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Abstract. "Special frequencies" have been asserted to be zeros of the density of
frequencies corresponding to a random chain of coupled oscillators. Our
investigation includes both this model and the random one-dimensional
Schrόdinger operator describing an alloy or its discrete analogue. Using the
phase method we exactly determine a bilateral Lifsic asymptotic of the
integrated density of states k(E) at special energies Es, which is not only of the
classical type exp( — c/\E — Es\

1/2) but also exp( — c'/\E — Es\) is a typical
behaviour. In addition, other asymptotics occur, e.g. \E — Es\

c'\ which show
that k(E) need not be C00.

1. Introduction

In this paper, we consider the random Schrδdinger operator (Hamiltonian)

Hω=-^+Vω{x) on L2(R) (1)

with

Vω(x)= Σ Vω{n)(x-n)9 (2)
Z

Σ
neZ

where the indices ω(n) are random variables on the realization space Ω with values
in the set {1,2, ...,r}. We deal with the case in which the random process ω(n) is
independent, identically distributed and the functions Vt are form-bounded with
respect to —d2/dx2 (e.g., they can be bounded or ^-functions, cf. [1]) and satisfy
suppFj£[0,l) for all ιe{l,2, ...,r} (the random process can be chosen more
generally, cf. [2]). The operator Hω defined in this way describes a one-dimensional
r-ary random alloy in the one-body approximation.

Our interest is directed to the integrated density of states, i.e. to the limit

k(E)= lim yN^Hΐ), (3)
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where H™ is the restriction of the Hamiltonian Hω to [0,L] with some, e.g.
periodic, boundary conditions and NE(H£) is the number of eigenvalues of H™
below E (counting multiplicity). Concerning the almost sure existence of the limit
(3) and its independence of ω, see [3-5]. When we define the phase φ by

[uniqueness by φ(x) continuous] with y satisfying Hωy = Ey as a differential
equation, the following formula represents the "phase method" for the calculation
offc(E)(cf.[5,6]):

\k(E) — k{E')\— lim — (4)

for almost every realization ω e Ω.
Using (4), we exactly determine the asymptotic behaviour of the integrated

density of states k(E) at "special energies" Es which were supposed to be zeros of the
density of states k'(E) = dk(E)/dE already twenty years ago [7]. One of the authors
[8] extracted from the models considered in [7,9-11] the following definition of a
special energy:

Definition. Let Ωper denote the set of all periodic realizations ω. Then Es is a special
energy of the Hamiltonian Hω if

(i) there exists a periodic potential Vωf such that Es e σ(Hω\
(ii) for all ω" e Ωper\{ω'} it holds that Es does not lie in the interior of the

spectrum σ{Hω"\ i.e. Esφintσ{Hω").

Since for almost every ω it holds that

(cf. [12,13]) a special energy almost surely lies in the spectrum σ(Hω). Thereby the
definition combines the special energies lying in the interior of a band with the
band edges. The case that Es e σ(Hω) for a.e. ω e Ω, but Es φ σ(Hωf) for all ω' e βp e r,
which can occur for r= oo, is not included in our definition.

Underlying the definition of a special energy, in Sects. 2 and 3 we give sufficient
conditions under which k'(E) = 0 for E = Es. For it we work with the integrated
density of states because the existence of k\E) is not proved in general [14]. Craig
and Simon [15] have only shown that k(E) is log Holder continuous.

Our results show that at special energies the asymptotic behaviour

\k(E)-k(Es)\~exp(-c/\E-Es\) (5)

is typical, what had been stated in [8] for the first time. Parallel to us
Nieuwenhuizen [16] predicted (5) up to a relative inaccuracy of 20 % by computer
calculations. In addition, we may have

|fc(£)-/c(£s)|~exp(-C'/|.E-£s|
1/2) (6)

(known as Lifsic singularity for k'{E) at band edges, cf. [17] and ref. therein) and
some other asymptotics occur, e.g., in a very special case (see Sect. 3) it holds a
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power law

| £ - £ s | ;
+ ^ | / c ( £ ) - / c ( £ s ) | ^ | £ - £ / (7)

with some constant c>0 and arbitrary small δ>0. In his "Fifteen Problems in
Mathematical Physics," Simon [18] asks the question whether k(E) is a C00-
function (Problem 12 C). The behaviour (7) indicates that k(E) need not be C00 in
Es, since c can take arbitrary values of (0,1) in dependence on the potentials Vj and
their probability distribution. The asymptotic of type 4 introduced in Sect. 3
indicates the same.1

All our considerations also apply to the discrete analogue of (1) for which
Wegner [19] showed that k'(E) is strictly positive for a large class of random
potentials with continuous distribution. Thus, our assumption of a discrete
distribution seems to be essential. Nevertheless, there are models with continuous
potential distribution and vanishing density of states at special energies as
numerical calculations of Nieuwenhuizen [16] done for the Kronig-Penney model
with Poisson-distributed strength of the ^-potential show.

Our investigation also includes the chain of coupled vibrating oscillators
described by the operator

( + 2 j , neZ, (8)
mω(n)

with independent, identically distributed random masses mω{n)e{ml9m29...9mr}.
Thereby, in connection with this model, since it describes the phonon evolution in
harmonic crystals, it is usual to speak about the integrated density of squared
frequencies /(v2), which is defined in complete analogy to k(E).

Historically, the investigations just started with the disordered diatomic (i.e.
r = 2) chain (8), stimulated by Dean's computer calculations [9] which showed a
very fine structure of /'(v2) with several sharp peaks and some frequencies vs at
which /'(v2) = 0. Trying to give a theoretical explanation for these zeros, Matsuda
[7] introduced for them the notation "special frequencies." But his paper as well as
the works by Hori and Matsuda [10] or Hori [11] do not answer the question
whether indeed /'(v2) = 0. By a plausibility argument (cf. [11] and see [8] for its
discussion), it was only stated that lim /'(v2) = 0. (For further references see
[20]; cf. also [21].) v^'~°

Our considerations show that the density of squared frequencies /'(v2) indeed
vanishes at the special frequencies which have been investigated by Matsuda and
Hori [7,10,11]. From their results it follows that in the diatomic case /'(v2) has an
infinite number of zeros in the interior of the energy band, provided only that the
mass-ratio m2/mί is larger than or equal to 1 (without loss of generality let us
assume mί ^ m2). The analogous result holds for the discrete Schrodinger operator
with a random potential vω{n)e{υl9υ2} (tyeR), where now the difference \v2 — vx\
has to be at least 2 (cf. [22]).

1 Consult references [33-35] for further results concerning the continuity of k(E) in alloy models
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To our knowledge the real behaviour of the integrated density of states and of
the integrated density of squared frequencies at special energies and special
frequencies, respectively, has remained an open problem so far, which was
emphasized also by Goda [23]. Moreover, the precise computer calculations by
Gubernatis and Taylor [24] for a diatomic Kronig-Penney model show that
numerical results have to be interpreted carefully, because their conclusions
concerning the behaviour of k(E) near Es are not entirely correct.

In Sect. 2, we present the general method for the determination of the
asymptotic behaviour of k(E) at special energies. In Sect. 3, we discuss fixed point
configurations of the transfer matrices, which yields sufficient conditions for
\k(E) — k(Es)\ ~o(\E — Es\), i.e. k'(Es) = 0, and we consider some particular cases with
extraordinary asymptotics. The numerical result by Gubernatis and Taylor [24] is
discussed in Sect. 4.

The main results (with the exception of Example 3 of Sect. 3) have already been
announced in [25, 26].

2. General Method

Without loss of generality we can assume that the realization ωr of our definition of
a special energy denotes the sequence consisting only of 1. Any other case can be
transmitted to this case by transition to a new finite set of transfer matrices, which
describes the system, and a corresponding numeration. To simplify our discussion,
we will only deal with the Hamiltonian Hω whose potential Vω is built up by Vγ and
V2 as described in Sect. 1, i.e. the case r = 2. The probability distribution is given by
p( JZ) = cδ(ί — 1) + (1 — c)δ(ί — 2) with c e (0,1). We will treat two typical examples in
detail and sketch how to transform the ideas to other cases. Thereby, the key for a
uniform treatment of (1), (8) and the discrete Schrodinger operator consists in the
possibility of representing the solutions of all these models by transfer matrices (cf.,
e.g. [27]). If y satisfies Hωy = Ey as a differential equation then we have

with the random transfer matrix Tω{n) e {Tu T2} corresponding to the two types of
potentials Vt or V2, respectively.

For any periodic realization ω e Ωper it holds that E e σ(Hω) if and only if
|Tr T\ ^ 2, where T denotes the transfer matrix corresponding to the period of ω
and Tr Tits trace (cf. [28, proof of Theorem XIII.89]). Therefore, the definition of a
special energy suggests to distinguish between the following cases (Sf = 7](ES),
i=U):

Case I: \TτSx\<2;
Case II: 1 ^ 1 = 2, |TrS2 |>2,
Case III: ^ 5 ^ = 2, |TrS2| = 2.

Case I has to be further specified. According to the lemma in [8], there exists an
integer n e N such that S\=L (If such an integer n would not exist, then S1 would
have eigenvalues exp( + πiί/) with qe(0,l), q irrational. The irrationality of q
implies that {(nq) mod 11 n e N} is dense in [0,1], thus {TrS?S21 ̂  e N} n [- |TrS2|,
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Fig. 1. The fixed point configuration of Example 1. The circular arc represents the projective
space, i.e. it is of length π. The arrows indicate the direction of the T2 flow

|TrS2|] is dense in [ —|TrS2|, |TrS2 |]. Hence we could find an integer n^ 1, such
that |TrSi£2 | < 2. But this contradicts the property (ii) of our definition of a special
energy.) Then every random product of matrices can be decomposed into the
factors

c«_r oo c2o cn-lc c
°1—J? °1°2? ^1°25 •? " i ^2? °2>

where |TrS{S2|^2, fc=l,2,...,n.
In the following we will identify the phase φ with the corresponding vector of

the projective space such that the expression Ttφ makes sense, where T{φ itself also
shall be interpreted as an element of the projective space or as the corresponding
phase. There is no confusion to fear. The projective space shall be represented by
the circular arc π of length π (cf. Fig. 1).

We note that iίS1 and S2 (case II, III) or all matrices S\S2, k = 1,2,..., n, (case I)
map an arc ί c π , £ φπ, into itself, then all products of these matrices as mappings
from π onto π possess a fixed point. Hence the energy Es under consideration
fulfils Esφintσ(Hω) for any periodic potential Vω with ωeβp c r\{ωi}, a n d thus it
satisfies the definition of a special energy.

Example i. Assume that we have case II with Sί=I. Of course typically |TrS1 | = 2
does not mean S1=±LSί=I occurs when there are two periodic solutions to the
particular energy. (Then Tr Tt(E) achieves a maximum at Es.) Then (cf. [28, proof of
Theorem XIIL89]) for every sufficiently small ε>0 it holds that

where Dψ denotes a rotation matrix turning every vector by the angle ψ and X is
some regular matrix. The asymptotic behavior of ψ is given by ψ±(ε)~ ±αε for
ε->0 (cf. [29, Sect. 4]), where the positive constant α can be obtained from the
Taylor expansion of Tr Ti, cf. Sect. 4. Let φ\ be the attractive fixed point of S2 and
φl the repulsive one. Further, we denote by S the arc [φ^, φf\ (δ = φ2

r — φl) and by γ
the arc [φr

2, φ^\ (y^φ2

a~φ2

r=π- δ), cf. Fig. L
For E = ES all products of Sx and S2 map 8 and γ into itself. When the energy

increases by ε, ε <̂  1, then phase rotations are possible in consequence of the action
of the matrices Tv Thereby the critical region which has to be conquered is
[φ^ + εp, q% — zv\ p < l , since here T2 rotates every phase at least of order εp in
negative direction like a simple calculation shows. Namely, one finds that for ε->0
T2(φ2 + ε) and T2(φf — ε) behaves as φl + C^ and φ2 — C2ε, respectively, where
Cί>ί and C2 > 1 are some constants. Now, using relation (4) we refine the ideas of



596 M. Endrullis and H. Englisch

[6] in the following way: Let S' = {_X~+\φ2

a+εp\ X~+\φ2-εp)~\. Then for every
realization ω, it obviously holds that

<Pt+AL)-cpt(L)
π

where R™ denotes the number of disjoint parts of length [<5'/(αε)] between 0 and L
which are composed only of matrices Tί9 and Ω™ is the number of phase runnings
through Sr which are due to mixed parts of the chain, [x] denotes the integral part
of x. Ω™ can be neglected since the probability of such an event tends to zero in a
higher order than that of the event corresponding to R™. [Here we used that in §' T2

rotates every phase at least of order εp whereas at least iεp/(otε) matrices Tx are
necessary to compensate the rotat ion effect of i matrices T2 in £'.]

Taking the limit L-»oo, we obtain by the law of large numbers

k{Es + ε) - k(Es) ̂  cδ>l{aε) + o(c*'/(ββ))

or

lim ε ln(fc(£s + ε) - k{Es)) ^ ^ - ^ (10)

ε->o α

φ ϊ φ l
A lower bound is obtainable by counting all pure Tx-parts of minimal length

δr'/(oίε) = (X+ί(φ2 + εp) — X + ^ φ 2 — εp))/(ocε) which are directly preceding at least
[(y — 2εp)/εp] matrices of type T2. Thereby the number of matrices T2 guarantees
that the arc S will be really conquered by every of these parts. In analogy to above
we obtain

k{Es + ε) - k{Es) ̂  (1 - cψ ~ 2^)/* V" / ( α ε ) + o{cδ"l^ε))

or

<5*lnc
lim ε \n(k(Es + ε ) - k(Es)) ^ . (11)

α
The expression \k(Es + ε) — k(Es)\~Qxp(δ*\nc/(ocε)) shall be understood as an
abbreviation of (10) and (11). The considerations are analogous for the case Es — ε.
Only (5* has to be replaced by y^ = XZ1φ^ — XZ1φ^

Example 2. Now, let us consider the more complicated case I with S\ = I and
|TrS 2 | > 2, \ΎrSίS2\ = 2. Of course, case I is in general more typical than the cases II
and III, since the condition |Tr5 f

1 | = 2 is more restrictive than |TrS 1 |<2 . By the
same reason |TriS1iS

ί

2| > 2 is for the Hamiltonian (1) and (2) more typical than the
condition |TrS 1 S 2 | = 2. But | T r S 1 S 2 | > 2 at most yields the asymptotics (10) and
(11) as the following consideration shows. Thus, our example is very illustrative,
and it had been observed in various models discussed earlier. We will assume the
fixed point configuration φl^>φl?-+φ^ where φ*r

2 is the fixed point of TγT2 and
the order of the indices, namely ar, denotes the order of the attractive and repulsive
side of this fixed point going through it in a mathematically positive sense, cf. Fig. 2.
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y

r
critical

ψτ region

Fig. 2. The fixed point configuration of Example 2. For E = Es — ε the fixed point φ\} splits up
into two fixed points, whereas for E = Es + ε the product 7\ T2 has no fixed point

Every finite random product of these transfer matrices can be decomposed into
the factors S2, 5r

1S2, S29 which map \_φ2, φ\2~\ into itself. When the energy decreases
by ε the considerations are the same as in Example 1 since y again is the critical
region, which can only be overcome by the factors 712(£ s-ε), now. Thus, the
asymptotic behaviour is determined by

k(Es) - k(Es - ε) ~ exp(2y* lnc/(αε)) (12)

with some positive constant α depending on Γx

2 as stated in Example 1.
In the case Es + ε, ε small and positive, we have not only T2(ES + ε) = XDψX ~ *,

but also T1T2(Es + ε)=YDθγ-\ since TrT 1 T 2 (£ s + ε)|<2, what changes our
consideration in comparison with E = Es — ε. Whereas ψ~ocε,θ behaves as βε1/2 for
ε->0, β is a positive constant (cf. [30, Lemma Bl]). Thus, in first order only the
matrices TγT2 (and T2 in [φ 2 , φ2~\) contribute to a phase rotation. To overcome the
critical region near the fixed point φ\2 [π/(/?ε1/2)] factors TXT2 are needed up to
some constant, since every closed arc S with φ*r

2 φ § can be conquered by a finite
number of matrices Γx T2. Nevertheless, we cannot neglect the matrices Ύf since the
probability of any finite product of factors T{T2 accomplished by matrices Ύγ is of
the same order as those of the pure product. Compared to it, parts in which
matrices T2 bring the phase back beyond φ\^ obviously have probability of higher
order. If the matrix T2 does not rotate the phase φ e [φ 2 , φ 2 ] back beyond φ^Λ then
in each case at most some finite number (independent of ε) of matrices Tγ T2 is
necessary to compensate the rotation in the negative direction. But this only
influences the factor A9 see (14). For a lower estimate we have to count all parts of
[π/(2/?ε1/2)] — m matrices T^ T2, m < oo, possibly accomplished by matrices Γx

2 (they
rotate the phase over [φ* 2 , φ*], where T2φ* = φ\^\ followed by a mixed part of
matrices Tj2, Tx T2, T2 which guarantees that the phase conqueres the arc (φ*, φl?].
Thereby again [τr/(2/?ε1/2)] —m' matrices 71T2, m! < oo, accomplished by matrices
Tγ are needed to reach <p*Λ i e to conquer \_φ\φ\^ with T2φl? = φ'. The
probability Po of a mixed chain of n = [π/(j?ε1/2)] matrices TγT2 and matrices Tf is
given by

where we used X ) dι = (ί+d + d2 + d3 +...)m + 1. [Equation (13) ensures
i = o\ i /

that there is a factor 71T2 at the beginning and at the end of the chain, which
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excludes double countings.] Thus, we get

k(Es + ε) - k(Es) ̂  A exp (π In ^-j{βε^)j (14)

with some constant A< oo. Otherwise, counting only parts of [π//?ε1/2)] matrices
Tx T2 we obviously get

k(Es + ε) -k(E s)^exp (πIn ̂ - /(jffε1'2)). (15)

In comparison with Example 1, in Example 2 we obtain a stronger estimate since
we have no regions depending on ε, in which the rotations of different matrices
compensate each other.

With these two examples the principal technique of handling the typical cases
of special energies and special frequencies, respectively, has been given. We see that
the asymptotic behaviour of k(E) depends on the fixed point configuration. It is
even possible for all cases (I, II, III) to find such configurations that k(Es) Φ 0. In the
next section, we will deal with this problem and with some examples of various
asymptotics.

3. Fixed Point Configurations

Now it is easy to verify that there are the following five types of asymptotics or
combinations of the behaviour of k(E) to the left and right of a special energy Es

(ε = \E-E8\):

Type 1: exp ( - A/ε), exp ( - B/ε),

Type 2: exp(-^/ε),

Type 3: expi-A/ε

Type 4: ε1'2, exp(-£/ε),

Type 5: ε, ε. (16)

Thereby it is trivial that there is no favourable side for any of the asymptotics
because you only have to reflect the fixed point configuration to change the sides.
The first and the second possibility of (16) correspond to Examples 1 and 2,
respectively. In the preceding section, we already explained that Type 1 has to be
considered as the typical asymptotic oϊk(E) at special energies of the Hamiltonian
(1) and (2). In the case of the discrete Schrόdinger operator or the Hamiltonian (8)
the very special form of the transfer matrices causes that in case I always
|TrιSi~152| = 2, where 5" =/. Thus, for these Hamiltonians Type 2 is typical (cf.
Example 2). Assuming, e.g., in case III the fixed point configuration φla^>φ2

r, one
gets the third combination. The considerations of Example 1 are easily applicable
to case III with S1 = I and S2 having a fixed point φ2

a, and they yield type 4. In the
same case, assuming S1=I and S2 = h we get the last asymptotic.

The possibility that Es is a band edge has not been considered here since it is not
of interest for us. However, type 3 may be regarded as two band edges put together,
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whereas types 1,2,4, and 5 occur within the band. The asymptotic ε1/2 is typical for
a "stable" band edge, cf. [6].

We note that k'(Es) has not to vanish or even has not to exist. Type 4 exhibits
fc'(£s-0) = oo, /c'(£s + 0) = 0. Type 5 shows fc'(£s)>0.

It seems to us that it is impossible to give a complete distinction of all cases of
special energies. Let us consider the case I, the most important case since the other
ones are exceptional cases, and let us assume that at most two of the matrices S\S29

k = ί,...,n (S? =i), satisfy |TrS^S2| = 2 with S\S2 + L Then we have the following

Proposition. Assume that the fixed point configuration of the matrices S\S2,
k = 1,2,..., n, admits a decomposition of π into four successive arcs SΣL^>81 -^δr^>32,
where SΆ contains all attractive fixed points φΆ (there shall be at least one) and Sτ all
repulsive ones; San§r = φ. If there are no other fixed points, then the asymptotic
behaviour is of type ί. If there is additionally exactly one fixed point φar e Sx or
φτa E §2 or if both of them occur, then the asymptotic behaviour is of type 2 or 3,
respectively.

The proof just follows the lines of the Examples 1 and 2, where Sγ and §2 play
the role of § and y, respectively. Likewise, the proposition immediately extends to
the case of r transfer matrices, r > 2.

The very special fixed point configuration φ\ = φl^φl = φ^ (Fig. 3), where we
will suppose S±1 = S2, yields a further type of asymptotics. Now ω' in our
definition of a special energy is equal to the sequence (..., 1, 2, 1, 2, 1, 2,...).

The investigation of the special energy corresponding to Fig. 3 requires a
modification of the method presented in our previous examples, which leads us to

Example 3. Let us consider the case E = Es + ε, ε > 0. Whereas for ε = 0, Sί9 and S2

map [<p!,Φr] a n ( i ίψl^ψΏ i n t 0 itself, now phase rotations are possible since
T1T2(Es + ε) = XDψX~1 with φ(ε)~αε for ε->0. Furthermore, the transfer matrix
Ti(Es + ε) maps the phase φ^1 + xε, x <̂  1, to <pr

Γl + βxε with β > 1, as one can easily
check by an explicit calculation. In the region [φ;Γ1 + εp, (φJί-\-φl1)/2'] shown in
Fig. 3, p < l , Tx rotates over an angle of higher order than T{Γ2 does. Therefore,
n1 = [—plnε/lnβ] matrices 7"i are necessary up to some constant to overcome this
region. The situation is analogous in \_{φ^ + φlι)β, ψl1 — ̂ ], where
n2 = [—plnε/lnβ'~] matrices Tγ are needed with some /?'>!.

E = E - ε E = E E = E + ε

Fig. 3. The fixed point configuration of Example 3
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The further investigation depends on the probability c with which the matrix
Tx occurs. First, let c < 1/2 and n = nx + n2 = -pA lnε with A = ln(ββ')/\nβInyg'. We
denote by K(n, x) a finite chain consisting of n(\ + x) matrices Tγ and nx matrices
T2. The probability of such a chain is given by W(n, x) = (n \2

x

nx)cn+nx(l - c)nx. Thus,
we get

max W(n, x) = W(n, x j ?

by Stirling's formula.
We obtain an upper bound for the integrated density of states decomposing the

infinite random chain of transfer matrices into parts of length (c/(l — c) + δ) ~n with
<5>0. With probability 1 there is for ε->0 no chain K{n,x\ x arbitrary, in such a
part, i.e. there is no phase rotation in it: Obviously, the probability of chains K(n, x)
with x<n and arbitrary starting point in such a part is smaller than
(c/(l - c) + <5)~w(c/(l - c))nn2, tending to zero with n-> oo. The probability of K{n, x)
with kn^x<(k + ί)n, keN, in such a part is smaller than n22n(4c(l — c))kn2 by
Stirling's formula. Of course, the sum over k (geometrical series) tends to zero for
tt->oo. Thus, we have

with arbitrary positive constants p < 1 and δ.
Now, let n=—Alnε, i.e. we choose p = l. Then a chain K(n,xm) and an

analogous chain K* in which the portions of 7i and T2 are just changed yield a
phase rotation if we only add some constant number of matrices to conquer
\_φl — ε, φ2 + έ] and [φ2 — ε, φί+ε]. Thereby the probability of K* is of higher
order than (17). Thus, if we decompose the chain of transfer matrices into parts of
length (c/(l — c) — δ) ~n and every part in smaller sub-chains of length n{\ + x j , then
we obtain a lower bound for k(E) using that

c)-«)"n(l+*m))

for rc-xx), i.e. for ε->0 we have with probability 1 at least one phase rotation in
each of these parts. Therefore, for ε->0 it follows that

k{Es + ε)-k{Es)^ε-Aln^ί-c)-δ)+o{£-AlnicK1~c)-δ)), (19)

where δ is an arbitrary small positive constant.
If c> 1/2 then the regions \_φ\, φl~\ and [(/?*, φl~] only change their roles and we

get the same result.
In the case c = l/2 we consider parts of length [|lnε|2]. The probability that

such a part contains at least \\A lnε|] matrices of one type more than of the other
type is larger than some constant q>0 independent of ε (cf. [31, Sect. 7.3]). Since
two of these parts with exchanged favourable matrices guarantee a phase rotation,
for ε->0 we get by the law of large numbers

^B\lnεΓ2 (20)
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with some constant B>0. Thus k'(Es + 0)= oo for c = l/2. On the other hand, it
obviously holds that

1 . (21)

For E = ES — ε the considerations are analogous by reason of the symmetry of the
fixed point configuration.

4. Comparison with Computer Experiments

In this section, we ascertain the exact asymptotic behaviour of the integrated
density of states at a special energy investigated by computer calculations, and
compare it with the numerical result.

Gubernatis and Taylor [24] deal with the Hamiltonian (1), (2), where
Vω{n) = vω{n)δ(x — n) with vί = — 0.4 and v2=—4, i.e. they consider a random
Kronig-Penney model. (The phase φ(x) is discontinuous in neZ, but unam-
biguously defined if we postulate φ(n — 0) and φ(n + 0) to be in the same branch of
the arc tangent.) From computer calculations, Gubernatis and Taylor conclude
the asymptotic behaviour

\k(Es ± ε) - k(Es)\ ~ exp( - c ±/ε1 / 2) (22)

at special energies. The energy Es considered by them is implicitly given by
tanfcs = 5/cs, where k = Eί/2 (cf. [32]). Assuming that the strength of the ̂ -potential
is equally distributed, i.e. c = l/2, they calculate c_ = 5.566 and c+ = 1.402.

In this model, the transfer matrices are of the form

cos/c — /c sin/c+ 1̂

sin/c , sin/c

(cf. [32]). One easily proves TrS x =0, Sj = /, |TrS 2 | >2, and |TrS 1 S 2 | = 2. Further,
the fixed point configuration is the same as shown in Fig. 2, so that we are just in
the case of Example 2. Instead of (22) we obtain (12) for the behaviour of the
integrated density of states on the left of Es. To calculate α we have to regard
T*(ES — ε) for ε->0. We abbreviate τ = \k- ks\ ~ε/2ks. Using the equation for ks we
obtain in terms up to second order in τ

- 1 + τ(10/cs-1.6/7c> τ(-50/cs

3 + 4/cs + 0.64/7c>

+ τ2(50fc2 - 8 -1,6/k*)w + τ2(40fcs

2 + 1.6 + 0.64/fc2)w

τ(50fcs- 8/fes)w - 1 + τ ( - 10fes + 1.6/feJw

+ τ2(40 - 14.4/fe2)w + τ2(50/c2 + 4.16/fc2 - 24)w

where w = cos2fes Therefore, we get with fcs« 1.432032 |Tr T?{ks-τ)\
~2 — 3.3351τ2. Since ΎrT^(Es — ε) = exp(ii/;_) + exp( — πp_) = 2cost/;_, we have
φ_(ε)^ — 0.6376ε, i.e. α^0.6376. To calculate 7* we have to compute XZ1 and
apply it to the fixed points φ 2^(l,1.0776)T, φ r

2^(l,0.3255)Γ. With

x:1 u 0

1383 1.4736
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it follows that y* ^0.638 and

fc(Es)-/c(Es-ε)-exp(-1.387/ε), ε->+0.

The asymptotic behaviour on the other side of Es is of type (14), (15). To calculate β
we have to expand 7iT2(fcs

TT(k +τ) Γ l + τ ( 1 0 f c s + 1 . 6 / f c > 3.6 + τ(50/cs + 32fcs6.4/fe>Ί
1 2K s }~l τ(-50ks + 8/fc> -1 + τ(l90ks-30.4/7c> J*

Thus we have |Tr T^^H-i;)! ~2-4.5469τ, and therefore βπ 1.25998. We obtain

k(Es + ε) - k(Es) - exp( - 2.739/ε1/2), ε ^ + 0.

The comparison with (22) reveals in both cases the limited value of the numerical
results obtained by Gubernatis and Taylor for the behaviour of k(E) at special
energies.
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