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Abstract. We bound the large order behavior of these pieces of the re-
normalized perturbation expansion for Φ% which do not contain "re-
normalons" [1]. The bound we obtain has the form of the leading asymptotic
behavior computed by the Lipatov method, with the exact value of the
"Lipatov constant." Therefore, this paper is a step towards the rigorous study
of the large order behavior of Φ\ and towards a proof of existence of the first
"renormalon" singularity which should prevent the theory from being Borel
summable. Using the results of this paper and the techniques of [15], one can
for instance improve [17] the estimate [18] on the fϊniteness of the radius of
convergence of the Borel transform of renormalized Φ\ and obtain that this
radius is at least the exact value conjectured in [1].

I. Introduction

In this paper we prove an upper bound of the "Lipatov" type which applies in
particular to the convergent graphs of Φ\. We hope that this partial result will be
relevant for a more complete future study of the large order behavior of Φ4. This
large order behavior is expected to be governed by the presence of a renormalon
singularity [1] on the positive real axis of the Borel transform. It happens that this
singularity is indeed closer to the origin than the "instanton" singularity on the
negative real axis which is responsible for the "Lipatov" behavior of the Φ4 theory
at large order in lower dimensions [2, 3] (see Fig. 1). In the lower dimensions (1,2,
and 3) where the theory is superrenormalizable, the rigorous analysis of the leading
behavior of the perturbative expansion has been completed [4—8]. Therefore, we
think that the next important objective in this domain should be to find this
leading behavior for the renormalized perturbation expansion of Φ4., and more
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Fig. 1. The Borel plane of φ% and φ\

precisely to prove the existence of the first renormalon singularity at the right place
on the positive real axis. In our opinion one cannot consider that the rigorous
study of Φ\ even in the perturbative regime is satisfactory until such a proof is
obtained. Indeed, although there is wide agreement that in this regime the theory
should be trivial [9] and impressive rigorous results have been obtained [10,11],
we do not know of any direct proof that the renormalized perturbation series of Φ\
actually do not converge, something that certainly nobody believes!

Let us sketch why the results of this paper might be useful for such a proof of
existence of the first renormalon of Φ\. Since the renormalon should dominate
over the instanton, one needs an upper bound on the pieces of the perturbation
expansion responsible for the instanton behavior, and a lower bound on the pieces
of the expansion responsible for the renormalon behavior. This paper corresponds
to the first part of this program (since upper bounds are usually easier to prove
than lower bounds, one might argue that this is the easy part...).

Without entering too much into the technical details, let us remark that
renormalons are due to the so-called "useless" pieces of the counterterms which are
absorbed into the definition of effective constants in the modern "renormalization-
group" improved versions of perturbation theory [12, 13], or in the "partly
renormalized phase space expansion" of constructive field theory [14,15]. Here we
prove that the piece of perturbation theory which does not contain these "useless"
counterterms is controlled by an upper bound of the "Lipatov" type, with the right
value of the constant (Theorem II below). In particular, the sum of all completely
convergent graphs at a given order, a piece of the expansion which is easy to define
and contains already many graphs is controlled by such a bound (Theorem I
below).

These bounds are obtained by combining the Sobolev inequality [16] with a
cluster expansion in phase space. This cluster expansion works only for these
pieces of the perturbation expansion which have "exponential decay" both in space
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and in the separation between the "momentum slices" of the phase space
expansion [14, 15] (these slices follow a geometric progression). But such pieces
are exactly the ones which do not contain "useless" counterterms [15]. This
explains why the "Lipatov bounds" apply only to the corresponding part of the
perturbation expansion, hence explains Theorems I and II below.

Combining the bounds of this paper with the "partly renormalized phase space
expansion" leads also to the following result [17]:

Theorem. The radius of convergence of the Borel transform of the renormalized Φ4.
series (which was proved to be finite in [18,13]J, is at least 2/β2, where β2 is the first
non-vanishing coefficient of the β function (with the usual convention of using an
interaction φ^/Άl, /?2 = 3/16π2 and 2//?2 = 32π2/3, but in this paper which uses an
interaction φ 4 , β2 = 9/2π2, and 2/β2 = 4π2/9 = (2β)a~\ where a = 3/2π2 is the
constant appearing in the large order Lipatov analysis of this paper).

At 2/β2 in the Borel plane the analysis of Parisi [1] can be transcribed in the
language of [15], and ultraviolet divergences appear corresponding to six-point
subgraphs and similar objects. To complete our program, hence to obtain a proof
of existence of the renormalon singularity, one should find a way of ruling out the
very unlikely possibility that all these ultra-violet divergences cancel each other
completely. This is what we have not yet succeeded to do for one-component φ\ (it
seems to involve a subtle problem of linear independence of various singularities
over the ring of the analytic functions). For JV-component φ\ and N large (but
finite), the 1/JV expansion introduces a hierarchy between these singularities, hence
a proof of existence of the first renormalon in this case is possible [17].

II. The Results

Let us introduce some notations to state our results precisely. The perturbative
expansion for a connected Schwinger function SN in the theory with interaction
— gφ4 is a formal power series in g defined by

sNnΣ(-g)n<$> (2.1)
n

where a* is the sum of all renormalized Feynman amplitudes for the connected
graphs with n vertices. This requires the choice of a renormalization scheme. In this
paper we will consider only a massive φ4 theory for which one can use the B.P.H.Z.
scheme of subtractions at 0 external momenta used in [18]. We will also restrict
ourselves to the study of the series (2.1) for the 6-point function at 0 external
momenta, which is a typical case. (The pressure, which was studied in [6-8] is no
more typical since with our scheme it is 0 at every order in perturbation theory.) Of
course, our bounds extend to any Schwinger function at any set of fixed external
momenta, and even to the case of a massless theory at non-vanishing external
momenta (see [19] for the corresponding subtraction scheme), which was the
original case studied by Lipatov. It is in fact interesting to remark that in the
"critical" dimension 4, the Lipatov constant a (see below) is a pure number which is
independent of the mass scale of the theory (in contrast with what happens in lower
dimensions).
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The Lipatov analysis tells us that at large order one should expect:

γ, (2.2)

where α, the "Lipatov constant" is given by

_ | 2 - inf ( i J [Vφ(x)]Wx - Log J φ^(x)d4x)}
ci — e . y^.Dj

To compute the value of α, let us remark that in 4 dimensions we have the Sobolev
inequality:

ί φ\x)d4x < (K J [Vφ(x)-]2d*x)2 (2.4)

for all φ in the appropriate Sobolev space. The best constant K for which (2.4)

holds is K= ] Λ ^ [16]. Then we have:
]/ 4π

Lemma 1. 3
a = (4K)2 = ^ . (2.5)

v } 2π2 y }

Proof Let us take φ of the form otf where J \Vf(x)~]2d4x = 1. We optimize in (2.3) to
get:

inf t - Logα4 f φ\x)d4x ) = inf (2 - Log42 J f\x)d4x) = 2- Log(4K)2.
α, / \ 2 / f

In fact, renormalization should disturb the Lipatov analysis in 4 dimensions
[1] so that one should expect, by the "renormalon analysis" instead of (2.2):

]"• (2.6)

We will show, however, that a "Lipatov bound" holds for large pieces of the
perturbation expansion. Let us define first a% as the sum of all Feynman
amplitudes with n vertices associated to completely convergent graphs, i.e. graphs
which have no divergent subgraphs, hence no subgraphs with less than 6 external
legs. We have:

Theorem I. There exists a function ε(ή) which tends toO asn tends to oo such that:

(2.7)

Remark that with our convention the amplitudes for convergent graphs are all
positive since the factor ( —l)n has been taken out in (2.1).

To state our second result, we need to introduce the phase space analysis of
[14]. We may use a volume cutoff A which is a large compact box in R4, and an
ultraviolet cutoff of order Mρ, where M > 1. The corresponding Gaussian measure
dμΛ>ρ has covariance:

CΛtβ= 1 e-«-A-+1>doc, (2.8)
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where zl̂  is the Laplacian with 0 Dirichlet boundary conditions on A. We
decompose the covariance and the corresponding fields into momentum
slices [14]:

Q M~2i

CΛ,β=ΣCi; Ct= J e-
a<-^+1>da, m,

i = 0 M - 2 ( i + i )

Co= J e-«(-AΛ + 1)doc; (2.9)
M-2

dμ = μίφ Ψi
i=0 ί=0

dμi is the measure of covariance Ct and φt is the corresponding field.
Remark that one has the estimate [14] (c being a generic name for constants

throughout the paper):

C,(x, y)£c M2ie-(1/2)Mί\χ-y\. (2.10)

For each graph G, we decompose the propagators of the lines of G as a sum
over "momentum assignments" μ = {i^}9 / eG, as in [7]. For a given graph and
momentum assignment μ, we call F an AL (almost local) subgraph of G if the
indices of the internal lines of G are all higher than the indices of any of its external
lines in the assignment μ. The AL subgraphs of G form a forest. The "partly
renormalized" amplitude for G is then defined by introducing only, for a given
momentum assignment, the counterterms corresponding to the divergent AL
subgraphs of G in this assignment (the so-called "useful" counterterms) (see
[12-15]). The corresponding "partly renormalized" w-th order of perturbation
theory is called aζR. Then we have:

Theorem II. There exists a function ε(ή) which tends toO asn tends to oo such that:

£ * ) \ (2.11)

In the next section we will prove in detail Theorem I. Theorem II is then an
easy generalization, since the basic ingredient of Theorem I, namely the "ex-
ponential decrease" of the graphs both in space and in the separation of
momentum slices also holds for partly renormalized graphs [15]. Since the
notations for renormalization are somewhat heavy, we will leave the detailed proof
of Theorem II to the reader.

III. The Proof

1. Outline of the Proof

Roughly speaking an should be related to f dμ(φ)(\ d4xφ4(x))n.
The first remark is that the Lipatov method is a Laplace expansion around

critical fields which minimize the functional in (2.3). But these fields saturate the
Sobolev inequality (see Lemma 1). On the other hand, the Sobolev inequality is a
rigorous upper bound. Hence if one uses the Sobolev inequality to replace
j φ 4 by {K\(Vφ)2)2, one gets an upper bound without losing anything from
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the point of view of the Lipatov analysis. (A lower bound, however, like the one
which has been obtained for φ* in [7, 8], would require a more subtle analysis
of the speed at which, at large orders, the typical fields are peaked around
the critical fields. Luckily we are not interested in such a bound for the
program explained in the introduction.)

The second remark is that the Sobolev inequality changes one vertex into two
disconnected vertices, so there is a possible loss of connectivity for the whole graph.
But using the cluster expansion in phase space over lattices of cubes adapted to the
scale of momenta, we have "exponential decrease" in every direction. Then either
the graphs are spread over a large number p of cubes (p>n(Logή)~δ, 0<δ< 1),
many of them "sparsely populated" by vertices, and the corresponding contri-
butions, thanks to the exponential decay, are negligible with respect to n! Kn for
any K > 0 as n-> oo, or there are few cubes "densely populated" by vertices and it is
only in this case that we apply the Sobolev inequality, because the loss of
connectivity is then harmless since the total volume is small. It is from this second
case that the dominant contributions giving rise to the results stated in Theorems I
and II come.

To have a better intuition of how we want to apply the Sobolev inequality we
prove first a very simple lemma:

Lemma 2. Let φ(x) be a field with a fixed cutoff K, Xo a region of R4 of size

-Λdμ(φ) ( ί d*xφ\x))n^(1 + s(n))nn\ (4K)2n, (3.1)

where ε(n) depends also on the cutoff K. Remember that by (2.5) a = (4K)2, hence the
right-hand side of (3.1) is the same as the one of (2.7) or (2.11).

Proof. Applying the Sobolev inequality the left-hand side of (3.1) satisfies the
inequality:

[(l.h.s. (3Λ))]£±K2nϊdμ(φ)Π d4x(Vφ(x))2\2n. (3.2)

As the vertices are of (Vφ)2 type, all the possible Feynman graphs that one
obtains by integrating over dμ(φ) are closed loops, each propagator being AC,
where C is the covariance of φ. Therefore,

Sdμ(φ)($ (Vφ(x))2\Zn = Σ -. Σ Σ Π [closed loop
) p=l Pi tι,...,tp IP j=ί

? , . = , . (3-3)

and

[closed loop JS?J= f dx1 ...dxtj(-A)C(xux2)(-A)... C(xtj,x±),

where p is the number of closed loops, tl9..., tp are the numbers of vertices present

in the JS?1? ̂ 2 ? •? ^> loops, respectively. Σ is the sum over all the partitions of the
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xl9..., x2n vertices into groups of tϊ912,..., tp elements. Using the exponential decay
of the covariance C it is easy to prove that

[closed loop &£ ̂  C\X0\, (3.4)

where C depends on the cutoff. Therefore,

\dμ{φ)(\{Vφ{x)TYSlί-ΛC\X0\y Σ
tipr ' υ ι /

 tut,tr h\...t.\
P

i = i J

^(2W)!2-| i^(2;). (3.5)

It is easy to prove that if C|X0| < — ^ 5 0 < δ < 1,

ύ(l+ε(n)r. (3.6)

Therefore, remembering that (2n)\^22n(n\)2, the lemma is proven.

Remark. This simple lemma suggests which are the dominant contributions to α£
for n-> oo. The main part of the work consists in making this argument rigorous.
This means that we must be able to distinguish different situations according to
whether |X0| is large or small (because we need a cluster expansion) and prove
that the contributions to a% when |X0| is large are negligible. Moreover, as a% has to
be computed in the limit of the u.v. cutoff going to oo, we must also be able to get
rid of the cutoff dependence in Lemma 1. This requires that we take care of the
convergent factors which appear when we consider the different scales of
momenta.

2. The General Definitions, the Cluster Expansion

We start considering bn, the sum of all the n-th order graphs (connected or not)
with UV and volume cutoffs.

K = ̂ J φ{yd φ(yN) (I φ\x)d4x\n dμA(φ), (3.7)

Q

where φ = Σ Ψi [see (2.9)] and

CAtβ^ΣoCi [see (2.8)].

φ(yι),..., φ(yN) are the external fields (we will take N = 6 and 0 external momenta,
hence the y/s are integrated over yl). For each scale i, ΐ = 0,...,ρ, we introduce a
lattice D f covering the volume A by cubes of side M~~\ the cubes of D ^ being the
union of M 4 cubes of D f (M is a fixed integer). We define E)= \J D t . We start
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decomposing bn as a sum of terms such that in each of them all the (An + N) fields in
(3.7) have a momentum assignment μ, i.e. we write:

φ\*)= Σ ΨiXΦhiΦdΦίSx)
ii,12,13,14

= Σ <Ph{v)(Pi2{v)9i3{v)(Pi4{v)(Xv)> (3.8)
μ(v)

where μ(υ) = (i,.(ί;), i2(V), i3(i>), /4(f)), and we can also assume (multiplying by a
combinatorial factor that we do not write explicitly) that i^v) §; i2(v) ̂  i3(v) ̂  i^ip).
Hence

n n

Π ψ\*v)= Σ Π (9il(v)<Pi2(«;)Φi3(«;)Φi4(i;))(x«;) ( 3 9 )
υ = 1 μ y = 1

The same, of course, has to be done for the external fields φ(yι), •- ,φ{yn)
which, anyway as one can easily see, do not play any relevant role in the game
except that of providing at the end enough external legs not to require any final
subtraction.

In each term of our sum we want that the vertex v with position xv lies in a well
defined cube of scale ^(F), which will be called the "localization cube" of V. In
general, a field φ(xv) of index i2(v), Ϊ3(I>), or iA(v) has also to be thought of as
being associated to the cube of D ί 2 , D ί 3 , or D ί 4 , respectively, which contains the
vertex position xv. We call

Xo = {Δiιiυ)}, v = \,...,n, (3.10)

the set of all localization cubes.
Similarly, we define

)A)) = {Λhmh(v),um}, v = ί,...,n, (3.11)

and the set

l Ξ Ϊ 0 U X$> (3.12)

that we will use later on. X is uniquely defined by Xo and μ: X = X(Xθ9μ).
Therefore, we decompose bn in the following way:

K=ΣΣ Σ Σ -,Σ ί dxiι...dxiJdμ(φ)R(φ),
μ q=l nι,...,nq \Xo\=<ln' P A"ix ... xA%q

q

where ' = Λ ~ " (3.12)

n 6

R(φ) = R(φ;μ)= Y\ (φh{υ)ψi2{v)φi3(v)φu{v))(xυ) Π (Pi(j)(xj)>
v=ί J=ί

and where now we define X0 = {Aί9 ...,Aq}. (nu . . . ,π € ) are the numbers of vertices
in the cubes A ί 9 ...9Aq, respectively. X is the sum over the ways in which the n

p

vertices can be regrouped in groups of nu...,nq elements, and Ψ = (iί9...,/„).
Remark that Xo is now an ordinary set of different cubes, in contrast with Xθ9

which was a sequence of not necessarily distinct cubes. Observe also that the lowest
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value of q is μ-dependent. For simplicity we avoid hereafter to write explicitly the
product φ(yι)... φ(yN=β) i*1 ^(φ)> a n d w e J u s t remember at the end that it is
present. We apply the cluster expansion to each term of the sum (3.12). We call Bt

the set of the 3-dimensional sides of the cubes of ]Df and put B=\J B(. For each
yCBtWQ define M-2i

Ciy = f <Γβ<-^.v+i>Λχ, (3.13)
Λf-2(i+D

where ΔΛtΎ is the Laplacian with 0 Dirichlet boundary conditions on dA\jy. To
each fceJJf we associate a variable sb90^sb^ί, and we define

)= Σ Π ( i " % ) Π % Q ι r (3 1 4)
yCBj bey £>£y

We order 5 f in an arbitrary way and apply a cluster expansion to each term of the
sum (3.12). Namely, we define Ib and Pb by

(3.15J

sb = i o asb\κ ι J

and

J dμ(φ)R(φ) = \ dμ{s](φ)R(φ)\{s] = {ί] = f\ Π (h + P&) ί dμ{s}(φ)R(φ),

(3.152)

where we omit the index Λ. in the measure (with Dirichlet b.c. on dΛ) to simplify the
notations. Using the path representation of the propagator as in [20,26], it is easy
to check that:

where d(x, ft, y) = dist (x, ft) + dist (ft, y).

Remark. The definition (3.15) is such that each covariance will be derived at most
once. Therefore, developing the product f] (Ib + Pb) we cannot arbitrarily inter-

b

change the Ib and the Pbs, but we must keep them fixed in the order they appear.
Developing the multiple products in (3.16), we have

J dμ(φ)R(φ) = fί Σ Γ Σ Π / - Q(x, x')] J dμΓ(φ)R(φ), (3.17)

where we always omit to write explicitly the integrals with respect to the sb

variables, where Γt denotes a generic set oϊb = Bi and Σ > hereafter written as
{x,x',b}

Σ J is the sum over all possible ways in which couples of vertices can be associated

to theft'se/J.
Q

dμΓ= Π dμifΓi, where dμί>Γ. is the Gaussian measure over the field φ{ whose

covariance has Dirichlet b.c. on 3ΛKJΠ.
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As usual at each scale /, Γt can produce different connected regions Yfι\ ..., Yfs)

such that άμt has Dirichlet b.c. on dY^\ ...,dYt

{s\ Nevertheless some derived
covariances due to the previous remark can connect some of these regions. It is
useful to think this connectedness property associated to the cluster expansion in
terms of connection between cubes belonging to XnOt = Xt. In fact [see (3.11)] to
each field φt (v)(xv) we can associate a well defined cube Δiip) e X such that xv e Ai(υ)

[for any term of (3.12)]. We will say that two cubes in Xt are elementary connected
if they belong to the same region Y+k) with Dirichlet b.c. or if there is a derivated
covariance C{ which connects two vertices belonging to these two cubes. Such a
connection is called elementary horizontal connection.

In each slice i a generic term of the cluster expansion will decompose Xt in the
union of disconnected regions X\x\ ..., X[Si\ A region X[J) is connected if any pair
of cubes in it can be linked through a chain of cubes of X\J) which are connected
through elementary connections.

It is also natural to introduce between the cubes of X the notion of elementary
vertical connection: two cubes are elementary vertically connected if they are
associated to the same vertex and have different indices: {Aiί{v), Ahiv), Ah{v), AU{V)}
are elementary vertically connected and, of course, Ail(v)QAi2iv)QAi3iv)QAi4iv).

These rules can be pictured as in Fig. 2 or [14,15] we represent propagators by
horizontal lines joining cubes with the same index, and vertices by vertical dashed
lines joining the cubes which contain the position of the vertex and have indices
corresponding to the 4 half-legs (or fields) hooked to the vertex.

We say that a region Q C X is connected if all the cubes in Q are connected one
to each other through a chain of horizontal or vertical connections. For any Q we

Scales of
momenta

propagators

vertices

cubes with vertices

Fig. 2. The phase space expansion
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call Q^ the set Qn (\J DΛ. If Q>t is connected through elementary connections
\j*i )\

of slices j"^i, and maximal with these properties, we call it an "almost local"
subgraph or in short an "AL subgraph" of X.

Hence the generic term of the cluster expansion made at every scale produces at
the level i a decomposition of X in AL subgraphs X{(\ with i running on a finite set.
As what only appears in the integration region are the cubes of Xo and not of X, we
define also

X^i = X{QinX0. (3.18)
Q

It turns out useful to decompose the Σ = Π Σ i n a product of smaller sums so
r i = 0 Γt

that for each sum we know at each scale i how many disconnected regions X(i\ are
present and also at which scale two regions previously disconnected become
connected. This can be easily summarized by introducing the notion of tree
(connected to the notion introduced in [13] although different). A tree θ (see Fig. 3)
is geometrically defined as in [13]; at each bifurcation b a frequency hb is
associated, at each scale ί the number of branches that the slice of frequency i
crosses tells us the number of disconnected regions. The frequency at a bifurcation

Frequencies

y
X

P Ί
\ ~

w / \^ / \

\
\

/ ^ f

\l
>

/
/

//

^ final vertices

Y bifurcation

Fig. 3. The tree θ
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b defines at which scale some of the disconnected regions at higher scales become
connected. To consider all the possibilities we have to sum over all the frequencies
{hb} and over all the possible trees. Of course, the frequencies hb have to satisfy
hb > hb, if b is a bifurcation higher than V in the tree and they can run only over the
values provided by μ (μ is a sequence of 4n numbers). The final vertices (the top of
the final lines), whose number we call v(θ), correspond to connected subsets of Xo

which at that frequency are disconnected from all the other subsets of X. The sum
over these trees is of the following type:

ΣΣ Σ ~..., (3.19)
K {hb} Θ,V(Θ)=K n(u)

where n(θ) = Π sb\, sb is the number of branches merging in the bifurcation b. The
b

factor l/n(θ) arises as we sum independently over all the possible ways of
characterizing the final vertices saying which cubes of Xo belong to each of them.
Remark that it arises also because of our convention that two trees with two
subtrees, merging in a given bifurcation, when permutated are thought of as
different (if these two subtrees have different shapes).

We can therefore write a general decomposition of bn in the following way

(3.20)

K= Σ Σ Σ Σ ΣΣ Σ Σ'Σ ί
q=ί κ=l « i , . . . ,n g θ,v(θ) = κ μ {hb} \Xo\=q Γ / |_i =

x Σ ^7K —\ ^ χ ί χ Anq

dxh - dxin ί dμΓR(φ) ,

where Σ h a s now some constraints due to the parameters q, K, {nu ..., nq} and θ
u

fixed by the previous sums and Σ ' is the collection of sums over Γi9 subject to the
r

constraints that i e μ, and that the connected regions produced are compatible
with the tree structure θ. We need to refine further our decomposition asking that
in each term of bn one also fixes how many cubes are in each of the K disconnected
pieces; in this case the initial sum becomes:

n q

Σ Σ Σ Σ
q=ί κ = l (qi,...,qκ)(nιt...,nq)

In the decomposition (3.20) of bn we still have to impose some constraints as in
fact our goal is not to bound bn but (fn, the sum of all Feynman amplitudes with n
vertices associated to completely convergent graphs. Therefore, we require that the
terms of (3.20) satisfy some conditions to exclude unwanted contributions.

i) The first condition is that after all the cluster expansions have been
performed in each term of (3.20) the set X = X>0 be connected. This is imposed by
the obvious fact that the trees θ we are considering are trees and not forests, i.e.
they end on the bottom with a single line (the trunk). The excluded contributions
correspond, after the Gaussian integration has been performed, to some (not all!)
disconnected graphs which are not present in an.

ii) A second condition on (3.20) has to be imposed to exclude ultraviolet
divergences and therefore also the need of counterterms. In (3.20) fixed
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(q, K, {q}, {n}, θ, μ, {hb}) one has still to sum over (Xo, Γ, / , P). Each set (Xo, Ψ)
defines completely X [see (3.12)] as we know how many cubes are in Xθ9 where
they are located and how many and which vertices v are contained in each cube of
Xo and therefore of X. As θ has been previously fixed we know also completely at
each level the structure of "AL subgraphs" {Xξ^}, that is the family of the maximal
connected sets of cubes of (J D. . The requirement to impose is that each "AL

subgraph" in each term of the huge sum (3.20) has at least 5 (in fact 6) external legs,
where an external leg to X(ζ\ is a field φh(xv) with xv e X(ζ\ and h < i, or one of the N
(here N = 6) true external legs. Therefore, we put equal to 0 all the terms of the sum
in which this condition is not satisfied. This constraint which will be denoted by
χ(c.s.c) (convergent subgraph condition) is essentially a constraint over (Xo, β, IP).
Imposing conditions i) and ii) we get rid of the divergent AL subgraphs but still we
are neither restricted to connected nor to completely convergent Feynman graphs.
Nevertheless, as all the amplitudes are positive this just produces an overestimate
for our upper bound (which will turn out to be irrelevant).

In a more compact notation, denoting bn with conditions i) and ii) imposed by
Sn(Λ, ρ), we have:

Sn(A Q) = Σ Σ Σ Z(cs.c) Γ Π / - Cm(x, x
(q, K, {q}, {n},θ)μ,{hb} (X0,-Γ,/,P) [bΓ US

Γ Π
[_beΓ

dxii...dxiJdμr(φ)R(φ)\. (3.22)

This decomposition given, we start studying the case where q or γ = \Γ\ is large
(which here means ^n(Logn)~δ for some <Se]0, 1[).

This case corresponds to the situation envisaged in Sect. ΠI.l when p is large.
We prove that the total contribution <Sniarge(/L,ρ) to Sn(Λ,ρ) coming from those
terms in (3.22) satisfying one or both of these conditions is negligible with respect to
(4K)2nn\ when w->oo.

The other case when both q and y are "small" (^n(Logή)~δ) will produce
essentially the estimate for a% suggested by Lemma 2, but with ε(n) cutoff-
independent.

3. The Case q or γ Large

The goal of this subsection is to prove the following lemma.

Lemma 3. If q or y is larger than n(Logn)~δ, there exists ε depending on δ, such
that the following bound holds, uniform in ρ and A:

(3.23)

Proof. The proof of this result is straightforward but very long. We start discussing
the general strategy. We have to distinguish two subcases:

I) \X0\^n(LognΓδ:θ<δ'<h
II) \X0\<n(Lognyδ'and y>n(Lognyδ, 0<δ<δ'.
δ and δf will be fixed during the proof (<5' = 9/10 and 5 = 1/10 are o.k.).
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Case I. In Appendix A we prove the following bound for the cluster expansion:

Π -j-Cm(x,x') ^(const)" Π M2' "e~"tΈlΛVC' (3.24)

for some α, 0 < α < 1, where yf is the number of bonds of Γ of scale ί (γt = |J]|); \
is the scaled tree distance of the set of cubes Xf* = X{Qir\Έ>i and st is the number of
disconnected Xξ^ regions, which is determined by θ and {hb}. We bound SHi ̂ Λ, ρ)
(1 means that we are in the case I for Sπ>large) in the following way:

Q Σ

|Sn>1G4,ρ)|̂ (const)« Σ Σ Σ Σ Σ Π M2l>'e
(<l,κ,{q},{n}) μ {hb} θ X0,\X0\=q ί = 0

χ(c.s.c) J dxh,...,dxin
(θ) Π n(A)\

ΛCXo (3.25)
where we used that

n(A) being the number of fields φiί{v)(xv) in R(φ) with xveA. It is immediate to
recognize that Σ 1^(const)"; therefore, we look for an estimate of the

brackets in (3.25) uniform in (q, K, {q}, {n}) such that we can perform the remaining
sums and get the estimate of the lemma.

We write

/ n \(n \fn \fn \

)= ( Π Ψh(P)(χj)J ( Π ΨHJKXJ)J ( Π φWKχj)J ( Π β i ) J

= Λ(φ)B(φ)C(φ)D(φ)9 (3.27)

where α^(J) = +1 or 0 depending on (5, μ, Xo, Γ). By Holder inequality

IJ dμΓ(φ)R(φ)\ ^ (J AAr{φ)dμ{φ))llAr... (J D4(φ)dμ(φ))114'. (3.28)

To estimate the right-hand side of (3.28), we denote, for Λ e D/ 9 ̂ (Λ) [respectively
£j(A)~] the number of fields φil{v){x^ [respectively φijiV)(xv)] with zx(i;) = i [respec-
tively ij(v) = ΐ] and XyGzl. The number of fields with frequency i in Λ4(φ) is
4 Σ Λ(/0 We order the cubes in I o n D i 5 so that

ACXonJDi

^^(^. . .^Λί^onD,) . (3.29)

and perform the integration with respect to dμ^φ), that is we sum over all possible
contraction schemes, contracting the variables in the order given by the ordering
(3.29) of the cubes to which they belong. Taking into account the exponential decay
of the covariance Q [see (2.10)] we get

^ (const)# (^ Π (2
ACXonTDi

*^"' Π (Λ(^)O. (3-30)
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where #04^ = Σ {γ(Δ\ Finally, we get
ACXonTDi

(i A\ψ)dμ(φ)yi^(const)" Π ( Λ ^ ) ! ) 1 ^ ' * ^ ' , (3.31)

and similar results when A is substituted by B, C, D with the obvious replacements

π VMW12^ π
ACXo ACXQ

J)
Σi#(Ai) Σi#

Mι —• M ι

As ίC1(Δ)^n(ΔX VzleX0 [in R(φ) this inequality would be equality] we have
remembering the volume factor Y\M~4h(v) due to the integration over the zΓs:

V

Π Mί2)>i{bracketed term in (3.25)}

V

\

Π (p ( /f\ι\l/2 τ~τ (/ //fMΛl/2 τ~τ
\t^\/Λ).) I I \trΛ/Λ)\) I I

(ίw "ΓT / /n\ι\l/2 x •*• v iv / v AX

W(yJ XX (W(ι/J!J ' ACXW ACX(3)
ACXo ° °

and

Σ Σ Σ
{ h b } θ U | l

ΐl\y) XX (fl(zj).'j

Π (/ (ΛΛW1!2 ΓT Γ/ Γ/iM^1/2 FT (/ (Λ\\\ιl2 ( Π "KA\

To estimate the brackets in (3.34) we proceed in the following way, we first bound
the έj(Δ), j = 1,..., 4 with the corresponding (larger) values we obtain substituting
R(φ) to R(φ), and by a slight abuse of notations we still denote them in the same
way period. Then the following relations hold

Σ *AΔ) = n, J = l,2,3,4. (3.35)
ACXW

The following bounds are then proved in Appendix B:

Π Sj(Δ)\SΠM{*+εKh(v)-ίΛv)) Π Λ(Λ)!, (3.36)Π j()SΠ Π
ACX(f) v ACXo

where ε has to satisfy 2M ε <l.
We plug the following inequality, with η > 0 and small

π (^(Δ)ψ2 π
) Π Vi(Λ)i)η Π (^(Λ)!)*-* Π (

ACXo ΔCX&) ACXtf)

(3.37)
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into the right-hand side of (3.34), and we get

\SnΛ(Λ,Q)\ύ(U^t{ΔV)η Π (^{m*-η Π (/4(^)!)1/2V(const)"
\ΔCX0 ΛX<3> ΔXW )

ί
x Σ Σ Σ Σ e

μ {hb} θ [ \ \

-aτ. Σ

Π ίι(ΔY.ύ Π /l(J)(/i(^)-l)!^en(π-^)!^e"^|^e"

(3.38)

and moreover,

Π V3(A)\)*-" Π {^{Δy)ll2ύ{n^-"C, (3.39)
^ 3 ) j 4 )

so that for some (δ and η dependent) ε:

/ ΓT (/ ίΛ\W^l'2'\r\ ( ΓT (/ (A\W\~r\\ ( FT (/ (ΛMV
I 11 \y lx^)') i f 11 \y3>\r*) ) I I 11 \y4\^)m)
\ACXn J \/4CX(3) / \ACX(4)

)"~£^> (3-40)

\(Lognf 'j

we reduce the proof of Case I of Lemma 3 to the following bound:

Σ Σ Σ Ί Σ
μ {hh} θ [\Xo\=q

s(const)"
where ε1=f/(4 + ε).

This estimate which is based essentially on (3.36), on the presence of the scaled
tree decay factor and on the constraint that all the AL subgraphs are convergent is
proven in Appendix B. This completes the proof of the Case I.

Case II. The proof in this case goes essentially as in the previous one. The only
difference is that, as now q can be small, we cannot get the term ^-"(L°g")ε

 a s i n

(3.40). In this case we simply obtain

Π (*i(A)ψ Π {^(Λ)^~n Π
ΛCX\f) W

The needed factor comes from replacing (3.24), the bound on the factor produced
by the cluster expansion, by a better estimate which uses the fact that y/q
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>(Logn)δ'~δ. Indeed, in a lattice D; there can be at most constr4 faces of Bt at
distance less or equal than rM~ι of a given cube of © .̂Therefore, at least half of the
y faces of Γ have to be far from Xo (in the relevant scale). More precisely, choosing c
small enough, we have necessarily Y=\rf\^yl2, where Γ'= (J Γ{ and

(3.42)

Collecting a piece of the decay (3.16) of the cluster propagators before applying
(3.24) we have the estimate

Σ*Σ(Π^-C W (X,X0
Γ jr \bcr dsb

Q -a Σ

]^2iγle ^ = i"v"« ' T-r ^-O(l)MM(b,X0)
i beΓ

, (3.43)

which completes the proof of (3.23) in this second case, provided δ is chosen close to
0 and δ' close to 1.

4. The Case q and γ Small

It is from this case, that Sn(Λ, ρ) gets its larger contribution, called SKt 3(Λ, ρ), and it
is only now that we use the Sobolev inequality. We will prove in fact the following
lemma:

Lemma 4. // q and y are smaller than n(Logή)~δ, then Snt3(Λ,ρ) satisfies the
following bound, uniform in Λ,ρ:

\Sn,3(
Λ, 6)1 ^ [1 +s(nm(4K)2)nn\. (3.43)

From Lemmas 3 and 4, Theorem 1 obviously follows.

Proof. We start again from expression (3.22)

Sn 3(Λ, ρ) = Σ Σ Σ Σ Z(cs.c) [cluster exp factors]
(q,κ,{q},{n},θ) μ {hb} (X0,Γ,f,WL)

\Xo\=q

x Γ—J— f dxtί... dxίn f R(φ)dμΓ(φ)\. (3.44)
\_n(σ)n\ A?IX ... χA%q J

We remark that fixed (μ, Xo, /, Ψ) we know which of the original fields in R(φ)
[see (3.12)] have been transformed in half derived covariances and which are
external lines of the AL subgraphs. We have to make a consistent choice, for each
AL subgraph, of at least 5 particular external legs. (This is somehow the vertical
analogue of the cluster expansion.) A definite prescription for such a choice can be
the following one. For any AL subgraph Y> 0 of X [recall X = X(μ, Xo)] of the first
scale we choose a set of at most 5 vertices localized in Y to which at least five
external legs of Y are hooked such that vertices with external legs of lowest possible



274 J. Magnen, F. Nicolό, V. Rivasseau, and R. Seneor

indice are taken in priority. Then we go on, fixing for any AL subgraph of scale i at
most 5 vertices localized in it with the same property as before and with the rule
that vertices already chosen in lower slices are taken in priority if possible. Now we
reserve the name of "external legs" to the external legs chosen in such a way. Given
this prescription (of course, not the only one possible) and fixed (μ, Xo, β, P), that
is X being completely determined, we can regroup the set V of the n vertices into
two disjoint subsets:

09 (3.45)

Vi = {vertices to which derived covariances or external legs are hooked},
V2 = V-Vί.

We interchange some of the sums of (3.44) in the following way:

*Σ Σ z(cs.c.) Σ Σ Σ z(cs.c) Σ
μ (X0,Γ,β, P) \Vι\ μVχ (Xo.Γ,/, P) μv2

where μVl is the sequence of the first \Vγ\ terms of μ. In this case (Xo, Γ, f, P) must
satisfy some constraints imposed by μF l, namely the cubes of Xo which are
localization cubes for the vertices veV1 must have a well defined scale fixed by μVι.
The remaining localization cubes associated to the vertices of V2 must be such that
the "c.s.c." condition is satisfied; this imposes some constraints on i^v) when

υe V29 therefore to μVl. This is the meaning of the * in Σ* In fact, Σ * m u s t be
βv2 βv2

such that
a) Xo does not vary when μVl varies,
b) the "c.s.c." is satisfied by all μ = (μ F l ,μ F 2 ) when μVl varies at fixed μVl. We

can rewrite (3.44) in the following way:

Sn 3(Λ, ρ) = Σ Σ Σ Σ Σ Z(cs.c) [cluster exp factors]
(q,κ,{q},{n},θ) |F i | μVχ iH) (X0,Γ,β,W)

Σ* Π (φiΛv)Ψi2(v)Ψi3(v)Ψi4(v))^))\ (3.46)
W2 vCV2 ))

and

Σ * tiii{v)<Pt2iv)<Pi3iv)<Pmvd(x)u Σ (φί-JKx))4δ(
μv J = 0

= (ψχo(x))\ (3-47)

^J (3.48)

R(φ)=fl hi Π J ? « , (3-49)
ί = 0 s = l \veVιnX^t J

where oc^v) can be 1 or 0 depending on the terms of (3.22). kt is the number of
connected components of X{$i9 and it is fixed by θ. For each couple (Ϊ, 5) we bound
the corresponding products of fields in R(φ) by the rule (this product has to be
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even, otherwise, the contribution after Gaussian integration is 0)

" Π ( ( ) + Kx2κ + 2))> (3.50)

(3.51)

where c Σ 1 = 1 and £^(<p)^0, VJ*f.
se

We bound (3.46) using (3.51) and we omit, for simplicity, to write the sum over
if, calling R just the generic R# (of course, our estimates will be uniform in if).
Then we partially resum over {n} = {n1,..., nq} leaving specified, in each term of the
sum defining Sn>3, only how the vertices of Vx are distributed in the q cubes of Xo.

q

We call their numbers {ή} = {ήu ...,/zA, where by definition Σ n^ = n — v//

< f = l

= w = |Fi| and ι/' = |F 2 | . All this together produces the following inequality:

|SΛ i 3(Λ,e)l^ Σ Σ Σ Σ Σ x(cs.α) [cluster exp factors]

(3.52)

where Xo is now also understood as an integration region of A (the union of its
cubes) and Σ is the sum over the ways in which the xu ..., xw vertices of V1 can be

organized in groups of nί9 ...,nq elements.
We can apply now the Sobolev inequality to j dxJ[φx(x)']4, as a consequence

Xo

of our use of Dirichlet boundary conditions. Indeed, inequality (2.4) holds for
functions of HQ{A), the Sobolev space of functions φ with square integrable
gradient which vanish on the boundary of A. Then the measure dμΓ has a support
included in HQ due to the ultraviolet cutoff, hence the sample fields are very regular
and the Dirichlet boundary conditions enforce that they vanish on dA (see [24,25]
for the definition of Gaussian measures and properties of their support). We obtain
for the bracketed term of (3.52):

{(3.52)}S ΣUμΓ^- j dxh ... dXiJ(φ)

K2"" JL j ^ dx{VψXa{x))y. (3.53)

Let u be the number of ordinary φ fields in R(φ) such a field φ must be hooked
to a vertex of V1. Therefore,

k (154)

because remembering the way we decided to pick the external legs the number of
the vertices chosen is certainly bounded by 5\X\ ̂ 20|X0 | and the number of fields
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hooked to derived covariances is bounded by 6y (3 at most per end of derived
covariance, and a covariance has two ends). We perform now the Gaussian
integration in (3.52) and we look for an estimate, uniform in P and Γ, of

— \ \dμΓ J dxy... dxwR(φ)^-(ί dxiFφφ))2)2"", (3.55)

where n

w :g α — r^ (obviously α = 22 is O.K.),

OgH n ( 1 5 6 )

υ">n — cL— r̂  for some α>0.
(Logn)'

The integration in (3.55) gives rise to a sum over all the possible contraction
schemes between the u fields φ and the Av" Vφ fields. Each contraction scheme
consists of products of terms of the following kind:

a) derived covariances of the cluster expansion;
b) ordinary covariances between ordinary fields;
c) "propagators": C( — A)C...( — A)C hence chains with /c>0 insertions of

(Vφ)2 vertices joining vertices of Vί;
d) closed loops made of covariances with fc>0 insertions of ( — A).
We omit the s-dependence when unnecessary and we do not write the subscript

X indicating that C and the Laplacian A are computed with Dirichlet boundary
conditions on dX. We want to regroup the different contraction schemes one gets
performing the Gaussian integration in (3.55) in the following way: In each group
of contraction schemes we assume that between the u ordinary fields φ, 2r of them,
forming the set @2r, contract with 2r Vφ fields forming the set 2F2r, to become ends
of chains, and the remaining contract together, giving ordinary propagators. To
write more explicitly this decomposition we label with an index v the u fields in
R(φ), ve {1,...,u} and with an index μ the Av" fields Vφ, μe {1, ...,Av"}. (There
should not be any possible confusion with the assignment μ) We write

τR(φ) Π (VφXo(Xj)):

= rΣ Σ Σ ΔΛίJ ^Jχ1...dχw

x [contractions of the fields φ with indices v not in ^ 2 r ]

x [contributions of the r chains and of the closed loops] . (3.57)

First of all we remark that we look for estimates of these factors which are uniform
in ^2r a n d ^in therefore their estimates will be multiplied by

Σ Σ i = f") ( t i [̂i+βOO]", (3.58)

remembering (3.56) and the fact that 2r ̂  u. Therefore, once we have chosen the 2r
fields φ which are hooked to Fφ's to form the end of the r chains, the contribution
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in (3.57): [chains + loops] has the following form:

Ίζ2v"

[chains + loops] = — — j dx1... dx2v» JdμΓ
V ! X2v»

x Π Ψtβe) Π Ψι,(h) Π ( ^ i J 2 W , (3.59)
^=1 ^' = 1 s = l

where ψijix^X Ψi^ih) are the 2r fields φ which produce the ends of the r chains
(some x and j ; can be equal). The remaining Vφ fields not in $F2r contract between
themselves, forming the closed loops and the interior of the r chains. We prove the
following lemma:

Lemma 5.

2v" 2(v"-m/2) 1

Σ Σ -,
m=0 p = 0 p\

2{v"-r)\(2tί-\)\\...{2tp-\)\\
h\...tp\

-l)!!...(2t;-l)ϋ K2v"

x Σ Σ ίdzdz'
(il. .W Ul- jr)

x {C(xh, zγ)... C(xir, zr)Ψ(z, z')C(z'r, yh) ... C(z>r, yJr)},

(3.60)

where the operator Ψ(z,z') is the product of r operators:

IP = Π P&k,4 Q P&k,z'k;Q = l{-Δ)C{-Δ)...C{-Δy\(zk,z'k),
fe=l

(3.61)

the chain in (3.61) having t'k insertions. The different regions of integration should be
clear from the previous formulas (see (3.57)/

Proof. This estimate is the generalization of the estimate of Lemma 2. In fact, the
right-hand side of (3.59) when r = 0 is just the right-hand side of (3.2) with the only
two differences that the measure is now s-dependent and that φXo(x) [defined in
(3.47)] is different from φ(x).

To prove (3.60) one follows (with some generalizations) the proof of Lemma 2.
First of all we regroup the contraction schemes depending on how many vertices
(Vφ)2 will produce the interiors of the r chains. Their number is m and this is the
origin of the first sum in (3.60), then we further divide the contraction schemes in
subgroups where the number of closed loops p, the number of the vertices present
in each of the p closed loops, tί9...,tp and the number of the vertices present in each
of the r chains t'u ..., t'r are fixed.
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This explains the sum:

2v" 2(v"-m/2) 1

Σ Σ -} Σ Σ , (3-62)
m = 0 p = 0 pi tι...tp t{...t;

where l/p\ avoids overcountings which otherwise will arise as we assign the
vertices to the p loops in all possible ways, and we sum over (tί9..., tp) in all possible
ways. Then we look for an estimate of the generic term of this sum uniform in the
assignments of the vertices to a well defined chain or loop; this produces a factor:

7Ί ! , / , ' ,/,- ( 3 6 3 )

At this stage we have to remember that we still have to count the various
contraction schemes for the Vφ fields inside each chain and closed loops. They will
produce the following factors:

Π (2ί*- l)ϋ [closed loop seλ Π (2t£- l)ϋ [chain C J , (3.64)
j=l k=l

where (2^ — 1)!! and {2t'k — 1)!! are just the numbers of the contraction schemes
respectively inside the j-th loop and the fe-th chain, and finally,

[closed loop J£f]= J dx1... dxt

Xo

i(xi)Λi(x2) i(xt)*i(xi)

x Σ ... Σ ((-Λ)Ch(x1,x2)...(-A)Cit(xt,x1))
ii = l i t = l

= \tdxί... dxt{{-Δ)O=i^)AKxΐ)\xι,x2)

x...(-A) Cl=iiXt) Λ i(Xl)\xt, xj), (3.65)

where i Λ j = min {i, j}, and the highest frequency of the covariances C depend on X
since they are the propagators of the Vφx fields which are constrained by definition
(3.47),

Π [chain CJ

= ί Σ Σ {C(xh,z,)... C(xir,zr)Ψ(z,z')C(z\,yh)... C(z'nyJr)}dzdz',
(il <V) Uί Jr)

(3.66)

where the operator Ψ(z,z') is defined in (3.61). Again the covariances C(x9z) and
C(z\ y) have to be thought of more precisely as C and C;, where Γ(respectively J) is
the momentum assignment of the corresponding field φ(x) [respectively φ(jθ],
subject to the constraint that ΐ^i(z) [respectively j ^i(z')], where i(z) and i(z') are
the upper limit over frequencies coming from definition (3.47) of VφXo(z) or
VφXo(z'). The proof of the lemma will then be achieved by the proof of the following
inequality:

[closed loop jSf] ̂  c|Xol (3.67)
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with c cutoff independent. Inequality (3.67) is proven using repeatedly the fact that
as a quadratic form ΣCi(s)SC = {-A + iyί^(-Ay1 to bound all the in-

i

tegrations except the last one (due to translation invariance). More precisely,
C[-ί{Xl) A ι(*2)](x1? x2) is the kernel of a positive quadratic form C [since i{x^) A ί(x2)
is symmetric] which we can write asBxB, where B is the kernel of the square root
of this quadratic form. Since xt and x2 are integration variables with identical
ranges, the closed loop then can be written as an integral over z of
B(z, -)x( — A)C( — A)... C( — A)xB(-,z). Hence we have "symmetrized" in xί

and x2. Applying repeatedly C ̂  (—A) ~1 we get rid of the chain, and have only to
bound the sum over z of J3(z, ) x ( —Λ)"1 xi?( , z). This reconstructs just
TrC'x( —zj)"1. Then we rewrite C as a sum over frequencies of convex
combinations of propagators Cjt γ with some specified set Y of Dirichlet b.c. For
any fixed frequency j we use the path integral representation of C just as in
Appendix C (since the argument is exactly the same except that it is somewhat
shorter and easier, we do not repeat it). This gives a bound on the integrand
corresponding to CjtYx( — A) which is a constant independent of j and Y. Hence
after the last integration corresponding to the trace Tr, we get for any closed loop
the bound:

[closed loop] ScΣ Yόl(XonΏj)^c\X0\.
jj

This completes the proof of Lemma 5.
Now to estimate the chains we define

i> ~',Zr)=Σ Π c{xσ{k>zk), G{JC}(Z;, ...,z;) = Σ Π
σ k= 1 σ' k= 1

(3.68)

where the sums are over all permutations σ and σ' of {1,.. .,r}.Then the sum over all
ways of pairing the chains with their corresponding variables x and y can be simply
written as (F{x}, ΨG{y}}. Since P is a positive form we have

, PGW> ^ (F{x), ΨFlx)y\G{y}, FG^y1'2, (3.69)

and now we have again a symmetric form. Proceeding as in the proof of (3.67),
hence using again that as a quadratic form C(s)^( — A)~1, we can bound each
operator Pk (as a quadratic form) by (— A\ hence P by ® {—A), and conclude that:

< F W , P F W > ^ Σ Σ Π CiJ,xσ{k),zk){-A){zkJk)Cjβk,xσf{k)), (3.70)
σ σ' k-1

where ik and jk are the momentum assignments of the fields φ at the beginning and
at the end of the fc-th chain. The net result is that now defining {x} and {j;} as copies
of the variables {x} and {y}, we are reducing a chain to the product of the square
root of two simplified chains of the type Q(x, •)( — A)Cj(-, x). We call such an
object a "modified propagator" J](J.(x,x). We have the bound [to compare with
(2.10)] expressed by the following lemma.

Lemma 6. Suppose i^j. Then

\Γt.{x,y)\ = \Ct(s)(x, -)(-A)Cj(s)(., y)\S(const)M2ie-°^Mί\χ->\. (3.71)
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The proof of this lemma is given in Appendix C, using the path representation
of the propagator as in [26].

The bound (3.71) on ΓUj allows us to do one of the sums over the permutations
σ, & in the development of <F, ΨF}. In fact, writing M2i in (3.71) as MίMjM~u~i\
the factor M~u~ι) allows us, knowing), to sum over the index i9 paying a constant.
The exponential decrease in (3.71) allows us to choose the cube of Dt. Then if the
number of fields φ^x) with x in this cube is bounded by a constant, the sum over
one of the permutations gives just a constant factor. If the number of fields ψi(x) is
large and not uniformly bounded, then one has to remember that since these fields
are associated to vertices of Vί9 there must be many derived covariances starting
from these vertices and as their fe's must be all different (see Sect. III.2), by a
standard argument we can use a fraction of their exponential decay [see (3.16)] to
bound the sum over all different choices of fields in the cube by a constant
independent on r. The second sum over the permutations σ in the development of
<F, ΨF} gives a factor r!. The same argument applies to <G, 1PG>, and taking into
account the square root in (3.69) we conclude that the contribution from all the
chains can be bounded by

Π [chain Cfc]^(consty>!f Π Mm\ (3.72)
fc=l \ve92r J

where {i(v}} are the momentum assignments of the fields φ which form the ends of
the r chains.

Collecting together (3.72) and Lemma 5, we get

(2v"-r)\r\
I [chains + loops] | ̂  (const)1" —-—

2v" 2(v"-m/2) 1 _

x 2̂  2-, r
m=0 p=0 P'

x I Σ l\ / Σ W Π
ti,...,tP ί i, . . .,t;

\Σtj = 2(v"-ml2) J \ Σr; = (m-r)

2v" ίm-γf2'K'^[ΣΛ r

2v" \ _ f2υ"\

Σ -;(C\Xo\y{ f Π M ί W l (3.73)Σ ΛQo\γ
= 0 pi \P \

remembering (3.6) of Lemma 2 and since I ) ^ [(1 +&{ήj]n we get:

[r.h.s. of (3.73)] ̂  (1 + &{ή))n(4K)2v"v"! ( Π Mm\. (3.74)

Collecting together (3.74), (3.57), and (3.52), we get

x | Σ Σ Σ Σ Σ χ(c.s.c) [cluster exp factors]
\(q,κ,{q},{fi},Θ) \Vί\ μVί {hb} (X0,Γ,f)

x Σ n(θ) m J mdxtι... dxin J R(φ)dμΓ
F zl"ix ... xzl"«

W (3.75)



Lipatov Bound for Φ\ 281

where we have reexpressed the first̂ factor of (3.57) as a Gaussian integration over
the product of the (u — 2r) fields of R. It is clear that this term can be estimated as in
Lemma 3, observing that now neither \X0\ nor γ are large, so we just do not get any
corresponding factor exp[ — n(Logw)2], and 4n is replaced here by w^4(n — v"\
hence the corresponding bound is:

I [bracketed term in the r.h.s. of (3.75)] | ̂  (1 + ε{n))n(n - v")!. (3.76)

The only subtlety in this proof of (3.76) along the lines of Lemma 3 is the following.
We have to sum over Xθ9 which is the set of the localization cubes of all the vertices
(not only of those of V±). However, some cubes of Xo, forming the set Z, can
contain only vertices of V2. This creates a slight difficulty because the connections
to sum over these cubes seem to disappear after the contributions of chains and
loops have been factorized and estimated. However, due to the "c.s.c." condition
and our choice of Vl9 these cubes are not free to be anywhere in A. The only
possibility is that they must contain at least one face b of some derived covariance
(hence, in the language of Appendix A they are joined to cubes of Z' = Xo — Z by s.e.
connections). This implies that we can organize at the end our sum over Xo in the
following way: fixing Zf we sum first over the cubes of Z using the exponential
decay (3.16) of the propagators which attach at least one of their faces to a cube of
Z'. This results in a constant per cube of Z, hence a factor (1 + s(n))n. We sum then
over the cubes of Zf (forming the set Z") which contain vertices of Vu but are not
localization cubes of vertices of V1. Using (3.47) and our rule of choice of vertices of
Vγ, this sum gives a factor F9 which is just the number of cubes which contain a cube
of Z'—Z". Then the sum over the cubes of Z'—Z" is exactly as before, since it
corresponds to the sum over localization cubes of Vί. The only thing to check is
that the additional factor F is controlled by a fraction of the exponential vertical
decrease (B.25) (corresponding to the positive power counting), which is obvious.

When we plug (3.76) in (3.75) we obtain:

IS,,, 3(Λ, ρ)\ ̂  (1 + 8(n))n(4K)2nn!, (3.77)

which completes the proof of Lemma 4.

Appendix A

Proof of Inequality (3.24)

We show first how to obtain the tree decay factor in (3.24). Let us consider a
derived propagator d/dsbCt of scale i as a s.e. connection (special elementary
connection) connecting together the cubes at its ends and the two cubes of Ώt

containing the face b. (Hence it can connect at most 4 cubes, and does not coincide
with our former definition of elementary horizontal connections.) As before we
have the notion of s-connected region, which is just a maximal set of cubes joined
by at least a tree of s.e. connections. Remark that any connected region with the
former definition is included in a s-connected region; in fact, s-connected regions
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are just the former connected regions plus a corridor of neighbouring cubes (which
might glue some of the previously disconnected regions into a single s-connected
piece). In a straightforward way we can obtain tree decay in the s-connected
regions. Simply pick a piece, say one half, of the exponential decay (3.16) of each
derived cluster propagator. Using at each scale the tree T which defines the
connectedness of all the cubes of a given s-connected region Y, we can bound this
piece of exponential decay by O(l) | y | exp [ — O(\)Midτ{Y)\ where dτ(Y) is the sum
over the lines of the tree T of the distance between the corresponding cubes of 7.
This is better than 0(1)'γ | exp [ - 0(l)d(Γ)], where d(Y) is the ordinary (scaled) tree
distance, computed with the shortest tree. Now we use the trick that

£ Mx to replicate this decay over all lower scales. But by the
ίj i ί

remark above, tree decay in the s-connected regions immediately imply
tree decay in the ordinary regions of (3.24) [up to 0(1) per cube]. Now the
products of all the replicated tree decays over all scales is easily transformed into a
product over all scales of a scaled tree decay for each region Xγ\ since these
regions are defined as being connected through elementary connections of scales
^i. Remarking that the factor 0(1) per cube can be absorbed into the (const)" of
(3.24), it remains only to control the sums over Γ and β using the remaining half of
the decay (3.16).

This is easily done as follows. Paying a factor 8" we can choose which of the 8w
fields are used to form derived covariances. Then we can use the remaining decay
(3.16) to sum, for each such field, over all the faces b, hence choose the derived
covariance to which it hooks. This sum gives a constant per such field, hence a total
factor 0(1)". In this way, both sums over Γ and / are done at the same time, and
the proof of (3.24) is therefore completed.

Appendix B

Proof of the Inequality (3.36)

To simplify notations, we suppose that J = 2 in inequality (3.36) the other cases are

(B.I)

(B.2)

absolutely identical.

We define

We have:

0

ε Σ Λ</

Σ Λ(Λ

4)!=π η

h+iiJ)+ Σ

/ 2 ( z l . )

c D i 5 i2

Q

Σ
i=J+2 ί

1

(x) =

( Σ

= Σ ( Λ ( ^ + i ; ΉΛ(Λ J + 1 ;J ) ) , (B.3)
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Π

Π

Π 2*l

Π ;J)\ Π
Aj+ιCΔj

π

Aj+ιCAj
Π

Aj+ιCAj

(B.4)

= Σ

£ Σ
i = J+3 ^jCJj

(B.5)

Π

Therefore,

Π ?1(

and iterating

Π Λ(^+2;J)! Π ^(

Π ^i(
A

Π Π Λ(
+ICAJ Aj + 2^Aj + i

(B.6)

(B.7)

λ

<(2M
Σ Σ Σ

C i C

Π Π Λ(^i^)!
i = J+ί

x Π Π Si(Δt;J)\
i = J+l AίCAj

= Π 2M4 Π
(B.8)
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Finally,

Π Π ^(Λj)\= Π €2{A)\
J ΔjCX^nJDj ΔQX<g)

J AjCXψnJDj ΛCΔj

^γiMi4+εHίί(v)-i2{v)) Π Ί O O U with
ACXo

Proof of Inequality (3.41). Using the previous definitions we have

ΓT M ~ <*ίl^ ~ ί 2 ^

x π V ( i 1 ^ ΛM-;i3) J]
ί 1 , 1 3 ί l , ί 4

where /x(zί£i; i 3)= # fields φtl(x), x e J f , i3(x) = ̂ 3 (ύOO^U) and i i ^ i 2 ^ ^ 3 ^ ύ
run over the values prescribed by μ (which is fixed) and Δt run over the cubes of Xo

(also fixed). We can also write two more expressions for the (right-hand side) of
(B.10), namely

ί l , Ϊ 3 1*1,1*4

where

/ 2 (^ i 2 ; ϊ'3) = # fields φi2(x) with x e J i 2 and ι"3(x) = z3,

tz(Δ h i4) = # fields φh{x) with x e A h and i4(x) = i 4 ,

and

ΓT M ~(ίl(t;) ~ i2^M ~(ll(y) ~ iz(-v^M ~ (i'l(ι;) ~i>4(t;))

e

where {/̂ } is the set of momentum assignments given by μ, ordered in a monotone
decreasing way (h^>h^+ί) and

#(exϋ2 to X-zh)= ^iψiS*) w i t h * i^^,

#(extf3 to X^)=φ{φi2(χ) with z 2^^,

#(exti4 to X^h)= #{φh(x) with i 3 ^^,
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From (3.36)

Π ( ί
ACXo

)

(B.13)
Substituting these estimates in the brackets of (3.41) we get

~ Σ Jt .d(Xo,i) 1
1 J = 2LJ &

n(θ)

J
(B.14)

where ε1 = ε/2 + η(4 + e), ε0 = η(4 + ε); θ and {hb} fix for a definite ^ + x how many
connected components are present. Let this number be Khf+ί; θ also fixes how
many disconnected components at level h€ merge in a single component t of level
h^+ί. Let this number be sj*j; then

C(B 14)]=Π Π
e ί= l

-(ht-ht+ i) / [(1 - £ l )#(ext i 2 to A"(^) + (2-eo)#(exti3 to xVh<)+ #(exti4 to Jrζ

x M r - 1

(B.I 5)
Then

Σ* e^^^^SiconstγU Π M 4 ^ ^ 1 ^ . (B.16)

Putting together (B.I4), (B.I5), and (B.I6) we obtain the inequality

1 *h, + 1

{(3.41)} ̂ - — Π Π

-{ht-ht+1) \ Σ'[(l-εi)#(exti 2 to X%\e) + (2 -εo)#(exti3 to X(Λ,)+ #(exti4 to xi r )

h ( f)]-

xM c

(B.17)

By the "convergent subgraph condition" we have imposed that from each X(>h^ AL
subgraph must exit at least 6 external lines. We must verify that this condition is
enough to ensure that the bracketed coefficient of (ft, — ft, + J in (B. 17), denoted by
{(B.I 7)} is strictly positive, uniformly in (μ, {ftj, 0, Xo). Simple inspection of (B.I 7)
shows that without the "c.s.c." this is not true in some definite cases, for instance
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when

# ( e x t f 2 t o X | ^ ) ^ 4 , Vr,

and (B.I 8)

#(exti3 to X%)= #(exti4 to X%) = 0.

These are not the only possible cases but are the worst ones; therefore, if we can
treat them using the "c.s.α," we can also treat all the other dangerous cases.
Observe that given X'^htf if #(exti 2 to X{$h^) = 0, then the "c.s.c." condition
imposes 2 # (ext ί3 to X%) + # (ext ί4 to X%) ^ 6 which implies that this term in
{(B.I7)} is positive and only helps. If # (exU2 to X*Q) = 1, then 2 # (exti3 to X%)
+ #(ext/4 to X | ^ ) ^ 3 , and this term produces a negative contribution, danger-
ous for the uniform positivity of {(B.17)}. Similar effects happen when #(exU2)
= 2,3,4. We are therefore reduced to study these dangerous cases:
# (extί2 to X{$h)

 E [1> 4]nZ, and # (ext z'3/4 to X{ζh)
 a s small as possible, but still

compatible with the "c.s.c." condition.

The origin of the fact that the factor {(B.I7)} can be negative is due to the

estimate (B.I3) for Π (^r(^)01/2

? which produces the factors

t0-< 2(t>)) I t i s e a s y t 0 c h e c k t h a t w i thout these factors {(B.I7)}
V

would be always > 0. We observe now that when S$ = 1 the problem is easily
solved. In fact, in this case

which implies that

"Σ Σ Σ Σ W,;J)^. (B.20)
J = 0 ΔjQX<ζϊ iι=h<? ΔHCAj

Therefore,

ti{Aj)= Σ Σ ίι(Δu;j)scΣ Σ Sii^ J), (B.2i)
ϊi AhCAj ίι = 0 AhCAj

and now the inequality (3.36) can be applied to the right-hand side of (B.21); then
the factors M ( 2 + ε / 2 ) ( ^ - ^ + l ) # ( e x t ι ' 2 t o X ^ ) , for these ft, for which (B.19) holds are
missing and again {(B.I7)} is > 0. The only more delicate case which can appear is
when S£j is large (this depends on the shape of θ). In this case, in fact, we can have

#(exti2 to X%)£4, S?>O(1), (B.22)

therefore, we can have S £ ] ^ 2 ( ^ J ) = 4 S $ , J <he. It is the factor n(θ) which helps
us at this moment; in fact, recall its definition given after (3.19); it contains

1 (/ (A VW2

a factor (t) , hence if /2(zJj)^2S^, we have — 2 * ' — ̂ C*2(Aj\ and again

{(B.17)}>0,<f uniformly. If tf2(Aj) = 4S^, then we estimate

(/ ί4ryγi2
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and for (£2(AJ) ! ) 1 / 4 we apply the inequality (B.13) which now due to the 1/4 instead
of 1/2 gives a better factor

j ^ ( l + e/4.)(hj-ht+ i) #(extί2 to X%\e) /β 24)

which changes the (1 -εx) #(extΐ2) of {(B.I7)} in (2-eΊ) #(exti2 to X%), which
is (2 —fiΊ)4 and makes again {(B.I7)} uniformly >0.

To summarize we have the following estimate

{(B.I7)} ^ ( c o n s t ) " Π M~δ''ιiiί{v)~i2iv)) + {iί(v)~ί3{v)) + {iliv)~i4(vm (B.25)

for some δ">0, and it is now an easy task (see [13] or [14]) to prove inequality
(3.41), remembering that the presence of the true external fields φiy^),..., φ(yN)
(JV = 6) breaks the translation invariance and makes the corresponding volume
factor \Λ\ disappear.

Appendix C

We prove in this appendix the following lemma:

Lemma 6. Suppose i^j. Then

I^/^HC^X*^ (Ci)

Proof. We remark first that C/s) is a linear convex combination of Cjt y, Y being a
set of faces of cubes of ID, on which Dirichlet boundary conditions have been
imposed (of course, 7 contains dXj9 the boundary of the volume made of the cubes
of X of index j). Hence it is enough to prove (C.I) for a fixed Cjt γ. We write first the
Laplacian in (C.I) as ( — A +1)— 1 and we bound the piece with the — 1, which is
simply the convolution of Ct with Cj9 using the usual bound [14]:

)(x, y) S O(l)M2ie-{ll2)Milχ-yl. (C.2)

This is easy and gives a much better bound than the right-hand side of (C.I). Then
we write ChY as Cj — [Cj — ChY\ and evaluate separately both pieces. On the piece
Cp which has no Dirichlet restrictions, the action of ( — A +1) can be computed
easily, since Cj is just the product (in momentum space) of (— A + ί)~1by the cutoff
[see (2.9)]. Multiplying by ( — Δ + \) we get the cutoff. Let us introduce the

For this first piece Cj we have the bound:

2bi

^2 f β"α

^0(l)M 2 < e- O ( 1 ) M i | *- y | , (C.3)

where for the first inequality we bound the difference by the sum, for the second
and third inequalities we used the fact that i^j and M>2, and for the last one
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we used (C.2). Inequality (C.3) is similar to (C.I). Hence it remains only to
bound Q(s)( — zl + l)Cj, where C] = C — CjΎ has the path interpretation:

M~2J

C](z,y) = J dte-t\PΎ

t(z,y)dω, (C.4)

where Pj(x, y)dω is the conditional Wiener measure on the sets of all paths starting
at x at time 0 and ending at y at time t and crossing at least one of the faces of Y. We
will bound the action of ( — A +1) on (C.4) using an analysis of Wiener paths. We
have (using the notations of [26, Sect. V]):

C](z,y)=]e-'%{χ(τγedt1} "T p(t2,ω(tl),z)e-^dt2ί (C.5)
0 suρ{O,flj -ίi}

where Ey is the Wiener expectation for paths starting at y, χ ( τ F G ^i ) is the
characteristic function for all paths whose first hitting time for Y lies in the time
interval [tί,tί+dt1], and p(t,x,y) is the transition density for the free Wiener
process. (This formula just says that if a path ω hits 7, it has to hit it a first time, and
then to go freely to its end.) Now we can apply the operator (— A +1) on the kernel
p(t2, ω(ίx), z), and integrate over dt2, since there are no Dirichlet conditions on p.
This gives just again the difference of the cutoffs on t2, hence the operator [acting
on the ω(tγ) variable]:

Again we can bound the corresponding difference of operators by the sum of the
absolute values of the corresponding quantities. Now we remark that each
operator e~c(~A +1} is positive point wise in direct space. This is obviously true also
for Cf(s)(x5 z) and for Ey. Therefore, we can bound the corresponding convolution
integral by increasing Cf(s) to Q. But the action oϊe~c{~Δ + ί) on Q is just to shift
the bounds of integration by c [as was done in (C.3)]. Hence we can bound each of
the two terms generated by (C.6) by (using again the kernel p):

) e-^Ey{χ(τγ ε Λ J "T P(t3, ω(tt)9 x)e~^dt3, (C.7)
0 cii + c

where c is either sup {0, Uj — ίx} or b} —11. But using a formula similar to (C.5) in the
reverse way, this is bounded by

bl+]+bjdte-tiPj(x,y)dω. (C.8)
fli + c

Now we can increase (C.8) by suppressing the condition that the path ω crosses Y
and replacing the bounds of integration by at and 3bt (since bj and c are bounded by
bi). This is then easily estimated by the right-hand side of (C.I) (as in [14]). This
completes the proof of Lemma 6.
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