Communications in
Commun. Math. Phys. 107, 577-586 (1986) M |
Physics

© Springer-Verlag 1986

Many Phases in Systems
without Periodic Ground States

Jacek Migkisz
Department of Mathematics, University of Texas, Austin, TX 78712, USA

Abstract. The low temperature behavior of systems without periodic ground
states is investigated. It is shown by using Peierls” argument that in some
models the translational symmetry is broken. In particular, an infinite range
model with infinitely many Gibbs states is constructed.

1. Introduction

One of the unsolved problems of statistical mechanics is to understand the causes
of crystalline symmetry in low temperature matter [1]. Here we discuss specific
classical lattice gas models in two dimensions. Namely, each site of the square
lattice can be occupied by one of several different particles. The particles interact
through two-body potentials and low temperature behavior of such systems
results from the competition between energy and entropy, i.e., the minimization of
the free energy.

Before discussing the finite temperature region it is important to investigate the
ground states of the system, i.e., the configurations of particles with minimal
potential energy per lattice site. A major question here is: does every classical
lattice system always possess at least one periodic ground state? This problem was
studied by Radin [2-47] and the answer is no. There are examples of models which
do not have periodic ground states. They are based on Berger’s [ 5] and Robinson’s
[6] results on nonperiodic tilings of the plane with a finite family of certain tiles.
Such models do possess, however, so-called g-periodic ground states. A configura-
tion of particles is g-periodic if when a certain fraction of them is ignored the rest
of the configuration is periodic; the smaller the fraction, the larger the period.

The next step is to prove or disprove that in such systems the g-periodic
structure can survive at low temperatures giving rise to a g-periodic Gibbs state.
We have to keep in mind, however, that in contradistinction to the ground states
there is always at least one translational invariant Gibbs state at any nonzero
temperature. We have not resolved this problem. Instead we answer here the
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following more modest question: do systems without periodic ground states
exhibit phase transitions? In other words: are there at least two Gibbs states at low
temperatures? The answer to the question as stated above is trivially positive.
Imagine a two-dimensional model without periodic ground states placed above a
two-dimensional ferromagnetic Ising model without being coupled to it. Obvi-
ously such a model does not have periodic ground states. On the other hand,
because of the presence of the ferromagnetic Ising model, there are at least two
Gibbs states at low temperatures.

In Sect. 2 of this paper we investigate a model which cannot be decoupled in the
above sense (it has too few coupling constants). We use Robinson’s tiles and
introduce an interaction which forces some periodic structure (with period larger
than one lattice spacing) to appear in every ground state. Then we add a weaker
interaction such that this periodic structure is filled out with a nonperiodic pattern.
Using Peierls’ argument we can show that the periodic structure survives at low
temperatures. The translational symmetry is broken; there is a Gibbs state which is
non-translational invariant.

In Sect.3 we construct a specific model with two-body infinite range
interaction (decreasing at infinity sufficiently fast) without periodic ground states
and with infinitely many Gibbs states on the phase diagram. We prove that there is
an infinite sequence of temperatures T, such that if T< T, then a corresponding
Gibbs state has a minimal period at least 2"** in both directions. Two possibilities
arise. Either all T,’s are different so there are infinitely many phase transitions or
there is a temperature at which there exists a nonperiodic Gibbs state —a g-periodic
Gibbs state. We are unable to determine which possibility actually happens. It
would be interesting to construct a model with finite range interaction without
periodic ground states and with a g-periodic Gibbs state at low temperatures. A
possible candidate would be a model with just g-periodic ground states as in the
second example. The Robinson tile model has some ground states which are not
g-periodic.

2. Finite Range Interaction Model

We investigate here the low temperature behavior of a certain classical lattice gas
model on a square lattice. Section 2.1 contains the description of the different
particles and interaction between them. In Sect.2.2 the main theorem is
formulated: the breakdown of the translational symmetry at low temperatures.
Section 2.3 contains the proof of the theorem. More specifically, we construct the
Peierls transformation to obtain the standard exponential bound for the
probabilities of certain excitations from the ground state. Our transformation is
not injective but we can bound appropriately its kernel from above. The standard
bound for the number of connected excitations finishes the proof.

2.1. Description of the Model

Each site, say a, of the square lattice can be occupied by one of the 56 different
particles — Robinson’s tiles denoted X (a) [6]. We describe now the Robinson tiles;
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we follow [6] closely. There are five basic tiles represented symbolically in Fig, 1.
The rest of them can be obtained by rotations and reflections. The first tile on the
left is called a cross; the rest are called arms. All tiles are furnished with one of the
four parity markings shown in Fig. 2. The crosses are combined with the parity
marking at the lower left in Fig. 2. Vertical arms (the direction of the central arrow)
can be combined with the marking at the lower right and horizontal arms with the
marking at the upper left. All tiles may be combined with the remaining marking,
Two tiles “match” if arrow head meets arrow tail. Let us observe that if the plane is
tiled with tiles with such markings then these must alternate both horizontally and
vertically in the manner shown in Fig. 2. This is exactly the periodic structure
which will survive at low temperatures.

Now we introduce the nearest neighbor ¢wo-body interaction U between
particles —tiles. If a and b are nearest neighbors on a square lattice and X(a), X(b)
are particles at a and b respectively then:

0 if X(a) and X(b) match,
1 if X(a) and X(b) do not match,
U (X)=U(X(a), X(b))= but the parity markings match,
[N>1 if the parity markings of X(a)
' and X(b) do not match.

The Hamiltonian in the finite volume A can be written as follows:
HA= Z Uab5
<a,b)
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and the relative Hamiltonian:
H(X/Y)= E)) (Ua(X)=Ua(Y)),

where X and Y are two infinite volume configurations which differ only on a finite
subset of the lattice. It can be proven [4] that there are no periodic ground states in
such a model; you cannot tile the plane periodically with these particular tiles.
There are, however, g-periodic ground states such that every bond is “satisfied” —
every two nearest neighbor tiles match. For a complete description of the ground
states see [6].

2.2. The Main Theorem

Denote by ¢ the family of ground states. Let Ge %, A be a finite subset of the
square lattice, and ¢ »$ be a finite volume Gibbs state with G boundary
conditions. Let { )¢ be a cluster point of { >$ when A—Z? and Pr¢ the projection
on all configurations with the parity marking at a different from the parity marking
of G(a).

Theorem.
(PréYS<e(f)—0 when B— oo,
where [ is the inverse temperature.

Corollary. There are at least four extremal Gibbs states at low temperatures.

2.3. The Proof

We begin by introducing the contours. If § is the family of all tiles, and |S| = 56, then
% =S7 is the infinite volume configuration space of the system.

XS={X ek X(a)=G(a) if ae A=TA\A}.

Let X e Z€;
Y(X)={(a,b): U(X(a), X(b))=N},

(a,b)*=(a*,b*);a* b* e Z* (the dual lattice),
Y(X)={(a,b)*: (a,b) e p(X)} .
Consider a graph Iy =(V4, Ex), where
Vy={a* € Z*" such that b* e Z*" and (a*, b*) e y*(X)},
Ey=y*X).

Let I¥ be the set of connected components of Iy, called the contours of the
configuration X. It is easy to see that every vertex belongs to at least two edges (cf,,
the proof of Proposition 2.1). Because of that, every contour o divides Z2 into one
infinite connected component Ext,, called the exterior of «, and a finite number of
finite disjoint connected components Int;a, called interiors of . Two sites of the
lattice are connected if they are nearest neighbors.

Proposition 2.1. Let X € Z§ and assume the parity marking of X(a) is different from
the parity marking of G(a). Then there exists a contour of X such that a belongs to
one of its interiors.
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Proof. Pick any b e Z*\A. If the proposition is not true then one can construct a
path on the lattice starting at b and ending at a such that it never crosses an element
of y*(X). This is obviously impossible. [

We have the following bound for {(Pré>$:

e"ﬂH(XlG) Z e“ﬂH(XlG)
PTG G=XePr.,G!£'g_ < Xe.%'f,ae[‘fi
{Pry>4 S ¢ PAOTO) "§ 3 ¢ PEXIO)
Xex§ Xex§
©
=YP@=3 2 P, 1)
o =1 a;la|=¢

where the summation is over all finite connected graphs on Z* such that a belongs
to one of its interiors and |«| is the number of edges in o.
To bound P(x) from above we construct the following Peierls transformation.

T:Z$-%§;, X¢={XeZS:aecly}.
T(X)=X*, where X* is defined as follows:

* —_ * —
XIExta - XIExta ’ Xllntia\almia - 1a.~X|Int,-a\¢?Inl,-a s (2)

X5 1at,2 18 such that the parity markings match all the neighboring parity markings
and otherwise is arbitrarily fixed. 7,, are lattice translations which make the above
choice possible and i runs over all the interiors of «,

0 Int;o={a e Int;o : dist(a, Z*\Int;0) <1} .
Certainly if N>5 then
H(X*|G)=H(X|G)—~ o] . ©)]
Proposition 2.2.
card(Ker T) < 2! . 56214l

Proof. The number of finite disjoint connected components Int,a is obviously
bounded by |«|/2. Then we have 4 different (including the identity) possible
translations 7,. Finally we have to take into account the boundary of Int;o. This
introduces the factor 5621, [

Combining (1) and Proposition 2.2 we get the following Peierls estimate,

Proposition 2.3.
P(x) §2|a|562|1|e‘13]a| .
Proodf.
cardKerT)- Y e PHXIO=flal
* rG " ol —Bla
P(0) =+ etk e?ﬂj;,(x,,g) <lel5g2lalg=plel [
X*eT(Pr¢Z$)

The following estimate was proven by Holsztynski and Slawny [7].
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Proposition 2.4. The number of connected graphs on Z? with £ edges and such that a
fixed site a belongs to one of its interiors is bounded above by (A¢ + B)*- C**~2,
where A, B, and C are constants.

Finally:
(PHES T (A2 +B)*C¥ 72256 e ™7 <e(B)—0
=1

when f— oo independently of A.
This finishes the proof of the main theorem.

3. Infinite Range Interaction Model

We construct here a model on the square lattice with an infinite range two-body
interaction decreasing at infinity sufficiently fast. We follow the scheme of the
previous section. Namely, in Sect. 3.1 we describe our model. In Sect. 3.2 we
formulate the main theorem which is proven in Sect. 3.3.

3.1. Description of the Model

The description of the set of particles which can occupy the sites of the lattice is
based on Robinson’s tiles. We use the four parity markings shown in Fig. 2. Again,
the crosses are combined with the parity marking at the lower left. The parity
marking at the upper right constitutes a tile by itself or is combined with a cross.
Two remaining parity markings constitute tiles by themselves. Taking into
account four cross orientations there are all together eleven different tiles. Now let
us define the interaction. If the parity markings of two adjacent tiles do not match,
they contribute positive energy E, to the system. Then we introduce an interaction
between crosses. Two crosses at a distance 2%, n=1, 2, ... contribute the positive
energy E,, if they are not in the same relative orientation as any of the two adjacent

crosses in Fig. 3. Two crosses at a distance 2”‘/5, n=0,1,2,... contribute the
positive energy E,, . ; if they are in the same relative orientation as two diagonally
adjacent crosses in Fig. 4, Finally, if the lattice site is occupied by a cross, then a

lattice site at a distancé 2"]/5, n=0,1,2, ... and facing the cross in the way the dots
face the nearest crosses in Fig. 3 should be occupied by another cross; otherwise
the positive energy contribution is E,, . All other interactions are zero. E,’s
satisfy the following relation:

12 3 22+4.20.E,<E /2, k=0,1,2,..., )

i>k

hence the interaction can decrease at infinity arbitrarily fast. It is easy to see (cf., the
proof of Proposition 3.2) that the ground states (without line defects) of this
interaction are exactly the g-periodic ground states of the previous model. Namely,
let G be one of these ground states. G defines in a natural way an infinite sequence
of square lattices IL, CIL=7Z? with the lattice spacing 2", n=1,2, ... such that if
ae L, then G(a) is a cross. Moreover, the pattern of orientations of crosses on each
lattice is as in Fig. 3. If the pattern is chosen on the lattice IL,, then IL,, , ; consists of
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the sites represented by dots in Fig. 3 (the centers of the squares whose vertices are
occupied by crosses). Notice also that not all the bonds are “satisfied”; the energy
of the ground state is positive, not zero as in the previous model.

3.2. The Main Theorem

Theorem. There is an increasing sequence of inverse temperatures f,, such that if
B> P, then

(Préy¢<e(f)—»0 when p—co,
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where a€ 1L, and PrS is the projection on all configurations which are different from
G(a) at a.

Corollary. If B> B, there are at least (2"**')? extremal Gibbs states.

3.3. The Proof

To prove the theorem we introduce first a slightly different notion of contours.
Let XeZ§,

1.(X)={aeL, such that there is belL
and U(X(a), X(b))2 E,,
and there are no crosses between
a and b if dist(a,b)=2% k=0,1,...,n
and there are just crosses between
a and b if dist(a, b)=2%/2, k=0,1,...,n—1
and X(a), X(b) are crosses}.

[One may consider the alternate many-body interaction model in which the
interaction has all the restrictions in the definition of y,(X). Everything goes
through exactly in the same way and is technically much easier.]

Now let us introduce some other notions:

ly(X)|=card{(a, b):a,bey,(X) and U(X(a), X(b))>0},
V(@)={belL:dist(a,b)<m},
LX)= U V@),

aeyn(X)

I(X) can be decomposed into the finite number of connected components called
the contours of the configuration X. Each such contour, «, divides the lattice into
one infinite connected component Ext,, called the exterior of the contour, and the
finite number of disjoint connected components Int;a, called the interiors of the
contour, and the contour itself. A contour which is not contained in the interior of
any other contour is called an exterior contour. Denote by I,¢(X) the set of the
exterior contours of the configuration X.

Proposition 3.1. If X € S and X(a)+ G(a), where a€lL,, then a belongs either to
one of the exterior contours of the configuration X or to the interior of one of the
exterior contours.

Proof. Use induction with respect to n. Walk on the lattice I, and compare the
proof of Proposition 2.1. [

Once again

oo}
PrHisy Y P,
=1 ala]=¢
where the summation is over all connected sets o of IL such that a belongs either to
this set or to its interior. P(e) is the probability of a being the exterior contour for
some configuration in Z§.
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Now we construct a Peierls transformation.
T: %5 ->%5; X={xeZ$:ael3(X)}.
T(X)=X*, where X* is defined as follows:
X ﬁam =Xipx,» X |t =G,  Xfaa=TaX Jnt;as (&)

where i runs over all the interiors of « and 7, are lattice translations such that the
orientations of crosses of X* are the same as of G on the part of every lattice IL,
k=1,2,...,n contained in Int;x, and the parity markings match.

Proposition 3.2.

|odE,

H(X*|6)S H(XI®)— =

Proof. The cardinality of « is bounded above by (2 - 2"*!)?|a]. The presence of 2* in
(4)is caused by the Int;o-interiors of « and the corresponding translations 7,. 12 in
(4) stands for the four directions on Z2 and three different kinds of interaction. X *
is constructed stepwise. Using the procedure described in (5) we remove the
contours of X contained in o and involving the nearest neighbor interaction. Then
we remove the contours intersecting o and involving the interaction of strength
E,E,,... up to E,,, one energy level at a time. The proposition follows from
4. 4

At the same time the proposition proves that the g-periodic configurations
described above are really the only ground states (without line defects) of the
system.

The kernel of the Peierls transformation is bounded above by

(2n+ I)M 1 1(2"* 1.2)2-2af
for exactly the same reasons as in Proposition 2.2.
The number of connected subsets « of Z? such that the fixed site of the lattice

belongs either to this subset or to its interior, and in addition « is a contour of some
configuration, and |«|=¢, can be bounded above by

[A(n) +Bm)*C()* ™2,

where A(n), B(n), and C(n) depend only upon n. Again we use here the result of
Holsztynski and Slawny [7].
This shows that

CPrEYGS 3 LAG) +BONT Clny™ 2 (21 1107 2% 21 e,
£=1

and hence the main theorem of this section is proven.
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