Ϊ; / /) expiiψ1iΨ2j(SidjV)(A)dT\0Fy .
i = l V 0 /
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If {ηt} is an orthonormal basis of HF consisting of finite particle vectors then the
last factor is

Σ < 0 F I Π
1,1' fe=l

x <^m+1|expi jΨliψ2j(didjV)(A)dT\OF).
0

Expanding the exponential as a strong limit and commuting the various terms to
the left, one obtains

2n

Σ (9F\ Π Ψl(h[-2n + k-l -2n + k])ψ2(h[-2n + k-l -2«+/cl)
l,V k=l

xexpi ίψuψ2j(dίdjV)(A)dT\ηhy

0

W ( ! Ύ(>

i=Λ lί ι n u 2j ι J

Tί+ι

Ί}" J l "

with Tή+1 = β and ^ϊm+1 = 0F. Then, by Proposition 5,

x Π dTidT(dT;'f{nGi{A{Tί})\Ίx{-γ
1 = 1

x I exp/J1 -l^{E + I){e^-]-i{E-I){e^didjV){A)dT

(y, x)

with 7^+j =β. By the Feynman-Kac formula for tensor fields [8], this equals the
RHS of the desired formula when

Ά ψV\2{Ά)

\\VV\\A).
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On the other hand,

(e^e^ + e-^eη^iEie^dj-d^-Iie^δj+djV))2

= (d*d+dd*)+(I(ei)E(ej)-E(ei)I(ej))δidjV+\VV\2.

Thus H = Uevde-v + e-γd*ev)2. •

Proposition 7. Suppose that e-iM^P-II^IDeZ^ίR 2"). Then β

= I dx(e~LiatΦyxxβ defines a superinvariant linear functional. That is, if f, g, and g'
are in ([0, β], R 2 ") j and GeCJ(R2"), ί/e/me ί/ie graded derivations Sγ and S2 by

Sι

β$f(T)G(A(T))dT=ψ1(f(T)VG(A(T))),
0

S2 f f(T)G(A(T))dT= ψ2(f(T)VG(A(T))),
0

S2Ψi(g)= -iUi(T), VV{A{T))ydT,
0

') = i j <g'(

Then (SφUfmGlAiTβdTΪψ^ψM] =0 for k = 1,2-

Proof. With the assumption on V, by Symanzik's inequality [9],

e~βH is trace class on L2(Ω*R2"). Put β 1 = -^[evde~v-e-γd*ev~\ and

1 V*
Q2= —=i[evde v + e vd*ev~\. Then Q\ = Q\= —H, {QuQi}=^^ a n d {QiΛ~)F}

= {Q2,(-)F}=& Thus Ίr{-fe-βH{Qk,&} = 0 for any Ge5(L2(ί2*R2n)) with
fc = l,2. Now Qj acts by commutation as a graded derivation on bounded
operators and

Qu] f{T)e-THG{A)eTHdT~\ = f f{T)e~THIefi{Al^{E + I){eύ\ eTHdT,
o Jo \ |/2

and

]/2
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If Θ is a measurable in Domf^) and & is its translation into an operator via
Proposition 6, then

One can proceed similarly for S 2. D

IV. An Index Theorem

As a simple example of how supersymmetry is related to index theory, one
can prove a Morse-type theorem on R 2".

To do a semiclassical analysis, one must add an explicit factor of h to the path

integral by changing L to - L . The only effect is to multiply free vacuum
ft 1

expectations by appropriate powers of h and to replace L i n t by - L i n t . As ft->0, one

expects that the supermeasure becomes concentrated around the minima of the

bosonic part of L. Let Hh denote the Hamiltonian corresponding to - L .
Consider the operator evde~v + e~vd*ev of Proposition 6 mapping Λ e v e n(R 2 n)

->ylodd(R2M). χ h e i n d e χ i s χ r ( _)*£-/*# By homotopy invariance of the index, this

equals Ίv( — )Fe *" Λ = (e *" j β , h , where we have noted an h dependence in the

linear functional < }β h. [The measure dμx x β h is normalized to have total mass
{2πβh)-\-\

The derivation of the index formula is done by first integrating out the
fermions. This leaves a standard Feynman-Kac expression for the index with an h
dependence (and no explicit supersymmetry). Then the h^-0 limit is taken.

Proposition 8. Suppose that Ve C°°(]R2") is such that its critical points are finite and
nondegenerate, \VV\2goesto oo at oo, ande~alvv]2+Hvvvl1 e L ^ R 2 " ) for alia, b>0.
Then Index (evde " v + e" vd*ev) = £ ( - ) i n d e x ( H e s s V){Ci\ the sum being over the critical
points {cι\. Ci

Proof We have

In

Π
k=ί

x exp- i J ψliψ2j{didjV)(A)dT
T,h

Because the fermion fields are quadratic in the exponential, the fermion integral
can be evaluated explicitly.
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Lemma 2. For a fixed A field,

Π
k=l

1 β
x exp- i J ψuψ2j{didjV)(A)dT

n 0 /

= Tr( - )FP exp - J \ U(ed, E(ejf] (d,djV){A{T))dT
o I
J \
o I

(where P denotes path ordering).

Proof. The expectation equals

|0F>

Σ j I T= om\\n

Y ί 2n Λ ίh
(E + I)(ek)\ -i(E-

tn [ί
= Tr(-f Fexp- J \ Wed,E{e$\{d$}V){A(T))dT. D

Thus

Index = j dx j rfμ,,,,,, βt n(Λ)e 2 h

xTr(-fPexp- f ̂
o ^

By homotopy invariance of the index, we can perform a relatively com-
pact perturbation of the operator to make V exactly quadratic in a neigh-
borhood of each of the critical points without changing the Hessian of V at
the critical points, while leaving the index invariant. Let {B(Ck,2ε)} be disjoint
open balls in this neighborhood and let C denote ΈL2n\{JB(Ck,2ε). Put
δ= inf 2

\y

Lemma 3.

lim dx dμXtX>β>n{A)e
h^o c

xTr(-)FPexp- J \
o I
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Proof. Let Z denote the preceding integrand. By Jensen's inequality,

Ϊ j ι , a Ί l Γc op

exp- Ij^FFI W)) \

β dT
ϊ -r-\dyδ{y-A(T))
op

Let W denote - | F F | 2 — ||FFK||. Then

2(χ-y)2

S 22n f dye~*W(y) J dx(l/(πhβ))2ne **
c

( ( \\2n - 2 ( x ~ y ) 2 \
xmin (2πft/0-», ί ^x - ^ e ^

xmin U2πhβ)\e [a1d(y,C) + a2

\ \ \ πhβ
for constants aί and a2. 1 2

J.WXVΛJ.i' V-Ά / p JLJLJL WXJ.V V i i p V l l V l l t J. LJ ΓS

o2 2
The coefficient of ft in the exponent is -1 VV\\y) + 2 —^—^. For 3; e (J B(cfc, ε),

2ε2 1 ^
this is ^ - o - . For y<£(JE(cfc,ε), it is ^ - δ . By dominated convergence,
limZ = 0. D

Over any fixed ball B(ck, 2s\ V is a nondegenerate quadratic. Let βfc be the
extension of this quadratic to R2". By the same argument as in Lemma 3,

B(ck, 2ε)

Tr(-fPexp- J \[_I(e^E{e^{diSjV){A{T))dT
0 z

differs from the same expression, but with V replaced by Qk and the integration

done over R 2 n, by something which decreases exponentially in - . Thus

Index = lim _
fi->0 k

xTr(-)FPexp- J ^{.I{ed,Eiejf]{d,d^{A{T))dT.
0 ^



620 J. Lott

Lemma 4.

Proof. By the Feynman-Kac formula,

h2 1
with Hh=—-A + ~ΣλlAl. By separation of variables, this equals

2n _β_τr

Π T r e « f c withΠ λ

The eigenvalues of Hk are <-(2n + l)|λfc|: neZ, n^0>, and so

Thus the desired integral is

Π (2SINH^A/2SINH^|4|) =(-) ( # of ^ < 0 ) . Π
k=ι\ 2 2 /

By diagonalizing each Qk and applying Lemma 4, one obtains

Index(e v de- v + e~vd*ev)= lim j ] ( - ) i n d e j ι Q ( C l ) = j;(_)ωcχ(HeββF

V. Compact Manifold

Let M be a compact 2n-dimensional spin manifold with spinor bundle S. The
standard Brownian motion is a measure on M = [S 1,M]°. To form the super
analogue it is necessary to look at certain supermanifolds. We recall from [10] that
Rpq is the superspace over Rp with q Grassmannian generators; that is, the ring of
superfunctions over Rpq is C°°(lίPϊβ) = C°°(Rp)(g)A*(Rq). SUqis the analogous thing
over S1. We will want to consider a supermanifold of maps from S 1 ' 1 to M. Let
[i4,5] r e g denote the space of maps between supermanifolds A and 5 as defined in
[10], that is, homomorphisms from the superfunction sheaf over B to the
superfunction sheaf over A. As this is not a supermanifold, following folklore we
define [ Λ # ] s u p to be the supermanifold such that []R p '^[^,5] S U p] r e g

= [IR/'q x A,5]reg for all p,q^0.
Let Y denote the supermanifold given by C0 0(7) = Γ 0 0 (^*Γ*M); that is, the

superfunctions over Y are cross-sections of the Grassmannian over M.

Claim. Formally, [ S l f l , M ] s u p = JΓ, the supermanifold with C°°(X)
= Γ(^*[S1, T*NQ) (where [S1, Γ*M] is a vector bundle over [

Corollary. Formally, [S1, Y] = * .
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Proof of Corollary. [S1, Γ] s u p = [^1,[lR0 '1,M] s u p] s u p = [S1 '1,M] s u p = X.

Proof of Claim. Taking p = q = O, the base space of [Su\M']SλlV) is [S\M]. One
must show that Vp, q, we have

Hom(C°°(M), 1

For

?/ e Hom(C°°(M), C 0 0 ^ 1 ' 1 x R"'*)) = Horn (C°°(M),

covers a map φ'.S1 x R ^ M . For /eC°°(M), write η(f) = Σrli(f)θ^ w h e r e

{ }
Σ

is an even length increasing multi-index composed of {1, . . .,# +1} , and
^ e C ^ x R * ) . We have Σrii(fΓ)θI = η(ffΊ = η(f)η(fΊ=ΣUf)ηκ(f)θJθκ. In
particular, ηφ(ff') = ηφ(f)ηφ(f')> and so ηφ{f)=f<> φ. At a fixed level J,

= Σ
Σ r,j(f)ηκ(f).

J,K*Φ,ΘJΘK = ΘI

ϊf *?/(/) a l s o satisfies this equation then (η —
+ (η — ή)i(f')(f° φ\ the most general solution of which is (η — ή){f) = hf for some
h e [S1 x Rp, ΓM] covering φ. Thus at level /, the possible choices for ηl9 given φ
and {^j}degj<deg/f°rm either nothing or an affine space with tangent space
Tφ = {he [S1 x Rp, TM]: h covers φ}.

Lemma 5. Let {VJ}I*Φ be a sequence in [S1 xRp,Vect(M)]. Define

ι/:C0 0(M)->C0 0(S1 x R ° ^ V + e ? ) ^ ^
?/ is α homomorphism.

Proof. It suffices to show that expF^z)^ is a homomorphism on C°°(M). Each
V^θ1 is in Der(C°°(M)®^even(Rί + 1)) and acts on C°°(M)®^*(R^+1). As

^ ) = VI(fg)θIθJθκ =fθJ(VIgθIθκ) + {VIfθ
IθJ)gθκ,

acts as a derivation. Then expF^z)^ is a finite power series which is a

homomorphism. •

Thus as a set, HomftC^MXC^S^xR^)) is

U Π τφ= u
ixIRP.M] /even ψetS1 X]RP,M]

7Φ0

On the other hand, for

η' E Hom(Γ(Λ*[S\

^ covers a map φ ' e E R ^ β M ] ^ ^ 1 xR p ,M]. For /'eC°°(£2M), write η'(f')
= ΣrlΊ(f'W1' (The multi-index is now composed of {1, ...,#}.) As before, each η'j
forms an affine space with tangent space being the subspace of [Rp, TΩM]
= [.S1 x Rp, TM] covering ψ'. For ω' 6 Γ{T*ΩM\ write ^/(ω/)= Σ ^ ω ' ) ^ . The
restriction on ̂ ' to be a homomorphism gives J o d d

ί'(//ω')= Σ
I odd
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or

^(/ '« ' )= Σ ri'j(f'Wκ(ω') = (fΌφ')η'I(ω')+ Σ η'j(fWκ(ω').
JK = I JK = I

J Φ 0

If ηΊ also satisfies this equation then (η'I — ή'I)(f'ω') = (ff o φf)(η'I — ή'I)(ω'). Thus at
level I the possible choices for η'j, given φ' and {^j}degj<deg/5 f ° r m either nothing or
an affine space with tangent space {h! e [R p, TΩhf\: h! covers φ'} = Tφ,.

Lemma 6. Let {F/}IΦ0 and {Wj}Joί o d d d e g r e e be sequences in

[IRΛVectΩM]. Define n':C^(QM)^C^(Kp^) by

for z'e]Rp and ^:Γ(Γ*ί2M)^C 0 0(]R i 7 '€) by

Proof. The same as for Lemma 5. •

Thus as a set, Hom(Γ(Λ*[S1, T*M"]\ C^QR*-")) is

U ( Π τφ,χ π τΛ= u 7?*-1. D
φ'etS1 xR^,M]l I even 7 odd I φ'etS1 XRP,M]

\ /Φ0 /

As a consequence of the claim, the space of measurable S is formally
Γ(Λ*[S\ T*M\.

Definition. Define E e C&S\ M] °°) by E(y) = J <y, y>, define θ e ^ [ S 1 , Γ*M] °°) such

that VFeΓfl^1, TMY\ θ(V)(y)= J<y, Fy>, and define ωeΓ(y42[SS T*M]°°) such

that V7, ^ e A C S 1 , TM]0 0), ω(F,
y

Lemma 7 [11]. (d + y θ = E + ω and (d +

Proof. See [11]. •

We take the supersymmetric Lagrangian to be L=^(E + ω). In local
coordinates,

and the supersymmetric variation d + iy acts as (d + i^)yμ = ψμ, (d + iγ)ψμ = yμ. We
wish to define the formal object \e~hr\ for ηeΓ(Λ*[S',T*M~\) such that
$e~L(d + i^)η = 0. For M = R 2 π , this was done in the previous sections.

To establish notation, the Malliavin construction of the ordinary Wiener
measure dμmfm>β(y) {formally e~^E(βy) on ΩmM = {ye[S1,M^°:y(O) = m} is given
as follows [12]: Let {Al9...,A2n} be the canonical horizontal vector fields on the
principal bundle Spin(2π)->P->M. Solve the stochastic differential equation drω

= ΣAkdsb
k

ω on P with the standard Brownian motions {bk

ω}l'L1, subject to
k

πrω(0) = m. It can be shown that this has a continuous solution for almost all ω. lϊB
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denotes the Wiener measure on {ω:IR+->IR2n: ω{0}=0} then the Wiener
measure on ΩmM is Emmβπ^r^B, with Emmβ being the conditional expectation on
paths with y(β) = m.

Definition. Let ^ be the * algebra of finite linear sums of products of

ί f(T)F(y(T))dT, \g{T)dG{y{T))dT, and \h{T)dH*(y{T))dT with the relationship
0 0 0

Ug(T)dG(y(T))dT, μ(T)dH*(y(T))dn = ^g(T)h(TKdGJH)(y(T))dT.

Here /, g, and h are in C£J[0,β']) and F, G, and H are in C%(M).

Definition. For a given y e ΩmM, let rω(T) be its horizontal lift in P starting from
some rω(0) and let {ei(T)}fl1 be the frame obtained by projecting rω(T) to the
orthonormal frame bundle. Define a homomorphism sm: @-^l}(dμm^β)®AF, the
scalarization, by

sm(jf(T)F(y(T))d?j = ]f{T)F{y(T))dT,

and

Define </>, a linear functional on B, by 0(fe) =$drn§ dμm^m,^<5w(5)>F. [It follows from
Wick's theorem that (sm(b))F is measurable on ΩmM.]

Lemma 8. Vfte J>, φ(b*b)^O and φ{b*a*ab)^comt{a)φ{b*b).

Proof φ(b*b) = $dmμμm,m,β(sm(brsm(b)}F^().

φ(b*a*ab)=$dmdμmim,β(sJb)*sm(a)sm(a)sm(b)}F

£( sup \\sm(a)\\2

F)φ(b*b).

Because all F, G, and /f s are in C^M), sup ||sm(α)|||< oo. D
m,ΩmM

By the GNS construction, J* is represented on a Hubert space Jf. Let G be the
closure of 0$ in J5(j-f) and let stf be the subalgebra of G generated by

J g(T) (dG(γ(T)\ ψ(T))dT= ] g(T) (dG*(y(T)) + \ \ sign(Γ- S)dG(y(S))ds) dT.
0 0 \ ^ 0 /

In general, if one wishes to define an algebra of measurables which is formally
Γ(Λ*[Sί,T*M~]\ then it must contain the continuous functions on [S^M] 0 in
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order for the bosonic part to carry the Wiener measure. One can treat ΩM as a C u

Banach manifold and consider its C00 differential forms [13]. These will look like
the exterior products of vector-valued measures over each curve y e ΩM. We
expect that the algebra stf will contain all such forms which are exterior products of
vector-valued L2 functions along each y.

Definition. For a curve y in ΩmM, let Ty e Spin(2rc) denote the holonomy around y
2n k

from rJO). Write Ty in terms of the basis of C1(R2") as Ty = £ Γμ J] yμ.. Define a
linear functional < }β on ^C^ by k=ί i=1

Π ιK*f-2»+*-i.-2»+*i)s»(6) Σ Σ μ Π
fc=l fc = O μ ί = l

Extend < >̂  to j / by continuity.

e. That the RHS of the expression for (b}β is measurable on ΩmM follows from
the next proposition. The various terms of the expression have the following
meaning: The s(b) term is the translation of b to a flat space measurable using the

•— — f .R

Cartan development. The factor e 8γ comes from quantum effects. In the
Hamiltonian approach there is a question of factor ordering and the ̂ R is the same
as in the equation^]j)2 = \V+V + ^R. The term involving Ty is to ensure that in the
integration is formally done over periodic fermion fields along γ.

Proposition 9. Let MF denote multiplication on L2(S) by F, let Cl(dG) denote Clifford
multiplication on L2(S) by dG, and let H equal \iS>2. Then for beέ% of the form

b= π h m
i = l 0 0

with supp/; ^ suppgj ^ ^ suppgr,

Proof By Proposition 4,

\/c=l

x ( Π ($gi(VKdG(γ(T?))MTn>dTn

Π
ί = i
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Thus

$dm J
Ω

On the other hand,

= Tΐ72n+1\drTd'T' Πfl
i=ί

Π ( ' ) ] ί <Γ»«Γ

x Π

h m r + 1 =m 1 ) .

Let ψι be an orthonormal basis of spinors at m{. Then the above equals

i = l

i + i\ (with v; r + !=!/?!).

Let y G ΩWM pass through m{ at time 7] and nx at time 7̂ ;. Let SciClidG^irii) be the
scalarization of Cl(dGi)(ni) and Sc^,-) be the scalarization of ψi9 both with respect
to the frame {ej obtained by lifting y. From the Feynman-Kac formula for tensor
fields [8], the above equals

\άrTd'T | j7 fi(TMV)

x Σ<Sc( V l ) | ? 2 n + 1 Π F,(y(ID)Sc(α(dGί))(y(7r))|Sc(vr+1)>.
ψ i— 1

Now |Sc(φr+1)>®<Sc(i/;1)| = Ty, and one obtains

2 n + l

[.Π f.CK^)) Sc(Cl(dG;))(y(7:'))]c(Cl(dG;))(y(7:'))] Tγ. Q
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Lemma 9.

id + g J f(T)F(γ(T))dT= J f(T) (dF(y(T)\ ψ(T)}dT
o o

and

(d + ij)$g{T)(dG(y(T)lψ(T)}dT= - J ~G{y{T))dT.

Proof. For FeΠCS1, TM]), at a curve y we have

/(i + g J f(T)F(y(T))dT, v) (y) = Ff /(T)F(y(Γ))rfT= i - f /(T)
\o / o as ε = 0 o

F((7 + eK)(T))dT= \f(T)(dF, Vy)dT= (J f(T)ζdF(y(T)),ψ(T)}dT, V) (γ).
o \o /

Then

(d + ί f)
2 f g(T)G(y(T))ciT= jSf, f g(T)G(γ(T))dT

0 0

o at o al

Proposition 10. For beM of the form of Proposition 9, ((d + if)b)β = 0.

Proof. As in the proof of Proposition 7, we have that Q = 0 commutes with
H and anticommutes with y2n + i Thus for any bounded operator Θ,
0 = TτlQ9γ2n + 1e-'H&]=ττγ2n + 1e-βH{Q,®}. Now [Q,Mfl =-ίCl(dF) and
{Q,Cl(dG)} = i{Q,[Q,MG]} = 2i[H,MGl The proof then follows as in
Proposition 7. •

To compute the Index of Ip, one can introduce an explicit h dependence into

the supermeasure to obtain Index$ = </>M = (formally)Jf exp— -

Because the Lagrangian is quadratic in the fermion field, the integration can be
carried out explicitly to give

From the large deviations theorem [14],

--nsR
Index IP =lim$ dm $dμm>m>βfh(y)f(γ)e 8 Try2n + 1Ty

for any continuous function / on ΩM which is identically one in a neighborhood of
the constant loops. Thus the index density becomes concentrated near the
constant loops and can be evaluated in a quadratic approximation as in [4, 5].
From the Feynman-Kac formula,

IndexU) = Tτy2n+1e
 h * with Hh=-h2ip2.
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Index0 = UmΎry2n + 1e
 2 = limΎΐy2n + 1e

 2

n^o β-+o

which shows that in this case, the ft-»0 limit is the same as the /?-»0 limit of [4, 5].

VI. Gauge Fields
E

Let I be a R 2 " vector bundle over M with an S0(2nf) connection A which lifts to a

Spin(2w') connection. There is a natural connection A on the vector bundle j
given by DvZ\γ = DVγZy, which induces a connection on yl*[S 1,£] 0 0 . [S1'M]°°

Definition. Define ^ O G Γ ^ ^ S 1 , Γ * M ] ® Λ 2 [ S \ £ * ] ) by

ω o ( Z 1 ? Z 2 ) | y = ί < i ) , Z l r Z 2 y > for Z ^ Z ^ Γ f f S 1 ^ ] )
y

and define ω26Γ(^2[S1, T M]®^ 2^ 1,^*]) by

w2(Z,,Z2; Vu V2)\y= J<F(Vly, V2y)ZlrZ2yy for Fl5 ̂ eΓ f fS 1 , ΓM]).

Proposition 11. Lβί cίdenote the covariant exterior derivative using the connection A.
Then (3+ iΫ)(£ + ω + ω 0 + ω2) = 0.

Proof. Because (<?+^)(£ + ω) = (d + ^)(£ + ω) = 0, it suffices to look at
(^+ί j,)(ωo + ω2) = (^ωo + ̂ ω 2) + (^ω2). Let y(ε) be a 1-parameter family of curves

with y{O) = y and ~-y= V. Then [F, 7] = 0 and at y,
αε

Z 2 ; V)=VωΌ{Zl9Z2)-ω0(DvZl9Z2)-ω0{Zl9DvZ2)

= V] (D,ZU Z 2> - J <PJ)VZ19 Z 2> - J <D,Z1 ? Z)FZ2>

1 ; Z 2> - <D ίZ 1 > D r Z 2 > ] = J <F(F, y)Z1; Z 2 > .

Also ( V B J K Z L Z J ; F) = ω 2 ( Z 1 , Z 2 ; f, F ) =
y

Thus dω0 + ίyω2 = 0. For the other term,

^Zϊ, V2,V%)

-ω2{Z,,ΌViZ2; V2, V3)-ω2(ZίtZ2; [Vu F 2], V3)

— ω 2 ( Z 1 , Z 2 ; V2,\yu F3]) + cyclic permutations

VJZ^y-l <F(F2, VJDy^Z^
y y

-$<F(V2, V3)ZuDVιZ2y- !<F(ίVu F 2], F 3 )Z l 5 Z 2 >
y y

— J <F(F2, [F l 5 F 3])Z 1 ? Z 2 > + cyclic permutations
y

1? F2, F 3 )Z l 5 Z 2> = 0 by the Bianchi identity. •
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For a supersymmetric Lagrangian, we use L— \(E + ω + ω0 + ω2). Then (η}β

can be defined as before for η e ΓiA^S1, T*M@E\) such that ((3+i^}p = 0. The
kinetic terms of L are £, ω and ω0, and ω2 enters as a potential term. In particular,

If £ = Γ*M and 4̂ is the Riemannian connection then

Index Jt>A: (S+ ® S+)Θ(S~ ®S")->(S" ® S+)Θ(S

= Index d + d*: Λ* en-»4*dd = x(^).

The formal Lagrangian for this case is that of N = l supersymmetry:

To see more explicitly that this gives χ(M), one can show that the corresponding
Hamiltonian is \(d*d + dd). The first three terms of L will contribute %V+V + iRto
the Hamiltonian, the %R coming from the fact that the first two terms give the
Dirac operator squared on S(M). The contribution of the fourth term will
be its image under the canonical map.

Gr(T*M0T*M) = Gr(T*M)® Gr(T*M)-*Hom(S, S)® Hom(5, S)

generated by v?1(ei)->-^(£ + /)(ei) and φ 2 f eH —/(£-/)(^.).

Proposition 12. 77ze image 0/ - i J R o fc^it/;{^v;26Gr(T*M0T*M) is

- \RijklEΨEkIι -±Re Hom(Λ*M, Λ*M).

Proof. The image of -iRijklψ[ψ{ψk

2ψ
l2 is ^ y ^ + ZOi^ + Z-Oii*-/*)(£'-/'λ

which can be expanded into terms of various degrees. From the Bianchi identity,
those of nonzero degree vanish. This leaves

j - EΨEkIι - EΨIkEι - ΓEjEkIι - ΓEjIkEι + ΓIjEkEι).

Permuting to the form EIEI gives

&Rml - EΊkEjIι - EΨEkIι + EΨEιIk + EjΓEkIι - EjΓEιIk - EkΓEιP]

b + 4Rabdc-]E"IbEΨ - ±

= ύVRa** - 6Rabcd]EaIbEΊd - ±

= ±RabcdE
aIdEcIb - iRabcdE

aIbEcId - ^ a b

= ( - ^RabE
aIb - ±RabcdE

aIbEcId) - lRabcdE
aIbEcId

RabE
alb = - \RabcdE*lbmd - ± R . \J
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Thus the Hamiltonian is H = ̂ VΨ-^RabcdE
aIbEΊd, acting on Λ*M. On the

other hand, using normal coordinates,

d*d + dd*=-(ΓViEΨj + EΨjΓVi) = -(IiEΨiVj + EjΓ{ViVj + [P}, V

= VΨ-EaIbR(ea,eb)=ViV-EaIbEΊdRabcd,

giving H = ±{
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