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Abstract. The supersymmetric path integral is constructed for quantum
mechanical models on flat space as a supersymmetric extension of the Wiener
integral. It is then pushed forward to a compact Riemannian manifold by
means of a Malliavin-type construction. The relation to index theory is
discussed.

Introduction

An interesting new branch of mathematical physics is supersymmetry. With the
advent of the theory of superstrings [1], it has become important to analyze the
quantum field theory of supersymmetric maps from R? to a manifold. This should
probably be done in a supersymmetric way, that is, based on the theory of
supermanifolds, and in a space-time covariant way as opposed to the Hamiltonian
approach. Accordingly, one wishes to make sense of supersymmetric path
integrals. As a first step we study a simpler case, that of supersymmetric maps from
R* to a manifold, which gives supersymmetric quantum mechanics. As Witten has
shown, supersymmetric quantum mechanics is related to the index theory of
differential operators [2]. In this particular case of a supersymmetric field theory,
the Witten index, which gives a criterion for dynamical supersymmetry breaking, is
the ordinary index of a differential operator. If one adds the adjoint to the operator
and takes the square, one obtains the Hamiltonian of the quantum mechanical
theory. These indices can be formally computed by supersymmetric path integrals.
For example, the Euler characteristic of a manifold M is supposed to be given by
integrating e~ %, with
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over periodic ¢’s and y’s, ¢ being a map from S* to M and vy being its fermionic
counterpart [3]. These formal considerations have given rise to a rigorous method
of computing index densities by means of a quadratic approximation to the
operator, which is in fact independent of any considerations of supersymmetry
[4, 5]

There is an intimate relation between supersymmetric quantum mechanics and
the geometry of loop spaces, as was noted by Atiyah and Witten in [11, 15]. (The
reader may wish to look at [11] to understand some of the constructions in the
present paper.) They remarked that the generator of the supersymmetry trans-
formation (in the Lagrangian approach) can be formally represented by d+i,
acting on differential forms on the loop space QM of M. The super Lagrangian (for
N =1/2 supersymmetry) was identified as E + w, where E is the energy of a loop
and w is the natural presymplectic form on QM. The formal application of the
Duistermaat-Heckman integration formula gave the identification of the
Feynman-Kac expression for the index of the Dirac operator with the index
theorem expression (as an integral over M). This shows a connection between the
cohomology of loop spaces and the Wiener measure. We do not explore this
question, but instead study the supersymmetric path integral as an object in its
own right.

We wish to show that the supersymmetric path integral can be rigorously
defined. This is done by means of a Malliavin-type construction, after the flat space
supermeasure is constructed by hand. The organization of this paper is as follows:

Section I consists of a construction of the fermionic (Berezin) path integral.

Section IT uses this to construct the N =1/2 supermeasure for supermaps of R!
to a flat space.

Section III does the same for N =1 supersymmetry with superpotential added
and shows the superinvariance of the supermeasure.

Section IV proves an index theorem for the operator corresponding to the
supercharge of the previous section, namely e”de ™" +e~"d*e". This is done by
first performing the fermionic integral explicitly. The answer obtained is the same
as from the corresponding zeta function determinant, but with the relative sign
fixed. Then a semiclassical approximation is done, which in this case is equivalent
to the scaling of V used in [15]. We show that the quadratic approximation then
gives the exact formula for the index.

Section V extends the N =1/2 supermeasure to the case of an arbitrary
compact spin manifold M. First, the supermeasure is considered as a linear
functional on the superfunctions on the supermanifold of maps from S*-* to M,
which is formally shown to be the cross-sections of the Grassmannian of the
tangent bundle of @M. The algebra of observables and its supermeasure are
constructed using the Cartan development. Superinvariance is shown and the
corresponding Hamiltonian operator is shown to be the square of the Dirac
operator. In terms of forms on QM, the algebra of observables is generated by the
pullback of A*M under ye QM —y(t)e M, when smoothed out in t. The
supertransformation is the aforementioned d+i,.

Section VI covers the case of an added external connection which lies on a
vector bundle over M.
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Notation. For a vector space V, let Cl(V) denote the Clifford algebra on V
generated by {y(v),y(v')} =2<{v,v'). For a vector bundle E, let A*E denote the
Grassmannian of E and let I'(4*E) denote its C* sections. Let [M, N]* denote the
C* maps between two manifolds M and N and if N is linear, let [M, N]% denote
those of compact support. Define hj, ,€[IR,R*"]* to be ¢(x)¢' for some
¢eC§(R), with ¢=0, supppC[a,b] and [¢p=1. The Einstein summation
convention is used freely.

I. Fermionic Integrals

The fermionic integral given here is based on the work of [6], with some
modifications. Let V be a real 2n-dimensional inner product space and let M be an
invertible skew-adjoint operator on V. Consider M also as an element of A*(V*) by
M(V,, V,)=<V,, MV, ). Define a linear functional on A*(V), the Berezin integral,
by ne A*(V)— [ n=(the coefficient of the A>"(V) term of e*™p).

Proposition 1. For {v,}¢_ €V,

§ A si=(— ) PE(M)
i=1

% Z ( _ )a'(zn ..... ax)

distinct pairings
(a1,az)...(ax-1,a1) of (1,..., k)

(vals M~ lvaz tee (vak_la M~ Ivak) .
Proof. See [7]. [

We wish to generalize this integral to the case of an infinite-dimensional
Hilbert space. Clearly, it no longer makes sense to pick out the highest term in
A*(V). However, it is possible to rewrite the finite-dimensional integral in a way
that will extend to infinite dimensions.

Let d: V—V* be the map induced by the inner product on V. Construct the
Clifford algebra A (V@ V*) with the generating relationship

{0:@W, V@, =w (M| 'v) +w,(IM] ™ 'oy).
Denote the image of v, ®d(v,) in A by a(v,)®a*(v,) and define a duality on A,

generated by (a(v,)®a*(v,))* =a(v,)Da*(v,). Put pv)= a*(u)+a<% v) Then

* M M
{W(vl) P(vy)} = {a (vy) +a(lMl U1>> a*(vy) + <|M, Uz)}

— iw_ + __Ai_ =0
= 01’|M|UZ Uz:|M|U1 =V,

and so y generates a monomorphism y: A*(V)— Ap. There is a unique pure state
{ >, the Fock state, on 4 which satisfies <xa(v)) = (a*(v)x)» =0 for all xe A, and
veV.

Proposition 2. For all e A*(V), {p(n)>=[n/[1.
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Proof. We have {y(v),a*(v')} = {a*(u)+a<% v> a*(v’)} =, M~ ). To prove

the desired formula, it suffices to compute < I1 w(vi)> .For k=0 or 1, the truth of
the formula is clear. For k>1, i=1

<ilf[1 W(Ui)> < ]:[ w(v)a* (vk>

,-;( Y+ 0 M 0, V) <o 90 e 90— )

Assuming the truth for (degree #)<k—1, we have

k—1
< il w(vi)> = ¥ (- oMy

X z (_)a(al ..... ax-2)
pairings (al,az)>< (ax - 3,0 -2)
of (1,2, f~The k=13
x(— )’“(val, T0,) e (Vg M0, )
=(—)¥? ‘21 (=) (Ve M~ 1)
i=
% Z (_)o‘(al ..... ax)

pairings (a3,42), ..., (ax - 1,a1)
of {1,..., k}stak1k1akk

X (=) vy M 100, .. (00, s M g, )
— ( _ )k/2 Z (_ )o’(a1 ,,,,, a)
pairings (ai,a3),..., (ax - 1,ax)
of {1,..., k}
X (Vg M7 10,) ... (Vg s M ™ 10,,)
=fn/f1.

The proposition follows by induction. []

Note that the measurables are in 4*(V); the value of the state on the rest of A is
immaterial.

Given a real Hilbert space #; and a bounded invertible real skew-adjoint
operator M on 5%, let {, ) be the inner product on #; defined by {v{,v,)
=(vy,|]M| ™ 'v,). Form the CAR algebra A, based on #, with generating
relationship {a*(v,), a(v,)} =<v,,v,). Then there is a unique Fock state { Y on Ap.

Put y(v)=a*(v)+a , and let 7, be the Banach subalgebra of 4, generated

M
mM°
by {y(v)}. Define the normalized Berezin integral on 7, by [#=<{n). (The use
of a CAR algebra here has nothing to do with the use of CAR algebras
in Hamiltonian formulations of fermion theories.)

When one wishes to quantize Majorana fermions, the above applies when the
Euclidean Dirac operator is real and skew-adjoint, that is, in spacetime dimensions
=0,1,2 (mod8), and one avoids the fermion doubling problem of [6].
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II. The Free N=1/2 Supersymmetric Field

The Lagrangian for N=1/2 supersymmetry is
e dA dA dy Ny
2] (<dT dT> <1P dT>> dT. Here A, w e [R,R*"]$ and y is formally

of odd degree (i.e., anticommuting). (For a more meaningful description, see
Sect. V.)If e [IR,IR]® is a real constant of odd degree then Lis invariant under the
e, . dA . . .
infinitesimal variation 64 =gy, dy=¢ T In order to quantize this Lagrangian we
wish to make sense of [ e “*0(A4, )2 APy with O being some functional of 4 and .
For the A field this formal integral has a precise meaning using the Wiener measure
dpon [IR,IR*"]°, which can also be thought of as giving a state on the commutative
algebra L*(dy). The supersymmetric Wiener integral should then be a linear
functional on the noncommutative algebra of measurables.

Definition. Put H°={fe ' [R,IR*"]: the Fourier transform F(f) of f has
T Ik*S|F(f)(k)|*dk < o0 }. Let Ay be the Weyl algebra based on H ™~ * with the relation

U, w)U(vy, wy)= ei((vz’wl)_(vl'wz»U(vz, wo)U(vy,wy)

for v,,v,,wy,w, € H™ 1. Let o/ be the commutative Banach subalgebra generated

d || d
by {U(v,0)}. Let M be the Hilbert transform IT / 0T
algebras A, and .o/, of the previous section. The algebra of measurables is
o = o 5® A with the linear functional { > =< >;®<{ >y induced from the Fock
states on Ag and Ap.

As ( g is a faithful state, it gives a positive probability measure du on the

maximal ideal space 4 of /. If A(f)=—i ;—8' U(ef,0) then A(f)
e=0
= —ilnU(f, 0)(mod 2x), and so A(f) is Borel measurable on 4. Given a sequence

{fi}r~in H™', we have [du ( ﬁ A( f.)>2 = << ﬁ A( f)>2> which is finite by Wick’s

theorem and the fact that CA(f)A(f")) =(f, f')- . Thus H A(f) e L*du) C L'(dp).
Let ¢ >y also denote integration on L'(d).

acting on H™'/2, Form the

Definition. The supersymmetry transformation S is a densely defined (graded)
derivation on L'(du)®.2/ such that if {f}/~, and {g;}7, are in the Fourier
transform of [R,R?"]§ with F(f;)(0)=F(g;)(0)=0, then

S<£[1 A(f) ,-ii w(gj)> = ii

il A(f;)) v 11 vie)
* j:lzll (=Y (ili A(fl)> 4 <diT gj) jji vley)-

Proposition 3. For all @ eDom(S), (SO =0.
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Proof. Take O= ﬁ A(f) ﬁ y(g;). WLOG, assume that m and n are odd. Now
i=1 i=1

(i), (el 7,49,

<w(fi)jii w(gj)>F = jgl(_)f+1<w(ﬁ)w(gj)>p <j,l"j1 w(g,-l)> :

i

and

The proposition follows because

(104 i), = ()., =<l ).

= (#ar/|ixle)
“\lar/lat|®) =y, O

This shows the supersymmetry of the vacuum state of the free theory. We will
also need the supersymmetric state given by making time periodic of period f. This
requires considering the conditional Wiener measure on paths from a point to
itself, and then integrating over R?".

In the preceding, because of the masslessness of the fields, it was natural to
restrict to fermion fields of the form y(f)(0)=0. This restriction can be evaded by
using the fact that only ./, expectations are taken and the rest of 4, does not
matter. Thus the Hilbert space used to define A can be varied provided that the
fields are changed accordingly.

Definition. Given — oo <a<b< oo, put H' ={fe[[a,b],R*"]: fe L*([a,b])} and
form the CAR algebra A, based on H'. Define T'eB(H') by (T'f)(x)

b
= % [sign(x—y)f(y)dy. Put '(f)=a*(f)+a(T'f)e A and let these generate the

Grassmann algebra /.. Let { > denote the linear functional on .o/ induced
from the Fock state on Ap..

Lemma 1. For {g;}7-, as in Proposition 3, < I1 w(gj)> = < 11 w’(gj)> .
j=1 F j=1 F'

Proof. By Wick’s theorem, it suffices to show <{w(g,)p(g:)>r=<V' (g )V (g2) 5
Now

Cw(g)w(ga)yr=<(a*(g)+ a(Mgl))(a*(gz) +a(Mgy))p=<a(Mg,)a*(g>)>r

I I gz(X)gl(y)— j eI dldxdy

—0 —

0 o0

T sl sign(e— sy,
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and
W' (g)w' (82> =<(a*(g1) +a(T'g))a*(g2) + a(T'g,)) > p = <a(T'g1)a*(g2) ) p
=(82 T'g)w

= I 2,(x) I s1gn(x y)g1(y)dydx. [

It follows that L'(dpuly, ,)® </ has the supersymmetric linear functional
{ >p®{ >p. The point of using /. is that one can consider y(g) with |g=0.
Henceforth o/5. and < > will be used exclusively and the primes dropped.

We can now give the Hamiltonian version of the fermion path integral. In one
spacetime dimension the fermion Hamiltonian vanishes and all that matters is the
factor ordering.

Definition. Let {e;}?"=1 be an orthonormal basis for R*" and put

2n
Vone 1 =170 I1 V(ej)GC](]Rzn),
=1
SO that y§n+1=1.

Proposition 4. Take {g;}7_, to be a sequence in [(a,b),R*"]3 with suppg,
<...<suppg,.. Then

<,~ii w(gj)>F =2—n§Trjl'ﬁ1 %V(&(Tj))dﬂ ..dT,

Proof. Because the dimension of the spinor space is 2", the proposition is true for
m’' =0, 1. By induction,

<jlrj1 w(gj)> 2( Y w(g)wlg))r <H w(g,)>
J*j F

= Ji (—)"§1<g1(Tl), g(T)>dT,dT2™"

X [dT, .. dT .dT,. Tr H

1*11/

On the other hand, by anticommuting y(g(T7)) to the right,

—=(g;(T;)).

Jj'=2
J*j

TrH 1/v(g,(T )= 2( )’ <g,(T) g1(Th)) Tr ﬂ v(g, s

and so

< 'r:lw(g,> 27 ‘/y(gJ(T»dTl 0

Let du, , ; be the conditional Wiener measure on {A€[(0, f),R*"]° with
7(0)=x, y(f)=y}. Then integration gives a linear functional on L'(dy, , 4). For

GeCg(R?") and fe[(0,B),R*"]$, A— /j}f(T)G(A(T))dT is in L*(dpu,,, p)-
0
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Definition. Let o/p 4 be the Grassmann algebra generated by L*([a, b]) with a <0
<p <b. The linear functional < ), , ; on L'(du,, »8)® g 5 is defined by

2n '
<@B®0F>x,y,ﬂ = in(2n— 1)22n<(9B>x,y,/3 <<kH1 W(h?— 2n+k—-1, — 2n+k])> @F> .
= F

We now give the Feynman-Kac formula relating the above expectation to the
heat kernel of an operator. Let S be the spinor bundle over R?" and let ) denote the
Dirac operator, essentially s.a. on a dense subspace of L*(S). Let A4 denote the
position operator on L*(S): (4S)(x) = xS(x), and for ve R?", let 7(v) denote Clifford
multiplication on L*(S): (y(v)S)(x) = y(v)S(x).

Corollary 1. Let {f;}i~ and {g;}7=, be sequences in [(0, §),R*"]& with supp f;
<suppg; Ssupp f, =... Zsuppg,,.. (Some elements can be considered missing in the
sequence.) Let {G;}T- be a sequence in CF(R?*"). Put H=4D?. Then

(I uAmGamuanne)

=Try,,. e "M [T [f{(T)e” TiHGi(Z)eT'HdT;
i=1
X <I e T 1—1[5 e T))e"Hd 7:) (»x).

(The trace is on the Clifford algebra component.)

Proof. This follows from Proposition 4 and the Feynman-Kac formula for the
Laplacian, as on IR?", IP? acts as V'V and commutes with Clifford
multiplication. []

Note. The appearance of the y,, , , in the Corollary is to ensure that the fermionic
integration is over formally periodic fields on [0, £]. If all the fields are periodic
then the Lagrangian is formally superinvariant, and one might expect that { >, . ;
is superinvariant. However, this is not the case. For example, with n=1,

(b9 B ),
(PR AR A, e

The superinvariance is only recovered when one can integrate over x.

HI. The N=1 Supersymmetric Field

The Lagrangian for N =1 supersymmetry is

1 | /dA dA d d
L=§ _.[00 |:<ﬁa ﬁ> - <wlaﬁw1> - <wmﬁw2> +<F’F>]dT
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Here 4, y,, v,, Fe[IR,R*]Y and v, and vy, are of odd degree. L is for-
mally invariant under 84 =¢,yp,+&,p,, Oy,=Ae, —Fe,, op,=Ae,+Fe,,
OF =g, —e,p,, with g, &, € [IR,IR]® being odd degree constants. Just as before,
we can compute vacuum expectations of sums of products of the form
A(f)p,(g)yp,(g)F(h) with fe H™?, g,¢’e H™'* and he H®, and show supersymme-
try of the vacuum state.

For the case when time is periodic we will not measure the F field and so
integrate it out immediately. By writing v,(g)+,(g’) as w(g®g’), construct the
algebra .o, generated by {y,(g)} and {y,(g)} for ge L*([a,b]), with the linear
functional { ). The algebra of measurables is L*(du, , ;)@ with the state

< Dxy,p given by
{Os®@Up)y,y, 5

2n
= 24n<(98>x,y,ﬁ <kH1 Uh(hf— 2n+k—1, —2n+k])w2(h{‘— 2n+k—-1, - 2n+k])(9F> .
= F

Proposition 5 (Free Feynman-Kac Formula). For ve R?", let E(v) denote exterior
multiplication by v on L*(Q*R>") and let I(v) denote interior multiplication by v on
L*(Q*R>?"). Let (—)F be the operator on LX(Q*IR?") which is (— ) on QPIR*" and let
H=4A be the Laplacian, ess.s.a. on a dense domain in L*(Q*R?"). Let {f;}7-,
{gi}rey, and {g}7., be sequences in [(0,),R*"]¢¥ with supp f;<suppg,
<...Ssuppg, and let {G;}I-, be a sequence in C7(R>"). Then

<n (JATIGLA(T)d Tiwl(g,.)wz(g:-»>

x, 9, B

= [Tr(—)F e 1 <§ﬁ(Ti)e'T“HGi(Z)eT"”d7§
i=1

x Ie‘T-’”l/—g—(E +D(eT))em Ty

xje” H% i(E—1)(g;(T,~"»eTf"Hd77”)] ().

(The local trace is over Q*(R?").)
Proof. The same as for Corollary 1. [

With N=1 supersymmetry one can add supersymmetric interactions. For
B

V(4)e C*(R?"), the term Ly, = [[—F;0;V(4)—ip,p,;0,0,V(4)]dT is formally
0

superinvariant provided that the fields are periodic. Integrating out the F field
giVeS B[ 1
Ly~ g [EWV[Z(A)—i‘P1i‘P2jaiajV(A)] dT.

We wish to define (e "~0),  , for Oe.o/; however, in general L;,, has no

hermiticity properties and e~ = need not be in /. To circumvent this, one can use

the fact that { ) comes from the Fock state on A, and is given by the vacuum

state |0) in the Fock space Hp= @ Q(L?*([a, b])). One can show [6] that for fixed
B k

A, expi [ p,10,0,V)(A)dT is an operator on Hy densely defined on the finite
0
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particle subspace of Hy, and that on this subspace it is the strong limit of
ngo%<i§w”w2j(0i6jV)(A)dT)n. Furthermore, expigw”tpzj(aiﬁjV)(A)dT for-
mally commutes with .o7.

Definition. For O e L'(dp, , ,)® oy, define (e Lm0 | ; to be

B
—1/2 [ |PV|2(A)dT
24” I d/“‘x.y, g€ o

2n
X {0 kl:ll w1(h{‘—2n+k— 1, —2n+k1)‘P2(hf— 2n+k—1, —2n+k])@

B
(expi (j) w1iw2j(aiajV)(A)dT'0F>> .

Proposition 6 (Feynman-Kac Formula). With the sequences of Proposition 5,
H=1(e'de™ "+ e~ "d*e")?

and

s

O= T UAT)GLAT)dTw,(g:)w2(g),

1

]

12

one has
<e—Lint@>x’y’ﬂ= I:Tr(—)Fe_ﬂH ﬁ <jﬁ(7;)e_TiHGi(Z)€Tin7;
i=1

X feﬂﬁ(h1)(gi(7:'))eT"HdT;

x[e T{’H% i(E— I)(g;('nn))eTi”Hd'E,):l (1, x).

Proof. Put Hy=3(d+d*)*. Because (e "0}, , ,is continuous in {g;} and {gi},
there is a Schwartz kernel which is given by

R OME ( [1 dTdT AT, (T)g( T el T))
e

i

x (et 1T Gi(A(Ti»wlm)wz(T,-")> ﬁ

=2%{ <fll dTAT AT f(T)g( T)el T))

18
JIPyI2 )T [

X i ype 20 (n Gi(A(TZ))>

2n
x <O kl:ll U’1(h{c— 2n+k—1, —2n+k])w2(hi€-— 2n+k—1, —2n+k])

s

B
w LT (oxpi 02 00,104TI0, ).

13

1
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If {n,} is an orthonormal basis of H consisting of finite particle vectors then the
last factor is

2n
Y., {0 kl;ll 1P1(h{(~ 2n+k—1, —2n+k])1l’2(h’f— 2n+k—1,—2n +k})|’71,>

Lr

(|, Cndonmmed Cuotn, >

B
Xy exPi(f) WIiW2j(aiajV)(A)dTIOF> .

Expanding the exponential as a strong limit and commuting the various terms to
the left, one obtains

2n
lZl, {0 kl;ll ‘Pl(h?- 2n+k—1,—2n +k])w2(h{(—2n +k—1,-2n +k])
T{
X expi g 1P1i‘P2j(aiajV)(A)dT|’111>
m Ty
X ‘131 <<’11,—W(Til) expi ij U’1i‘P2j(ai5jV)(A)dT|’71§>

Ti+1
X {ylw(T;") expi Tf WIinj(aiajV)(A)dTlnl,+1>)

with T, ,=p and #, ., =0. Then, by Proposition 5,
1
L — 5 1 IPV|2(4)dT
e b0y y=dp,,y f(Ae 2
X (H dTdTdT; f (Ti)Gi(A(Ti))> Tr(—)"
i=1

x [expi 7(5? 12(E+1)(ei)i2 i(E—1)(e;)(6:0,V)(A)dT

V2 V2

< [T e DG (e § 54016

V2 /2
x ~l1/—2 i(E—T)(e))(8;0 jV)(A)dT>

x in(E_n(g;a;')) (expi L gD

/2 k2

X % (E—1I)(e;)(0;0;V)(A)d T)i| (¥, x)

7

with T,,,, =f. By the Feynman-Kac formula for tensor fields [8], this equals the
RHS of the desired formula when

H=H,+3(E+I)(e)(E~1)(e)0,0,V)(A)+ 3V V(4
= —30%+ 3(I(e)E(e) — E(e)I(e) (0:0;V (D) + 31V VI*(A).
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On the other hand,
(eVde™V +eVa*e¥)> =(E(e;)(0;,—0,;V)—1(e))(0;+;V))*
=(d*d+dd*)+(I(e) E(e;) — E(e)I(e)0,;0;V + |V V|*.
Thus H=4(e"de " +e7Vd*e")2. [
Proposition 7. Suppose that e PPWVESIVVVIDETIYR2Y,  Then <(0) /
= [dx{e”"=0O), . ;defines a superinvariant linear functional. Thatis,if f,g,and g’

are in ([0, 1, IRz")0 and Ge CP(R?"), define the graded derivations S, and S, by

Sy (I) J(MGAT)AT=w,(f(T)V G(A(T)),

Sz f)f (TGATNAT=p,(f(TVG(A(T))),

Sopi=— | (25, aem)ar,

S,p.(g)= —1j<g(T VV(A(T)))dT,
Sle(g’)=i([) g(T),VV(A(T))ydT,
Sop,(g)=— | <dg A(T)> dT.

Then <Sk iIi (Ifi(T.-)Gi(A(Ti))dTi)wl(gi)wz(gé)>ﬂ =0 for k=1,2.

Proof. With the assumption on V, by Symanzik’s inequality [9],

1
e P is trace class on L*(Q*R?*"). Put leﬁ[eVde_V—e‘Vd*eV] and
0= = ile"de ™" +e ™ d%e"]. Then Q3 =03=—H, (1,02} =0, and (0., (~)'}
={0,,(—)}=0. Thus Tr(—)"e "{Q,,0}=0 for any 0eB(LXQ*R*") with
k=1,2. Now Q, acts by commutation as a graded derivation on bounded
operators and

[Ql, % (T)e"T”G(Z)eTHdT] = [f(mem™ < eiG(Z),i(E+1>(ei)> eTHAT,
0 0 I/E
{0 fatme e negerary = = Fame T, Agerar,
0 ]/i >

and

{Qn lf g(Te” w1 {(E— I)(ei)eTHdT} = ? g(Tie™™(e;V)(A)e™dT.
0 lﬁ 0
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If O is a measurable in Dom(S,) and @ is its translation into an operator via
Proposition 6, then

<e—LimSl(9>ﬂ =Tr(_)Fe—BHS1@=Tr(—)Fe"ﬁH{Ql, (5} =0.

One can proceed similarly for S,. [

IV. An Index Theorem

As a simple example of how supersymmetry is related to index theory, one
can prove a Morse-type theorem on R?",
To do a semiclassical analysis, one must add an explicit factor of 7 to the path

. . 1 . .
integral by changing L to EL' The only effect is to multiply free vacuum

. . 1
expectations by appropriate powers of # and to replace L;,, by %Lint' As h—0, one

expects that the supermeasure becomes concentrated around the minima of the
. o . 1
bosonic part of L. Let H, denote the Hamiltonian corresponding to ﬁL'

Consider the operator e”de ™" +e~"d*e” of Proposition 6 mapping A4°**"(R>")
— A°¥(R?"). The index is Tr(—)"e #H, By homotopy invariance of the index, this

1
=+ Lin

B
-2H ; .
equals Tr(—)e # "={e # s.1» Where we have noted an # dependence in the

linear functional < »; ;. [The measure dpu, , ; , is normalized to have total mass
2nph)~".]

The derivation of the index formula is done by first integrating out the
fermions. This leaves a standard Feynman-Kac expression for the index with an 7
dependence (and no explicit supersymmetry). Then the #—0 limit is taken.

Proposition 8. Suppose that Ve C*(R?")is such that its critical points are finite and
nondegenerate, |V V|* goes to oo at co, and e~ “I"V1*+2 17Vl ¢ L YR 2" for all a,b> 0.
ThenIndex (e¥de " + e~ Vd*e")= Y (—)ndexHessV€) the sum being over the critical
points {c;}. €

Proof. We have

Index (e"de™" +e~Vd*e")=2%"h"2"[dx [du,  s.n

—-

2n
X <kl:[ wl(hf—2n+k—1,—2n+k])w2(h’(c—2n+k—1,—2n+k])

S| =

B
X CXp i(f)W1i1P2j(aiajV)(A)dT>

F.h

Because the fermion fields are quadratic in the exponential, the fermion integral
can be evaluated explicitly.
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Lemma 2. For a fixed A field,
2n
24np = 2n <kl;11 1P1(h{c— 2n+k—1, —2n+k])1p2(h?— k-1, —2n+k)

1.8
X CXPE l g 1P1i1P2j(aiajV)(A)dT>F

,h

—Tr(— ) Poxp— | - [I(e). E(e)](3:d,V)(A(T)AT

N —

(where P denotes path ordering ).

Proof. The expectation equals
2o 5 () copl( 1T it )
o m\h F kI—JIIPI [—2n+k—1,—2n+k]

ﬁ m
X w2(h{c—2n+k—1, —2n+k])) <(f)1P1i(T)1P2j(T)(5iajV)(A)dT> [0
I A 2n . [h h
=24y m;() W(E) Tr[(kl;llV;(E—i-[)(ek)‘/iz(E-—I)(ek))

<P [] [idn‘/guz +De) Vé i(E—1)(e,-)<a,-a,-V)(A(T»ﬂ

=Tr(=)"Pexp— | 5 H(e), He)IGOVIATNT. O

Thus

N

B
i]’IVV'Z(A)JIT
ho

Index= [dx [du, , 5 s(Ae

[I(e;), E(e)](0:0;V ) A(T))dT .

N =

B
x Tr(—)FPexp— |
0

By homotopy invariance of the index, we can perform a relatively com-
pact perturbation of the operator to make V exactly quadratic in a neigh-
borhood of each of the critical points without changing the Hessian of V at
the critical points, while leaving the index invariant. Let {B(C,,2¢)} be disjoint
open balls in this neighborhood and let C denote IR*"\|)B(C,,2¢). Put

o= inf VV|3(X)>0.
xelRZ"\k’_(J B(Ck,s)l 1)
Lemma 3.
. - ll?lvvpu)dr
lim [dx[du, . g «(Ae *"0
#—0 C

x Tr(—) P exp— i % [I(ey), Ee)1(6:6,V)(A(T)dT=0.
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Proof. Let Z denote the preceding integrand. By Jensen’s inequality,

b dT
Z< [dxfdp,, x,ﬁ,h(A)zzn.f e
c o B

< exp— | 3 HIPVRAT) - SIPPV 1A |

= ] A2 ‘%Tjdyé(y A(T)

0

X exp— [z —ﬁ|VV[2(y)— 5 14441 (J’)]-
Let W denote %IVVF— [VVV|. Then

B
ZS2{dye” 0 [ it oA) | 6= A(T)
_2(x—y)?

<22 [dye™ #WO) [ dx(1/(nhp))*"e W
c

< 22n I dye_ W)

< 1 >2n _2(x ;y)2>
x min|{ 2zhf)™", dx{— | e "
(@nif) x=»| éd(y, 0 <7Tfl/3

< 22n 3” dye” WO

x min<(2nhﬂ)‘" a <a1d‘2"(y, O+a, (d;yh;:))))

for constants a, and a,. &, C)

The coefficient of # in the exponent is — |l7 V) +2——=
2

2 1
this is g—;—. For y¢(JB(c,e), it is = 25. By dominated convergence,

For ye Bl ).

limZ=0. [J

A0

Over any fixed ball B(c,,2¢), V is a nondegenerate quadratic. Let Q, be the
extension of this quadratic to R?", By the same argument as in Lemma 3,

[ dxfd o ptie” AP0

B(cx, 2¢)

[1(e), E(e)](0:0;V)(A(T))dT

N —

]
Tr(—)"Pexp— |
0
differs from the same expression, but with ¥ replaced by Q, and the integration
. . . .1
done over R?”, by something which decreases exponentially in W Thus

18
——HVQkIZ(A)dT

Index—hm Zjdxjdux wpiAe 2o

[1(ey), E(e)](0:0,Q)(A(T))dT .

l\)IH

B
x Tr(—) Pexp— |
0
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Lemma 4.

-

llekAi 2n 1
how H 2SINH§ﬂlk=(_)(# of 1x<0)
k=1

Jaxjdu, . 5i(Ae 2

Proof. By the Feynman-Kac formula,
_11

11 B
jdx j d:ux,x,ﬂ,ﬁ(A)e 2h i

Hy

(=L -

T A AR -
k —

=Tre

2

. h 1 - . . .
with H,= 741 + EZA,%A,%. By separation of variables, this equals

2n La, h? 1
[1 Tre *° with H,=— 0%+ -} X>.
k=1 2 2

The eigenvalues of H, are {§(2n+ DAl neZ, ngO} , and so

1

B 2 1
T = o —_— = .
rexp— H, nz‘o exp— > BR2n+1)|4] 3SINH )2

Thus the desired integral is

2n
I1 <2SINH%/3/Ik/2SINH%ﬁ|,1k|> —(—)Fof <0

k=1
By diagonalizing each @, and applying Lemma 4, one obtains

Il’ldCX (eVde—-V_l_e—Vd*eV): hm z(_)inder(ci)z Z(_)index(HessV)(ci) X D
=0 c Ci

V. Compact Manifold

Let M be a compact 2n-dimensional spin manifold with spinor bundle S. The
standard Brownian motion is a measure on M =[S*, M]° To form the super
analogue it is necessary to look at certain supermanifolds. We recall from [10] that
RP%is the superspace over R? with ¢ Grassmannian generators; that is, the ring of
superfunctions over R?%is C*(R?%) = C®(R?)® A*(RY). S*-4is the analogous thing
over S*. We will want to consider a supermanifold of maps from S** to M. Let
[4, B],., denote the space of maps between supermanifolds 4 and B as defined in
[10], that is, homomorphisms from the superfunction sheaf over B to the
superfunction sheaf over 4. As this is not a supermanifold, following folklore we
define [A4,B],,, to be the supermanifold such that [IR”%[A4, Bl
=[R"9x A4, B],, for all p,q=0.

Let Y denote the supermanifold given by C®(Y)=I"*(A*T*M); that is, the
superfunctions over Y are cross-sections of the Grassmannian over M.

Claim.  Formally, [S"!,M],,=X, the supermanifold with C®(X)
=T(A*[SY, T*M]) (where [S*, T*M] is a vector bundle over [S*, M]).

Corollary. Formally, [S', Y],,,=X.
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Proof of Corollary. [S, Y], =[S, [R* ", M1 lep=[S" M, =X

Proof of Claim. Taking p=q=0, the base space of [S"}, M],,, is [S‘,M]. One
must show that Vp, g, we have

Hom(C*(M), C*(S* x R?%) = Hom(I'"“(4*[S*, T*MJ), C*(R?9).
For
neHom(C*(M), C*(S" x R?%)=Hom(C=(M), C*(S' x R»** 1),

5 covers a map ¢:S* xIRP—>M. For feC®(M), write n(f)="Y n,(f)0", where I
is an even length increasing multi-index composed of {1,...,q+1}, and

n e C*(St xR?). We have Y. n,(ff")0" =n(ff")=n(fIn(f")= L nAfmx(f)0’0%. In
particular, n4(ff")=ns(fIns(f"), and so n4(f)=f . At a fixed level I,

m(f= 3 ;i)
=MV F Ol )+ %)

K#+0,076K=

If 7,(f) also satisfies this equation then (—7)(ff)=0—7Sf °P)
+(n—7),(f)(f > §), the most general solution of which is (5 —#)(f)=hf for some
he[S* xR?, TM] covering ¢. Thus at level I, the possible choices for #;, given ¢
and {#;}gegs<acg/form either nothing or an affine space with tangent space
T,={he[S' xR?, TM]: h covers ¢}.

Lemma 5. Let {V,}zw e be a sequence in [S! xIR? Vect(M)]. Define

n:C*(M)—>C*(S* x R Dby ()2 =(exp Vi(2)0)/)(9(2) for z&§* x R?. Then
;1 is a homomorphism.

Proof. Tt suffices to show that exp V;(z)6" is a homomorphism on C®(M). Each
Vi(2)0" is in Der(C*(M)® A°***(R4* 1)) and acts on C*(M)®@ A*(R%*1). As

(Vi) (f6'g0%)=Vi(/g)0"6"0% = 67 (V;g6"0%) + (V, /6"0")g0",

Vi(z)0" acts as a derivation. Then exp Vy(z)0” is a finite power series which is a
homomorphism. []

Thus as a set, Hom((C®(M), C*(S!x R?*9)) is
T¢ — U 7;52‘7 -1 .

¢e[S! xRP,M] I even ¢e[S! xRP, M]
1+0

On the other hand, for
n e Hom(I(A*[S*, T*M]), C*(R? %) =Hom(I'(A*T*QM), C*(R?9)),

n covers a map ¢ €[R?,QM]=[S*xIR?,M]. For f'eC®(QM), write (")
=Y n(f")0". (The multi-index is now composed of {1, ...,q}.) As before, each
forms an affine space with tangent space being the subspace of [R?, TQM]
=[S' xR?, TM] covering ¢'. For ' e I'(T*QM), write #'(0') = Z N ). The
restriction on #’ to be a homomorphism gives

n(f'@)= ¥ ni(f' )0 =n'(f (@)=Y n(f Mmw)o’o%,
I odd J,K
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or
m(f@)= 3 A M) =0 )+ F il i)
J*9

If 77 also satisfies this equation then (n;— 7)) (f'w")=(f" ¢")(n;—#)(w'). Thus at
level I the possible choices for #7, given ¢ and {1} }4eqs <acgr> fOrm either nothing or
an affine space with tangent space {#' € [R?, TQM]: I’ covers ¢’} =T

Lemma 6. Let {V{}1+90 and  {Wj}; of oad degree D€ Sequences in

I of even degree

[IR?, Vect QM. Define n': C*(QM)—C*(R?9) by
n'(f)(2)=(expVi(z')0")f")($'(2)
for 2’ eR? and ' : [(T*QM)—C*(R>9) by
n'()(2) =(exp V/(2')0) (< Wj(2), @ >0)($'(2')) -
Then n/'(f'@)=n'(f W' (@).
Proof. The same as for Lemma 5. []

Thus as a set, Hom(I'(A*[S, T*M]), C*(R?*9)) is
[T Ty 11 Ty

U 7. O
@' e[S XRP,M]\ I even ¢ e[S xRP, M]
I+9

As a consequence of the claim, the space of measurable S is formally
T(A*[St, T*M].

Definition. Define E e C([S*, M]®) by E(y)= [ <}, 7D, define 6 e I'([S", T*M]*) such
v

that VVe ([, TM]®), 0(V)(y)= j<)3, V,», and define we I'(A*[S', T*M]*) such

that YV, We I([S", TM]®), o(V, W)()= — <V, 7310,

Lemma 7 [11]. (d+i,)0=E+w and (d+i,)(E+®)=0.
Proof. See [11]. O

We take the supersymmetric Lagrangian to be L=%(E+w). In local
coordinates,

18
=5 [ 8G9 =" (Vyp))dT
0

and the supersymmetric variation d+i, acts as (d+i,y*=v", (d+i,)p"=7". We
wish to define the formal object [e Ly for nel(A*[S, T*M]) such that
fe Md+i,)n=0. For M =IR?", this was done in the previous sections.

To establish notation, the Malliavin construction of the ordinary Wiener
measure du,, , /y) {formally e~ **(Zy) on Q,M = {ye[S*, M]°:(0)=m} is given
as follows [12]: Let {4,,...,A,,} be the canonical horizontal vector fields on the
principal bundle Spin(2n)—P— M. Solve the stochastic differential equation dr,,
=Y A, dbk on P with the standard Brownian motions {b%}7~,, subject to

x

nr,,(0)=m. It can be shown that this has a continuous solution for almost all w. If B
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denotes the Wiener measure on {w:R*—>R*": »{0}=0} then the Wiener
measure on Q,M is E,, ,, 47,7, B, with E,, , , being the conditional expectation on
paths with y(f)=m.

Definition. Let # be the * algebra of finite linear sums of products of
B B B
[ A(TYF(Y(T))dT, | g(T)dG(y(T))dT, and | h(T)dH*(y(T))dT with the relationship
0 0 0

{'f (TYGH(T)AT, fh(T)dH*(v(T»dT} = [g(TH(T)AG, dH) ((T)AT.

Here f, g, and h are in Cg ([0, 5]) and F, G, and H are in CE(M).

Definition. For a given ye Q,,M, let r(T) be its horizontal lift in P starting from
some r,(0) and let {e(T)}, be the frame obtained by projecting r,(T) to the
orthonormal frame bundle. Define a homomorphism s, : 8 — L' (du,, ... ))® A, the
scalarization, by

sa( SOFOIAT ) = | e,

B B .
Sm <(I) g(T)dG(y(T)d T) =1 g(M)(eG)((T)a(T)dT,
and
B B .
Sm < (ﬁ) WT)dH*((T))d T) = (f) WT)(eH)((T)a™*(T)dT .
Define ¢, a linear functional on B, by ¢(b)= [ dm [ dpi,, m, 5<5n(b)>p. [1t follows from
Wick’s theorem that {s,(b))r is measurable on 2, M.]
Lemma 8. Vbe %, ¢(b*b)=0 and ¢(b*a*ab) < const(a)p(b*b).
Proof. §p(b*b)=fdm | dity, m, g{Sm(b)*3,(D)>r 2 0.
P(b*a*ab)= [ dmdu,, y, 5<s,(D)* (@) n(@)5 (D)) p
< fdmdpy, gl sm(@)|Fsm(bY*s,(b))
< ( sup Ime(a)II%> P(b*b).
m, 2y, M

Because all F, G, and H’s are in C*(M), sup |sq(@)|z<co. [

m, QM

By the GNS construction, 4 is represented on a Hilbert space #. Let G be the
closure of # in B(#) and let o/ be the subalgebra of G generated by

B
[ ATFG(AT and
ig(T) AG(y(T)), w(T)ydT= i g(T) <dG*(y(T))+ % g sign(T— S)dG(y(S))dS> iT.

In general, if one wishes to define an algebra of measurables which is formally
T'(A*[S!, T*M]), then it must contain the continuous functions on [S*, M]° in
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order for the bosonic part to carry the Wiener measure. One can treat QM as a CY
Banach manifold and consider its C* differential forms [13]. These will look like
the exterior products of vector-valued measures over each curve ye QM. We
expect that the algebra .« will contain all such forms which are exterior products of
vector-valued L? functions along each 7.

Definition. For a curve y in 2,,M, let T, € Spin(2n) denote the holonomy around y
from r,(0). Write T, in terms of the basis of CI(IR*") as T, = }: T, ]‘[ 7., Define a
linear functional ( >p on BC by
=0 g "
2n 2n k
X < [1 ”(h{c-2n+k— 1, —2n+1)SmD) Y ZZ"’ZT" H NG sipviv 1])> .
k=1 k=0 p i=1 F

Extend < ), to &/ by continuity.

Note. That the RHS of the expression for (b}, is measurable on Q, M follows from
the next proposition. The various terms of the expression have the following
meaning: The s(b) term is the translation of b to a flat space measurable using the

1
Cartan development. The factor e 57 comes from quantum effects. In the
Hamiltonian approach there is a question of factor ordering and the £ R is the same
as in the equation 3D*>=3V "V + §R. The term involving T, is to ensure that in the
integration is formally done over periodic fermion fields along .

Proposition 9. Let M denote multiplication on LX(S) by F, let C1(dG) denote Clifford
multiplication on L(S) by dG, and let H equal 1I)?. Then for be % of the form

b= [T [ATIFOTAT [ 5(T) GG, (T Ty

o

with supp f; Ssuppg; <... Ssuppg,,
By =Teamere ™" [1 <§ fi(me‘TfHMpie“”dn)
X (g g{(T)e” TH CI(dG,)e™"d Ti’> )
Proof. By Proposition 4,
SRRl | L SRR
x (n (12(T)<AGH(T), w(T,-’)>d77-’)>>

—Tr'))2"+ 1 H (j.gl(T )Z(e Gz)(?(T )) y(ej)dT ) .

1/
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Thus
<b>ﬂ = jdm j d.u'm,m,ﬁ(y) Tr’})2n+ 1
QM

| 1 ssF o am
1

V2

1
g4k

x ;(e iG)(T)) —=vleyd 7?} Te
On the other hand,
Tryz,+ie” i[rll [f(Te™ "M eT AT, [ g(T)e ™ " Cl(dGJe " d T}
=Teane JETET [1 AT,
x e~ T=ToH Cl(dG)e™ T~ TOH (with T,,, = f+T;)
= jdTIT [n ﬁ(ﬂ)gm] [dmdn Try s
x 1 Fimpe™ T~ % 0m, n) CL(AG)(m)

x e Tees=TOH(y my  (with m,, , =m,).

Let y, be an orthonormal basis of spinors at m;. Then the above equals
(dTaT I:Hl fl(Tng(TI’)} §dmd'n Y Try Wy
i= [

&<yl .1__[1 Fim)e™ T T (my, n) ClAG) (n)e™ T2~ T (my,myy ;4 1)

®<pi+ql  (with , . =p,).

Let ye Q,,M pass through m; at time T; and n; at time T;'. Let Sc(C1(dG),))(n;) be the
scalarization of Cl(dG,)(n;) and Sc(y;) be the scalarization of y;, both with respect
to the frame {e;} obtained by lifting y. From the Feynman-Kac formula for tensor
fields [8], the above equals

v _ilge
Jd’Td'T'Lgl ﬁ(:’;)gi(ﬂ')]fdmfdﬂm,m,ﬂ()’)e s

X % (Se(i)ly2n+1 l_ljl F{y(T) Sc(CHAG)(NT)ISc(w,+1) -

Now [Sc(y,+1)>®<Sc(y,)|=T,, and one obtains
1
’ ! ’ —JgR
fd"Td'T [1;11 fz(Ti)gi(Ti)]f dm [ dpy, m gv)e 7® Trys,.y

| [l Fomseciaenom) |5 o
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Lemma 9.

(@+i)] STVFGTIAT= [ F(T) RGN, o TAT
and

(@-+1) [ (TGO, T)AT= — | 5 GO,

Proof. For VeI'([St, TM]), at a curve y we have

<(d + iy):if (TYF((T)dT, V> 0)= Vij’; F(TF((T)dT= j—s

B
1A(T)

=0

FlG-+8%)(T)T= [ f(T)CF, ;dT= < | ST) ARG, w(T)AT, V> o).
Then

(@+1) [ €(TIAGO(D) AT

B
—+i) [ 8T)GOTIT= °%'fg(T)G(y(T»dT

= I g(T) ; GO(T)dT= 2 G(TT.

— j o7
Proposition 10. For be % of the form of Proposition 9, {(d+i,)b);=0.

Proof. As in the proof of Proposition 7, we have that Q=1 commutes with
H and anticommutes with 7,,.,. Thus for any bounded operator 0,
0=Tr[Q, 75041 "01=Try,,. 10 (0,0} Now [Q,M]=—iCl(dF) and
{0,Cl(dG)} =i{Q,[Q, M1} =2i[H,M;]. The proof then follows as in
Proposition 7. []

To compute the Index of D, one can introduce an explicit # dependence into
1
the supermeasure to obtain Index)=<(I), ,=(formally)| <exp ~7 L> DyDp.

Because the Lagrangian is quadratic in the fermion field, the integration can be

carried out explicitly to give
1

Index D= fdmfd,um,m,ﬂ,h(y)e 8 VRTWzH 17:;~

From the large deviations theorem [14],
1
. —ohf
Index D= lim fdm [dpty, ,p,1(7)f (Ve ® Ty T,

for any continuous function f on QM which is identically one in a neighborhood of
the constant loops. Thus the index density becomes concentrated near the
constant loops and can be evaluated in a quadratic approximation as in [4, 5].
From the Feynman-Kac formula,

~Lhy 1
Index P=Try,, . e P with H,,=§h2192.
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Th

us : -z - 562
Index P = lim Try,, . (e = llzm(l)Tryane ,
h—0 i

which shows that in this case, the #—0 limit is the same as the f—0 limit of [4, 5].

VI. Gauge Fields

E ’ . . . .
Let | bealR?" vector bundle over M with an SO(2n’) connection 4 which lifts to a
M - [S1,E]®
Spin(2x’) connection. There is a natural connection 4 on the vector bundle |

given by ﬁVZ|y=DVva, which induces a connection on A*[ S, E]*. IS, M1
Definition. Define w,e I'(A°[S?, T*M]® A*[S', E*]) by
a)O(ZI’ZZ)ly=§<DyZ1yaZ2y> fOI' ZDZZGF([SlaE])
v

and define w, e ['(A*[S!, T*M]® A*[S*, E*]) by
wZ(ZbZZ; Vla V2)|v= .(<F(V1y9 I/Zy)Zlya Z2y> fOI' Vb I/2 EF([SI’ TM])

b

Proposition 11. Let d denote the covariant exterior derivative using the connection A.
Then (d+i,)(E+ o+ wo+ w,)=0.

Proof. Because (d+ )E+w)=(d+i)(E+w)=0, it suffices to look at
d+ i?)(w0+a)2)=(5fw0 +i?w2)+(3a)2). Let y(¢) be a 1-parameter family of curves

. d
with p(0)=y and 0= V. Then [V, y]=0 and at y,
(on)(zp Z,;V)=Vwy(Z,, Zz)_wo(ﬁvzp Z,)—wo(Zy, ﬁVZZ)
= Vf <DyZ1a Zz> - 5<DyDVZp Zz>—‘ f<Dyz1aDVZ2>
¥ Y ¥
= I [<DVD«'/Z1, Zz> + <D5’Z1, DVZ2>
Y
—{D,DyZ,Z,>—<D,Z,DyZ,3]= [{F(V,))Z1,Z5).
¥
AISO (i‘yCOZ)(ZlaZZ; V)=w2(ZI>ZZ; '})a V)= 5<F(’y’ V)ZI’Z2>'
Y
Thus dw, +i,m,=0. For the other term,
3(3(1’2)(21» Zy; VL, Vo, Vs)
=V0)(Z1,Z,; V3, Va)—y(Dy, Z1,Z,; V3, V3)
_wZ(ZlaDV1Z2; V23 VS)—w2(ZbZ2; [Vla V2:|7 173)
—w,(Z1,Z,; V,, [ V1, Va])+cyclic permutations
=0 5 CE(Vy, V3)Z1> Zy)— j<F(V2: V3)DV1Z1> Z2>
¥ ¥
— [KF(V3, V3)Z1, Dy, Z, > — [<F([Vi, Va1, V3V 21, Z )
¥ ¥
— [{F(V,, [V, Va1)Z,, Z,) +cyclic permutations
y

=3({(DF)(V}, V., V3)Z,,Z,>=0 by the Bianchi identity. []
b
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For a supersymmetric Lagrangian, we use L=4(E+w+ wy+ ,). Then <{x),
can be defined as before for n e I(A*[S*, T*M @E]) such that {(d+i,)n),=0. The
kinetic terms of L are E, w and w,, and w, enters as a potential term. In particular,

p=Tr(on+1®V2w + 1)e_ﬁ¢A2
=IndexD,:(STRS DS XS )=(S" RS DS RS 7).
If E=T*M and A is the Riemannian connection then
Index D ,:(STRST)BES XS )=>(S" RSB ®S7)
=Indexd + d*: A;kven odd - (M)
The formal Lagrangian for this case is that of N=1 supersymmetry:
L= 30,97 =31 Vi 1) — 3<02 Vi) — iRy wivhyh].

Y

To see more explicitly that this gives y(M), one can show that the corresponding
Hamiltonian is 3(d*d + dd). The first three terms of L will contribute 3V *V + 4R to
the Hamiltonian, the #R coming from the fact that the first two terms give the
Dirac operator squared on S(M). The contribution of the fourth term will
be its image under the canonical map.

Gr(T*M®T*M)=Gr(T*M)®Gr(T*M)—-Hom(S, S)\®Hom(S, S)
=Hom(S*®S, S*®S) = Hom(A*M, A*M)

generated by wl(ei)—> (E+I)(e) and %(6’1)—’ z(E D(e)).

Proposition 12. The image of — %R wivsyhe Gr(T*M@T*M) is

— 3R, E'VE'' — R e Hom(A*M, A*M).
Proof. The image of — %Rz wiphy} is 76 Ryju(E'+ I)(E/ + P)(E* —I*)(E' - I,
which can be expanded into terms of various degrees. From the Bianchi identity,
those of nonzero degree vanish. This leaves

16 Riu(E'E'I"I'— EVE*' — EVI*E' — 'E/E*I' — 'E'I*E' + I'EFE').
Permuting to the form EIEI gives
1sRijul —E'T*"E’I' = E'VE*I'+ E'VE'T*+ E'I'E*' — E'I'E'T* — E*I'E'l]

— iR+ 1R,ET
F5[2R gy + 4R g JEIPEST — kR + AR , E°I”
= 75 [2R yup — 6R e | E“IPEI* — § R+ 4R E°I?

=L R ped E*I°EI* — 3R, JE°IPE°I* — LR + §R , E°I”
= (— R BT — R e BT ET) — § R e BT ECTY

— 4R+ §RGET = — R ETET —§R. O]
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Thus the Hamiltonian is H= V'V — 4R, ,E*I°E‘I, acting on A*M. On the

other hand, using normal coordinates,

— V'V — E°I’R(e, e,)= V'V — EAIPEIR .,

giving H = 3(d*d + dd*).

Acknowledgements. 1 wish to thank D. Freed, P. Nelson, and I. Singer for helpful discussions and
anonymous referees for their comments.
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