
Communications in
Commun. Math. Phys. 108, 529-534 (1987) Mathematical

Physics
© Springer-Verlag 1987

Hyperkahler Manifolds and Nonlinear Supermultiplets

A. Karlhede1'*, U. Lindstrόm2'**, and M. Rocek2'***
1 Institute of Theoretical Physics, University of Stockholm, Vanadisvagen 9,
S-11346 Stockholm, Sweden
2 Institute for Theoretical Physics, State University of New York, Stony Brook,
NY 11794, USA

Abstract. We present a new construction of hyperkahler metrics that derives
from the 3-dimensional N = 4 nonlinear supermultiplet. Further, we give a
detailed description of the nonlinear multiplet in N = 2 and 4 superspace.

I. Introduction

In this paper we present a new construction of hyperkahler metrics. We use the
method introduced in [1] and discussed extensively in [2]: We construct JV = 4
supersymmetric nonlinear σ-models in terms of an off-shell multiplet, here the
nonlinear multiplet, and then find a dual transformation to the formulation in
terms of N = 2 chiral superfields. This yields the Kahler potential, and hence the
metric, explicitly. We also discuss the superfield formulation of the nonlinear
multiplet in N = 2 and 4 extended superspace.

In Sect. II, we give the construction without any reference to supersymmetry.
In Sect. Ill, we discuss the nonlinear multiplet, first in N = 4, and then reduced to
N = 2 superspace. In Sect. IV, we derive the construction of Sect. II. We use the
notation of [2] throughout.

II. Construction of New Hyperkahler Metrics

In this section, we follow the discussion of the Legendre transform construction of
hyperkahler metrics of [2, Sect. 2A], as closely as possible. We start with a 3n real
dimensional space E Ξ ( S 3 ) " embedded in E Ξ ( C 2 ) " . The coordinates x\z\f
(i = 1,..., ή) on E are defined in terms of the coordinates w\ vι on E by

£ ) = ^ . (2.1)
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We consider a real function F: E->R, i.e., F(x\ z\ z1), that satisfies the system of
linear differential equations,

Fχiχj + exp(i(x*-xj))FZJ-zi + zlzjFziZJ + i[zjFχiJtJ-ziFχJzi~] = 0 (no sum),
(2.2a)

Qxp(i(xl-xj))(zjFZJ-zi + ίFχj-zί) = zΨΣl-ZJ + i F ^ j (no sum). (2.2b)

For each i, (2.2a) is just the Laplace equation on the three sphere. A characteriza-
tion of F, equivalent to (2.2), is as a contour integral in an auxiliary variable ζ:

:), (2.3)

ΔΊLl

where

. z' + Cexp^'x')

The Kahler potential is given by a nonlinear analog of a Legendre transform:

K{u, ΰ, z, z) = F(x, z, z) + Σ (1 + zι?) W exp( - ix1) + ϋ* exp(ixθ],

where xι is a function of z\ z\ u\ and tf determined by

Kχi = 0 = Fχί + i(l + z ^ ) [^ exp(/xf) — ŵ  exp( — zx1)] ( n o s u m ) (2.6)

The metric of the manifold is computed in the standard way from the Kahler
potential (2.5),

ds2 = 2(Kuitfdui®dW + K^jdz^dff + KutsJdui®dzj + K^jdz^d?). (2.7)

Note that, in contrast with the Legendre transform construction [1, 2], the metric
(2.7) does not have any obvious isometries. However, in these coordinates, the
Kahler potential obeys the constraint KuiKni = (l +zίzi)2 for every i = l, ...,n. We
do not know an invariant characterization of this constraint.

After the nonlinear transform (2.5), Eqs. (2.2) imply

(Kuw) =KzίZJ — Kzίak(Kukiim) Kumzj, (2.8)

which is Eq. (5.31) of [1] and imply the Monge-Ampere equation.
We observe that η%x9 z, z) can just as well be written in terms of the coordinates

w9v on E:

and that consequently, F(w\ w', v\ ϋ*) defined by (2.3) satisfies the linear equations
on E [equivalent to (2.2)],

j=0, (2.10a)

ίwJ. (2.10b)
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For comparison, the Legendre transform construction of [1, 2] corresponds to the
solution of the Eq. (2.10) written as (2.3) with

ιί

<

L = wi-C(ϋί + ϋ<) + C2wί, (2.11)

which corresponds to embedding (R(x)C)w rather than E = (S3)" in E. In the
Legendre transform construction, (2.10b) can be thought of as a coordinate choice.
In [1, 2], this condition was not imposed; it leads to significant simplifications, in
particular for the holomorphic two form that generates the quaternionic structure,
which becomes ω+ = Adu1 A dz\ cf. Eq. (2.8) of [2] see (2.14) below. Clearly, we can
combine the Legendre transform construction with the nonlinear one presented
here by considering a function G(η\ ηj

L, £), with i = 1,..., k, and j = (k +1),..., n.
The Eqs. (2.6) cannot in general be solved explicitly for x\ As in the Legendre

transform construction, we can compute the line element explicitly in non-
holomorphic coordinates. We use the original coordinates x\ z\ and z\ and n
additional real coordinates, e.g.,

Ϋ = (1 + z¥)[if expOV) + uι exp(- ix')] (no sum). (2.12)

The line element in these coordinates is (2.7) with

AtjΞ(

Kui-zj = exp( - ix*)(δt/ + iΛikBkj), Bkj = Fχk-zj + δkjρ
jzjFχj,

Kzί-Zj = Fzί-Zj + δ j j β y - BimAmkBkj, Bim = Fzίχm + V

du>- ί

We can also explicitly construct the quaternionic structure of the hyperkahler
manifold. In the notation of [2], we have

ω 1 = 2i{Kui^du{ A dΰj + K^jdz* A dΰj + K^jdu* A dzj + K^jdz* A dzj),
(2.14)

ω+ =4duι Adz\

which is precisely (2.8) of [2] with the simplification noted above.
We close this section by noting that flat space is generated by the trivial

function F(x, z, z) = 0. Though it is easy to find many examples locally, we have not
analyzed their global properties, and, in contrast to the Legendre transform
construction, have not found a useful relation to the symplectic quotient
construction of hyperkahler metrics [1,2] (which would simplify the global
analysis).

III. Nonlinear Multiplet

In this section, we describe the nonlinear multiplet [3] in N = 4 and 2 super-
space. In the next section, we use the multiplet to derive the construction of
Sect. II. We use the notation of [2]; see also [4].
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The nonlinear multiplet was introduced in the context of local conformal
supersymmetry [3]. Here we only consider its description in global (rigid)
superspace. In N = 4 superspace, the multiplet is described by a matrix superfield
Φma that is an isospinor with respect to two SU(2) groups: m= 1,2 and a= 1,2. It
obeys a hermiticity relation

®ma = tmn^n\ (3-1)

a nonlinear constraint det(Φwα) = l, and a differential constraint

εmnΦmiaDβbΦnc) = 0 , εmnΦ
m^Dβ

bΦ^ = 0 , (3.2)

where Daa, Da

a are complex N = 4 spinor-isospinor derivatives (see, e.g., [5]), with
spacetime spinor index α = +, —. The constraints imply that for any £,

η(U Φ"ζ-Φ12 Φ 2 1 + Φ22C
 ( '

obeys

O, (3.4a)

= Dai + CDx2, V£) = Dx2 -ζDal. (3.4b)

We can thus write down a general N = 4 supersymmetric action for n nonlinear
multiplets Φma\ i = l,...,n:

S=\d'ixμζΔ2Δ2G{η\ζ), (3.5a)

ΔJβsDrt-ζ-^, Δa{ζ) = DΆXH-ιDx2. (3.5b)

Unfortunately, we do not have an unconstrained formulation of the nonlinear
multiplet, and consequently, we are unable to derive superfield equations from the
action (3.5).

We now give a description of the nonlinear multiplet in N = 2 superspace. We
choose D α l and D/ as our N = 2 derivatives, and generate extra supersymmetries
with the remaining spinor derivatives (see [5] for a description of this procedure).
Then we define the following N = 2 superfields

φ 1 1
φ,

(3.6)

where | denotes a projection to the subspace independent of the second spinor
supercoordinate. The reality constraint (3.1) implies that X is real, and the
differential constraint (3.2) implies the N = 2 constraints

DΛχ = 0, (3.7a)

D2L(l+χχ)eίχ-}=0, (3.7b)

as well as the extra supersymmetry transformations

δχ=-WίΆί+χχ)e-iχ-], (3.8a)

δX = i(DΛ)D(χeiX) + c.c., (3.8b)
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where the parameter of the transformations A is a spatially constant chiral
superfield constrained by DA = D2A = daA = 0. The action (3.5) reduces to an
N = 2 superspace integral,

S = j d3xD2D2F(X\ χ\ f). (3.9)

This is invariant under the transformations (3.8) when F(X, χ, χ) is given by

^ 2 ) , (3.10a)

Identifying the chiral superfields χι with the complex coordinates z\ we see that
this is just the form (2.3), and implies that F satisfies the system of linear
equations (2.2).

IV. Origin of the New Construction of Hyperkahler Metrics

With the tools assembled in the previous section, it is simple to derive the
construction of Sect. II. We start with the N = 2 superspace action (3.9); we relax
the constraints (3.7b), and impose them in the action by introducing n chiral
Lagrange multipliers Φι (cf. [1, 2]):

S1 = Jd3xD2D2lF(Ψ\ χ\ f) + Σ(1 + ttWexp(- iϊ") + & exp(i^))]. (4.1)

In this action, X* has been replaced by the unconstrained superfield Ψ\
Extremizing the action with respect to Ψ\ we find

Fψί + i(\+χiχi)ίΦiQxp(iΨi)-ΦiQxp(-ίΨi)2=0 (no sum), (4.2)

which is to be solved for ψ\χ9 χ, Φ, Φ). This leads to a Kahler potential

K(χ, χ, Φ, Φ) = F(Ψ\ χ\ f) + £ (1 + χ^W exp( - iΨ*) + Φι exp(^O) (4.3)

identifying the superfields Ψ, Φ with the coordinates x,z, we find (2.5,6). The
quaternionic structure (2.14) follows from the nonmanifest supersymmetry (3.8)
extended to (4.3); eliminating Ψ by its variational equation (4.2) we find:

<¥ = - W(AK0i), δΦι = W(ΛKχi). (4.4)

This is identical to Eq. (5.32b) of [1] after the simplification discussed above. This
concludes the derivation of the construction of Sect. II.

The obvious open problems that remain are: (1) To find a classification of the
metrics that can be constructed using the nonlinear transform. The corresponding
classification is known for the Legendre transform: All 4rc-dimensional
hyperkahler metrics with at least n commuting triholomorphic isometries can be
constructed [6, 2]. (2) To make an analysis of the global behavior of metrics that
can be constructed by our new method.
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