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Abstract. We consider the billiard ball problem in the interior of a plane closed
convex C1 curve which is piecewise C2. If the curvature has a discontinuity,
then the boundary is unstable, i.e. no caustics exist near the boundary.
However, in the interior there can exist caustics, as we show by an example.

We consider the billiard ball problem in the interior of a plane closed convex C1

curve. We assume that the second derivatives of the curve exist and are continuous
except in finitely many points, where the limits of the second derivatives exist from
both sides, but where the curvature is discontinuous. Furthermore we assume the
curvature to be strictly positive and uniformly bounded. This situation is
illustrated by a convex boundary consisting of circular arcs matching with their
tangents (see [4]).

Denote the boundary curve of the billiard table by C and its total length by L.
The billiard ball problem can be described in the two coordinates arc length s and
angle t between outgoing billiard ray and positive tangent direction in a point of
reflection at the boundary. Associating to such a pair of coordinates (s, t) the
corresponding pair (sl5 ίx) of the next reflection point (see Fig. 1) gives rise to a
homeomorphism from the annulus (R/LZ) x [0, π] to itself, which we will call the
billiard map (see [1]).

Fig. 1. The billiard map
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It is easy to see that the billiard map is orientation preserving and maps each
boundary component of the annulus (R/LZϋ) x [0, π] into itself. As is well known, it
furthermore leaves the measure sm(s)dsdt invariant and satisfies the so-called
twist condition: s1 depends strictly monotonously on t. For the class of twist maps
which leave some regular measure invariant (regular means here: the measure of
any nonempty open set is strictly positive), the following theorem of G. D.Birkhoff
holds (see Herman [5, appendix of Fathi to Chap. I] for a detailed proof):

Birkhoffs Theorem. Let H be an orientation preserving and boundary component
preserving twist homeomorphism from the annulus A = T1 x [0,1] into itself which
preserves a regular measure. Assume U to be an open subset of A homeomorphic to
T1 x [0,1[ and such that dUnT1 x {1} = Φ, where dU is the boundary of U with
respect to A. If U is invariant under H (i.e. H(U)=U), then dU is the graph of a
continuous function from T1 into ]0,1[. dU is even a Lίpschitz curve, provided the
twist of H is uniform.

Therefore, looking for not zero homotopic subsets of the annulus which are
invariant under the billiard map is equivalent to looking for invariant curves of the
form t = t(s); absence of invariant curves precludes the existence of any nontrivial
stable domain not homotopic to zero.

A convex curve lying in the interior of the billiard table with the property that
any billiard trajectory tangential to it stays tangential after reflection at the
boundary, will be called a caustic. Existence of caustics gives rise to existence of
invariant curves for the billiard map.

Theorem. Suppose that the boundary C of the billiard table has at least one
discontinuity in the curvature as described above. Then the boundary circle
IR/LZ x {0} of the annulus (R/LZ) x [0, π] is an isolated invariant curve of the
billiard map; hence caustics cannot accumulate at the boundary curve C.

For our result it is essential that the edge C of the billiard table is not smooth: A
theorem of Lazutkin [6] states that a boundary which is sufficiently smooth and
has strictly positive curvature possesses in any neighborhood a Cantor set of
caustics. (Lazutkin assumed in his original work very high differentiability
conditions on the boundary; e.g. Douady [2] lowered them to C6, he conjectures
that C4 is sufficient.)

Halpern [3] constructed an example which is globally C2 but not C3

possessing an orbit approaching the boundary asymptotically within a finite
amount of time. He also proves that billiards with a C3 boundary do not possess
such orbits.

Very interesting related work has been done by Mather [8, 9] who proved that
any Birkhoff region of instability of an area preserving monotone twist map
possesses certain chaotic properties similar to the shadowing lemma for hyperbo-
lic systems. From this work it follows that any billiard with unstable boundary
possesses an orbit approaching the boundary asymptotically; in particular, if there
is not any caustic in the interior of the billiard table, then there exists an orbit
asymptotic to the boundary in opposite directions as the number of forward or
backward reflections at the boundary goes to infinity. From Halpern's work it
follows that this orbit will need infinite time to approach the boundary, i.e. it will
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Fig. 3

Fig. 2. Wire construction of a billiard table C for a given caustic K. C = the set of all P for which
/! + /2 + /3 = /, where / > length of K is a given constant

infinitely often go around the whole annulus, if the boundary is C3 or piecewise C3

with third derivatives uniformly bounded.
Mather [7] also showed that a zero of the curvature implies global

nonexistence of invariant curves; we therefore assume the curvature to be
uniformly bounded away from zero.

Our result applies to the Benettin-Strelcyn oval billiard (see Henon and
Wisdom [4]).

A discontinuity of the curvature implies only nonexistence of invariant curves
at the boundary, not in the interior of the annulus. This is demonstrated by the
following example, which we owe to Jϋrgen Moser: Given a convex curve K, one
can obtain any billiard table possessing this curve K as a caustic by a construction
analogous to the string construction of the ellipse (see Fig. 2). This construction
smoothens, i.e. even if the curve K is only piecewise C1 the so constructed curve C
always will be globally C1. This can easily be seen geometrically (observe that in
Fig. 2 the angles between the two tangents at K and the curve C are equal). We take
an equilateral triangle, with side length α, and construct the billiard table C with a
string of length l>3a as described above. The resulting curve C, consisting of six
pieces of ellipses (see Fig. 3), is globally C1, but the curvature is discontinuous in
the six points where the ellipses are glued together. The billiard problem in the
interior of C possesses at least one invariant curve in the interior, since the triangle
is a (degenerate) caustic. C can be arbitrarily close to a circle by making a/I small.

Proof of the Theorem

1st Step. First we prove that any point of discontinuity of the curvature possesses a
neighborhood through which there pass no nontrivial invariant curves.

Assume s = 0 to be a point where the curvature jumps. Denote the curvature by
k(s). We may assume fc(0 -) > /c(0 +). Let r = fc(0 -) ~ ί and R = k(Q +)" l. Since k is
uniformly bounded away from zero, both r and .R are finite.
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S=S.

Fig. 4 s=o=s;

The billiard map can be lifted to a homeomorphism φ : R x [0, π] ->R x [0, π],
(5, £)-φι5 t1) = φ(s, t) which is uniquely determined by requiring 0(5,0) = (5,0) for
all 5 e R.

In order to study a neighborhood of the singular boundary point it is sufficient
to study a neighborhood of (0,0) in R x [0,π]. Proceeding indirectly, we assume
that through any neighborhood of the point (0,0) there passes at least one
nontrivial Φ-invariant curve. Let V be a neighborhood of (0, 0) in R x [0, π] such
that both the osculating circles in the point 5 = 0 of C approximate C for
se FnRx {0} up to &(s) as s->>0. Denote the nontrivial invariant curve passing
through V by Γ. Since Γ is continuous, it contains a point Q = (sθ9 tQ) such that the
billiard trajectory from Q to φQ = (sl9 ίx) cuts the inner normal of C in the point
5 = 0 perpendicularly (see Fig. 4). The billiard ray from Q to φQ cuts the osculating
circle of radius r by an angle α0 and the other circle of radius R by an angle α^
Evidently (see Fig. 4!)

Rcosaί = R —

Define /(α):= arc cos (1 — r/Λ + r/JRcosα); then we have for α>0

/'(α) = l

and therefore

By approximation properties of the osculating circle, α0 =

+ ̂ (α1) as the angles tend to zero; so (*) implies that t1<
which we conclude that for V small enough tί<t0 and

and ί1=α1

o), from

(1)

Now we consider all possible orbits through 5'0 = 0. These orbits represent the
billiard trajectories reflecting at the boundary C exactly in the point where the
curvature is discontinuous. Define for (50, ί0), respectively (5'0, £'0), the orbits (5n, tn)
= φn(s0,t0), respectively (s ,̂ t'n) = φn(s'0, ί'0), for neZ.

What we intend to show is, that for any choice of £'0 the graphs of the sequences
(sn)nez and (s'n)ne% cross, i.e. s0 < s'0, but SM>S^ for some ΠΦO. Since Birkhoffs
theorem forbids such a crossing, we will have reached a contradiction.
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To this end we will prove below that for any δ > 0 there exists a neighborhood
V of (0,0), such that for ((sn, ίπ))ΛeZ passing through V the condition

\t'o-tί\<δt1 (2a)

on ί'0 is necessary to avoid a crossing of the orbits (sn)neZ and (sf

n)neZ for positive n,
respectively

|ί'o-ίol«5ί0 (2b)

for negative n.
Assume that (2) is proven. If the orbits (sπ)MeZ and (sf

n)neZ do not cross for

positive n, (2a) is valid. With δ = i(l - |/r/K) we conclude from ^ < f 0 and (1) that
\t'Q — ί0|^ί0 — tί — \t'0 — tί\>δt0; hence (2b) is not satisfied, which means that the
orbits cross for negative n. Analogously, if the orbits do not cross for negative n,
they have to cross for positive n. So the sequences (sn)neZ and (s'n)neZ cross, for any
choice of t'0.

It remains to prove (2): The condition sί<s'l<s2 restricts £'0 to be small. Let
VR = Vn{s>Q}. Since C is smooth near s = 0, φ possesses on VR the asymptotic
expansion

= 2 f c s ~ 1 ί ^ί

as ί->0.

Assume 0<<5<1 fixed. Set m:= inf2fc(s)~1 and Λ f : = sup2fc(s)~1. Making F
F* F*

smaller if necessary we can assume m>(l — (5)M (observe that k is bounded away
from zero).

Let n be the smallest integer greater than 2m/(m — (1 — (S)M). Since n is fixed, all
the iterates φj(sθ9 ί0) and </>J'(s'o> £'0) stay in VR for 1 ̂ j ^ n if the angles ί0 and ί'0 are
small enough.

In order to proceed indirectly, we assume that (2 a) is not satisfied, i.e. either
ί'0<(l — <5)*ι or ίΌ>(l +<5)*ι- In the case ί'0<(l — 5)^ we obtain by application of
(3) and because n is fixed that for small angles

n-l

n-1

Sn Sn S0 S0 0^^ Sj * . _ . _ .

which implies for small angles, since n>2m/(m — (\—δ)M\ that sn>s'n. This is a
contradiction to the no crossing condition since SQ < s'0. In the case ί'0 > (1 + δ)tl we
obtain analogously for small angles that ŝ s,,̂  which contradicts s'0<Sι. This
proves (2 a).

In order to prove (2b) replace φ on VR by φ~l on VL= Fn{s<0}. This proves
the first step.

2nd Step. We prove now the existence of a neighborhood of the whole boundary
circle R/LZ x {0} through which there passes no invariant curve. To get a
contradiction, we assume (s,0)eR/LZx {0} to be an accumulation point of a
sequence (/^)neN of nontrivial invariant curves. Since the curve C is piecewise C2
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Γ

Fig. 5 s = 0 R/LZx<0>

and 0 < k < oo uniformly, the twist is uniform. By Birkhoff s theorem the Γn are
Lipschitz, and possess therefore a subsequence converging to an invariant curve Γ
intersecting the boundary R/LZ x {0} of the annulus at least in the point (s,0).
Since by the first step of the proof Γ does not contain the singular point (0,0), the
two invariant curves Γ and R/LZ x {0} enclose an open invariant set W
homeomorphic to the plane (see Fig. 5). Consider a vertical line in W9 partitioning
Win two subsets of positive measure (see Fig. 5), and its image under the billiard
map. Because of the twist property, we reach a contradiction to the measure
preserving property of the billiard map.
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