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Abstract. A character-valued index is a generalization of the ordinary Dirac
index to manifolds with nontrivial automorphism groups. A simple proof of the
corresponding fixed-point theorem is presented which uses the techniques of
supersymmetric quantum mechanics. This theorem relates the character-valued
index to a topological integral of curvature forms on the fixed-point space of the
automorphism in question.

1. Introduction

In recent years, topological methods have come to play an increasingly central role
in theoretical physics, particularly in models with more than four spacetime
dimensions. One of the most remarkable applications of topology to field theory is
the Atiyah-Singer index theorem for the Dirac operator, [1] which describes the
chiral content of the fermionic zero-modes in a particular background field
configuration, containing both gravitational and gauge fields. This theorem
contributed to an understanding of anomalies [2] and in particular how instantons
can lead to the breaking of anomalous global symmetries [3]. Index theorems for
families of field configurations [4] have improved our understanding of anomalous
gauge symmetries.

The formal structure of topological indices is familiar to physicists in the form of
Witten's supersymmetry index [5] Tr(— 1)F. It measures the difference in the
number of bosonic and fermionic states of zero energy, and, if it is not zero, indicates
that supersymmetry cannot be spontaneously broken. Many authors [6] have noted
the correspondence between the Witten index for supersymmetric quantum
mechanics models and the Dirac index. This correspondence leads to a simple way of
deriving the Atiyah-Singer index theorem and other related results.

Index theorems are particularly important in models in more than four
spacetime dimensions. The spacetime then takes the form M = M4 x K, where M4 is
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four-dimensional Minkowski spacetime and K is a compact internal space. The
index of the wave operator on a particular type of tensor field on K then determines
the number of corresponding massless fields. The character-valued index is a
generalization of the Atiyah-Singer index to the case where K has a nontrivial
automorphism group G [7]. In the context of higher-dimensional theories, the
corresponding index theorem will determine how the massless fields transform
under G. This was discussed for continuous symmetries in [8] and this paper
generalizes that analysis to the case of discrete groups G.

2. The Character-Valued Index

All topological indices contain a number of features in common, and it is useful to
establish a general formal framework. On a particular Hubert space V, there is a
hermitian operator Q whose square

Q2 = A (2.1)

is positive semi-definite. Usually, V is the space of tensor fields on a manifold K and
A is the Laplacian for those fields. In addition, there is an operator Γ which
anticommutes with Q,

ΓQ=~QΓ, (2.2)

and whose square is the identity Γ2 = 1. Γ has eigenvalues ± 1, and separates the
Hubert space V into two subspaces V± defined by

ΓV± = ± V±. (2.3)

By (2.2), Q maps these subspaces into each other Q:F+<->F_, and therefore splits
into two pieces Q± which act on the subspaces V± which act on the subspaces V±

respectively:

Q+:V+^V_, Q_:F_h+K + . (2.4)

These two operators are formally hermitian conjugates Q + = Q*, up to questions of
whether the domain of one coincides with the range of the other. Noting that
Q\ =Ql = 0 a n d β + ρ _ + β _ β + = Δ, we find that Q±Δ = ΔQ±9 i.e. Q± preserves
the eigenvalues of A.

Vectors v in V with positive (i.e. nonzero) eigenvalues of Δ are paired by the
action of Q+ for every such vector v + satisfying Γ\+ = + v + and Δ v + = λv + Φ 0 the
vector v_ = λ~il2Q + y+ is its uniquely defined partner. For zero-modes of Δ, this
argument breaks down. If Δ v + = Q2v + = 0, then we must have Q+v + = 0. The zero-
modes of A split into two types, those in V+ and those in F_, or more precisely those
in ker (Q +) and those in ker (Q _), where ker (Q+) denotes the kernel of the operator
g ± , the subspace of V± which Q± maps to zero. The index of Q is simply the
difference in the dimensions of these two vector spaces

I(Q) = dim ker (Q+) - dim ker (Q _). (2.5)

This situation is formally identical to the algebra of supersymmetric quantum
mechanics, where Q is the supersymmetry charge, Q2 is the hamiltonian, and
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Γ = {— 1)F is the operator which counts fermion number modulo two. The
defining property of (— 1)F is that it anticommutes with all fermionic operators,
including the supersymmetry charge.

Familiar examples include the Dirac index and the Euler character. For the
Dirac index, V is the space of Dirac spinors on a Riemannian manifold M of
dimension d = 2k, Q is the Dirac operator Ίp, and Γ is the chirality operator
^Jili'-ld- For the Euler character V is the space of differential forms on
M,Q = d + d* is the sum of the exterior derivative operator and its adjoint, and
Γ = (— \)p for p-forms, + 1 for even-forms and—1 for odd-forms. The Euler
character may be written as

Σ > (2.6)
P

p t hwhere bp = dim (Mp) is the p t h Betti number, the dimension of the space Hp of
harmonic p-forms.

Formally, we may write the index (2.5) as

/(β) = Tr(Γ). (2.7)

In general the right-hand side of (2.7) is not well-defined since it is the difference of
two infinite quantities, the dimensions of V+. The vectors with positive λ can be
paired to give a canceling contribution to the trace, but (2.7) does not detect this. To
make the right-hand side well-defined, we regulate it

I(Q) = Tv(Γe^Δ). (2.8)

If the spectrum of A is reasonably well-behaved, then the right-hand side of (2.8) will
be finite and the contributions from vectors with nonzero λ will cancel, leaving only
the contribution of the zero-modes (2.5). This equation forms the basis for proving
the Atiyah-Singer index theorem [1],

It remains only to show that this index is a topological invariant in the sense that
it does not change under continuous changes of parameters in Q. This follows
because the vectors with positive λ occur in pairs. The most that can happen as the
parameters in Q are varied is that vectors can move towards or away from zero λ in
pairs. The net difference (2.5) is unchanged. The key technical assumption in this
argument is that the spectrum of A be discrete.

The character-valued index is a generalization of this. Suppose that there is a
group G of symmetries of V and Q; the group elements gsG commute with Q and
Γ'-gQ = Qg and gΓ = Γg. The vectors of V± transform in complete representations
of G and, for nonzero A, these representations come in pairs with opposite
eigenvalues of Γ. We may then define the character-valued index as

Ig(Q) = Trker(Q+)(g)-TrkeiiQJg). (2.9)

The ordinary index (2.5) is a special case of (2.9) when g is the identity.
The most familiar example here is the Lefschetz number, which is the character-

valued index of the DeRham complex:

(2.10)
p

where χp(g) = TrH P (g). The corresponding index theorem is just the Lefschetz fixed
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point theorem.

L(g) = χ(Mg)y (2.11)

where χ{Mg) is the fixed-point space of g, the submanifold of M left fixed by g.
Again, (2.9) is formally equivalent to Ig(Q) = Tr (Γg\ and when properly

regulated, this gives

IJ&) = Ίτ{Γge-fiA). (2.12)

This formula will for the basis for the proof, given below, of the character-valued
index theorem.

3. Supersymmetric Quantum Mechanics

To calculate these indices, we define a supersymmetric quantum mechanics model
whose supersymmetry charge is the operator Q in question. This method has been
used before [6] to calculate the Atiyah-Singer index and to calculate a special case
of the character-valued index [9].

We start with the superspace of N = \ supersymmetric quantum mechanics,
defined by a single bosonic time coordinate t and a single real fermionic coordinate
θ. A real scalar superfield has the form

Φ(t9ff) = x(t) + iθψ(t)9 (3.1)

where x is a real scalar (commuting) field and φ is a real spinor (anticommuting) field.
The corresponding free Lagrangian is

L = ̂ dθDΦD2Φ =±x2 +^φφ, (3.2)

where D = d/dθ — iθ(d/dt\ is the superspace covariant derivative and D2 = — i(δ/dt).
The N = \ supersymmetric quantum mechanics of a particle on a manifold M,

alternatively the supersymmetric nonlinear sigma model reduced to a single time
dimension, is described by the modified lagrangian

L = - i μθgij(Φ)DΦiD2Φj = iflfj/x'x̂  + iφ%φj\ (3.3)

where g^Φ) = ̂ t /x) + ίθφkdkgij(x) is defined by its Taylor series expansion in
powers of θ and Dtφ

ι = φi + Γ)kx
jφk is the covariant time derivative for spinor fields.

Here the x1 are identified with the coordinates on a Riemannian manifold M and the
φ* are identified with the tangent vector coordinates; gtj is the Riemannian metric
and Γ)k is the associated Riemannian connection.

This system has a single real supersymmetry charge Q = d/dθ + iθ(d/dt) satisfy-
ing the supersymmetry algebra Q2 = i(d/dt) = H. It acts on Φι as

ξQφi=ξ{β+iθJt){χi+iθφt)=ίξφί ~ m±i (3 4)

leading to the transformation laws

dp'-iξψ1, dξφ
ι=-ξx\ (3.5)
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where ξ is an anticommuting c-number which parameterizes the transformation.
To quantize this system, we first change variables φι = eι

aφ
a, where ea = eι

a(d/dxι)
is an orthonormal basis in the tangent space: efl e6 = δab. After quantization the φ's
are identified with y-matrices and this change of variables corresponds to the
procedure in general relativity of defining the spin structure in terms of a vierbein
yι = eι

ay
a. In terms of these variables, the lagrangian becomes

/

where Dtφ
a = φa -f ω^x'i/^ is the covariant derivative in terms of the new variables,

and ofbi = eα(Vf efc) = eajelΓJ

ki -f e^d^l is the connection in the orthonormal basis.
The quantization of this system is complicated slightly by the fact that the

fermionic momentum and coordinate variable are identified,

dL ί
- .-^Sabφ

b. (3.7)

This leads to a set of (fermionic) first-class constraints

Ca = Πa + Uabφ
b = 0, (3.8)

2

and according to the quantization method of Dirac [10] the canonical (anti)-
commutation relations are modified by

Σ J + (^"1)βbi:Cfc,B] + , (3.9)
ab

where Mab = [_Ca,Cb]± is the matrix of naive (anti)commutators between the
constraints and [,]± denotes the commutator or anticommutator as appropriate.
For the case at hand, this takes on a particularly simple form since Mab = δab. The
only relation which is changed in going to the Dirac bracket is the anticommutator
{φ\φb}=δab

Using Noether's theorem the supersymmetry charge is determined to be

Q= -φ%gijXj = -ψ%U~l^δbdω
d

ciφψ\ (3.10)

Identifying the ψ's with Dirac y-matrices φa = (l/s/2)ya and representing pt =
- ί(d/dx% we see that the supersymmetry charge is just the Dirac operator on M:

where Dt = dt + \δabω
b

ciy
ayc is the covariant derivative for tangent space spinors.

If the dimension d = 2k of M is even, then the Clifford algebra of the y matrices
contains an independent matrix Γ = ikyιy2 •/ analogous to y5 in four dimensions,
satisfying {Γ,/} = 0. In terms of φι this corresponds to the operator ( - \)F which
counts the fermion number modulo 2 and satisfies (— Vfφ1 = —φ\— 1)F, as well as

Q ( - i ) F = - ( - i ) F β .
This allows us to separate the Hubert space V into bosonic and fermionic

subspaces VB and VF, which correspond to the spaces V+ and F_ of positive and
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negative chirality spinor fields on M, respectively. We may then identify the Dirac
index / φ ) = Tr(Γ) with the Witten index T r ( - 1 ) F , although as above some
regularization is required to make this well-defined, usually of the form
Tr((— 1 ) ^ " ^ ) . As before, this index is a topological invariant, invariant under
continuous changes in parameters. In the next section we will calculate the
regularized index Tr ((— 1 )Fe " βH) as a Euclidean functional integral and express it as
a topological integral over M.

If M has an isometry b9 then we can calculate the character-valued index
Ib(Ίf>) = Tτ((—l)Fbe~βH) as a functional integral with twisted boundary conditions:

x(t = β) = bx(t = 0), φ(t = β) = bφ(t = 0) (3.11)

This method was described in [9], Unlike the techniques in [11 and 6] which rely on
the existence of a Killing vector field, and therefore work only for continuous
symmetries, this method applies to discrete symmetries as well.

If d is odd, then ( - Vf is a new operator which extends the naive Clifford algebra
of Dirac matrices

\-yι 0/ ι -1

The two vector spaces VB and VF are then identical, and the index, as well as the
character-valued index, vanishes.

3.1 Spinor Superfields. The Dirac index described above applies to a spinor
interacting with a purely gravitational field. To calculate the Dirac index with gauge
interactions as the Witten index of a supersymmetric theory, we need to introduce
spinor superfields

S(t, θ) = η(t) + θφ{t\ S(t, θ) = ή(t) + θφ(t). (3.13)

The lagrangian for the noninteracting system is

L = J dθSDS = iήή + φφ. (3.14)

Here φ is an auxiliary field, and can be eliminated through its equation of motion
φ = 0.

To describe gauge interactions, we add a vector index a which belongs to a
representation R of the gauge group and a gauge field Aa

ib(x) on M, in addition to the
original lagrangian (3.3). The fields ηa and ήa will then be spinors with values in the
vector bundle E in the representation R associated to the gauge potential A. The
addition to the lagrangian which describes these interactions is

L' = J dθSDAS = ifjDtη + φφ + iήφιφjdιAjη — φφιAtη — ήφιAιφ, (3.15)

where DA = D+ iAι(Φ)DΦι is the gauge covariant superspace derivative,
Af(Φ) = A^x) + iθφjdjAi(x) is defined by its Taylor series expansion in #, and
{Dfl)a = ήa + iAΊbφ

ιηb is the gauge covariant time derivative of T/. 0 remains an
auxiliary field, and can be eliminated by its equation of motion φa = φιAa

ibη
b to give

the lagrangian

(3.16)
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The supersymmetry transformation is

ξQS = ξ(Jt + iθjXη + θφ) = ξφ- ίθξή (3.17)

or

δξη = ξφ = ξψiAiη, δξή = ξφ=ξήψiA, (3.18)

Given this gauge coupling to the fermionic superfields, the supersymmetry
charge is modified by the addition of a term

Q-+Q + ηAιΨ% (3.19)

After quantization, the supersymmetry charge is again identified with the Dirac
operator, this time in the presence of the gauge connection A and the metric g,

j2Q = i1J)(A,g). (3.20)

Consider the Hubert space Vγ consisting of states with a single ^-fermion, i.e.
states annihilated by all but one of the operators ήa

9 but imposing no constraints on
the number of ̂ -fermions. These consist of spinor fields on M with an extra index a
in the representation R of the gauge group G with connection A. On Vl9 the
supersymmetry charge is precisely the Dirac operator for spinors in this
representation.

The index of this Dirac operator can then be identified with the Witten index
restricted to the subspace V{.

/(9>(Λflf)) = T r ( ( - l ) F P 1 ) > (3.21)

where Pί is the projection operator onto the space Vv Given an element b of the
(global) symmetry group G of the vector bundle £, we may also define the character-
valued index Ib(Ίj)(g9A)) = Tτw (b) — Trv_(&), whose contribution comes entirely
from the zero-modes as before, and this will correspond to the character-valued
Witten index restricted to Vv That is,

IbmA,g)) = Tv((-l)FbP1). (3.22)

The symmetry b need not be merely an isometry of M, but may contain a
compensating gauge transformation as well, i.e. an automorphism of the fibre Ex.
This calculation was done in [9] for N = 1 supersymmetric quantum mechanics,
where the vector bundle E is the same as the spinor bundle, and is generalized here
for arbitrary vector bundles. In the next section, we will calculate the properly
regulated version of the right-hand side of (3.22) as a Euclidean functional integral.

4. Evaluation of the Functional Integral

The regulated Witten index Tr((— l)Fe~βH) can be calculated as the Euclidean
functional integral with periodic boundary conditions for both fermions and bosons
[12]. The ordinary Euclidean functional integral

(4.1)
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is calculated by imposing periodic boundary conditions on all boson fields and
antiperiodic boundary conditions on all fermion fields. Including the factor of (— 1)F

converts the boundary conditions for the fermions to periodic ones. It is not
surprising that these boundary conditions are supersymmetric, i.e. the same for
fermions and bosons.

The Euclidean lagrangian is derived from the real time one by replacing H ->
- d/dt, Q -* d/dθ - θ(d/dt)9 and D -• d/dθ + θ{d/dt\ and by adjusting some phases in
the lagrangian superfϊeld

LE = jdθ(^gij(Φ)DΦiD2Φj - S(D + iA^DΦ^S) (4.2)

= iθtji**** + Φ%ΦJ) + ηθtη - ^ήψψFijη.

The covariant time derivatives are as in Sect. 3.
Since the resulting functional integral is independent of β9 it is convenient to take

the limit β -» 0, when many higher-order interaction terms drop out from the action.
As β -• 0 the penalty for time variation in the bosonic fields becomes larger and
larger, and the nonconstant boson modes are confined to narrower and narrower
ranges; they are then approximated better and better by tangent space variables.
This allows the considerable simplification of describing their contributions to the
functional integral as integrals over flat vector spaces. The two main problems in
calculating the functional integral are to identify the leading terms as β -» 0 and to
determine the proper integration measure.

We will first consider the problem without external gauge fields, and determine
the normalization for the functional integration over the nonzero modes. This can
be determined from the free Euclidean action, which reads

Expanding the fields in Fourier components

co

*' = 4 + y/β Σ (< c ° s (2πnt/β) + b'n sin (2πnt/β)\
ί

Σ (2nnt/β)), (4.4)

the action reads

S£ = Σ Σ (*2»2(an2 + K2) + π < < ) . (4.5)
i n = l

The factors of ^fβ and y/iβπβ have the effect of removing all jS-dependence from the
integration measure and setting the zero-mode measure to one.

Integrating over a\, b[

n, 4, and dι

n for a fixed n and i produces a factor of 1/n, so
inserting the proper normalization factor Nn = n the functional measure can be
written
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Π
l

(4.6)

The next step is to introduce normal coordinates. Choosing a point xeM as the
origin of coordinates, we may define a system of coordinates in which

flfy = δy- iΛ i y I X
k x ' + O(x3). (4.7)

the procedure will be to integrate out first the variables α^fe^cj,, and dι

n, then the
fermionic zero-modes φι

Oi all of which are tangent-space variables, and finally to
integrate over the coordinates x^. Since the functional integral is invariant under
changes in coordinates, we may perform the tangent space integrations using
normal coordinates centered at the corresponding point in M. This means that we
may set x'o = 0 when performing these integrations. The higher order terms in x1

which appear in (4.7) will then drop off as powers of β when β-*0.
The interaction lagrangian in normal coordinates is

= ±Rijklψψxkxι + O(ψ2xH). (4.8)

This gives a contribution to the action of order β unless fermionic zero-modes are
included, and the only surviving contribution in the limit β -> 0 is

^ ^ « * * * ' ( 4 9 )
where Ωkl = ^Rijklφ

i

oφ
J

o can be interpreted as the curvature 2-form, provided we
identify the fermionic zero modes with the basis 1-forms: φi

0<r^dxί. The contribution
of Lj to the action integral is

β I oo

\LIdt = -—Ωkl y πn(ak

nbί - aft*). (4.10)
δ 4π M

n^1

The variables cι

n and iι

n have no interactions, and their functional integral
remains trivial. To evaluate the remaining factors in the functional integral, we first
specialize to the case where Ω can be put in skew-diagonal form:

0 Ωx

-Ωx 0

0 Ωn

-Ω» 0

(4.11)

Considering only the first pair of coordinates and performing the integration for
each n by completing the squares, we arrive at the result

0
(412)

1 \4π2n)

This has a power series expansion in Ω{.

fl,/4π = 1 +

r

2\4π
( 4 1 3 )
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with the product being the wedge product on forms. This series terminates because
there are no higher forms than d-forms, or equivalently because of the Fermi
statistics of the φι

0. Integrating over the fermionic zero-modes projects out the
coefficient of Πφ^ in the integrand, i.e. the top form (the n-ϊorm piece with the
highest n), which is proportional to the volume form on M. For the form (4.11) of Ω,
the index is

ΩJ4π
(4.14)sinh(ΩJ4π) top form.

In four dimensions this reduces to

(4.15)

This is the correct result even when Ω does not have the form (4.11), a result of the
splitting principle [13].

Considering more general forms for Ω, rescaled to absorb the overall normaliz-
ation factor, the contribution to the action from the bosonic modes of fixed n is

= π2n2(ai

n bι

n) (4.16)

4π2n
/

Integrating over these modes produces a factor of det~ 1 / 2(l + A), where

(4.17)

In any particular case, this integral can be expanded in powers of A:

'A2 A4

- 1 + ^Tv A2 + ^(Tr A2)2 + ^Ύr A4 + •••

1 „, 1

(4.18)

The important fact is that it is a sum of traces of products of curvature forms, i.e. a
polynomial in Chern classes. The splitting principle then states that to calculate this
polynomial, we may specialize to the case evaluated explicitly above, where the
vector bundle in question splits into a sum of plane bundles.

In four dimensions, (4.18) yields a top-form coefficient of

! ^ , (4.19)
192π2

which agrees with (4.15). In what follows, I will always use the splitting principle to
calculate the functional integrals explicitly only in the relatively simple case where
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the vector bundles in question split into sums of line bundles, i.e. I will assume that
complex vector bundles split into sums of complex line bundles. The more general
expressions, when not explicitly written down, can be found by simply replacing
sums over vector indices with traces, and products with determinants.

4.1 Including Gauge Interactions. There are two equivalent approaches to comput-
ing the Dirac index in the presence of external gauge fields from supersymmetric
quantum mechanics. The first is to implement the projection onto Vί9 the space of η-
fermion number 1, directly, i.e. to calculate the functional integral without assigning
any dynamical significance to the ^-fermions. We simply treat the η fields as
constants and take the trace of the action functional (the kinetic term vanishes) in the
one τ/-fermion subspace Vv The second is to assume dynamical ff-fermions, i.e. to
include a functional integral over η, and to project onto the subspace Vv The second
method is a bit more subtle, but provides special insight in the case the /7-fermions
are in a spinor representation R.

Adopting the analog of normal coordinates for the gauge connection

Aι=- ^Ffμj + 0{x2\ (4.20)

where F J = Fi3{x = 0), sets the connection form A to zero at the origin, and the
connection becomes of order x. The relevant term in the lagrangian then becomes

i
iηAμ'η = -fjFfflx1^ + O(ήηx2x\ (4.21)

and provides a contribution to the action of order β, which drops out in the limit
β -+ 0. The only interaction term which does not disappear as β -• 0 is

Sj^—ήFη. (4.22)

Where F = ̂ Fijφoφ^ is identified with the curvature 2-form of the connection A9

provided we identify dxi<^φi

0 as before. Note that on subspace Vί9 whose vectors
carry a gauge index in the R representation, the effective action acts as the matrix F,
i.e. ήFη<-+F. The full functional integral then reads

Ω J 4 π (4.23)
Vsinh(ί2n/4π) top form.

This agrees with the standard result for the Dirac index on a two-dimensional
manifold

/(5>μ,flf))=-^-fTrΛF, (4.24)

and on a four-dimensional manifold

d ^ (4.25)

Proceeding with the second method for calculating the Dirac index, we need to
do two things. First, we need to expand the η fields in Fourier modes and determine
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the proper integration measure. Second, we need to write down the projection
operator P1 onto the subspace Vγ with a single ^/-fermion.

We expand the fields η and ή in Fourier modes as

tf= Σ η"ne
2™w, ήa= Σ nnae-2πintlβ- (4.26)

n— — oo n = — oo

The free action for these modes is

μ Σ η % (4.27)
0 n

and the integral over modes with fixed n and a gives

J dήandηa

ne-2™^n = 2πm, (4.28)

so with the proper normalization factor of l/2πίn, the functional measure for the η-
fermions becomes

(4.29)

The ^-fermion number operator is

where c = dim (R)/2 is a normal ordering constant. The projection operator P1 for η-
fermion number one is

Pί=N)π^eiλ<N«-1\ (4.31)
o 2π

where N is a normalization factor to be determined below. The calculation proceeds
as follows: First we perform the functional integration of the η-ΪQrmions. Then we
integrate over λ to project onto the Nη=l sector, identifying the proper
normalization factor JV. Finally, we will integrate out the ^-fermions and the
nonzero modes of x, leaving us with an integral over M of Chern classes of both the
spin bundle and the gauge vector bundle.

Again, the interaction term which will survive as β -> oo is

(4.32)

First we assume F£ = Faδl (the splitting principle) and write the effective action for
the 77-fermions, including the term — iλ(Nη — c) which comes from Pί9 as

Sefffa) = Σ nankin - iλ + ΈJ2π)ιfn. (4.33)

Integrating and reinserting the factor of eicλ, this yields

(4.34)
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The terms proportional to eiλn correspond to the sector with n //-fermions. Note that
each factor of eiλ carries an extra minus sign, indicating that adding an η-ΪQτmion
changes the sign of (— 1)F, as expected. The sector with no ?7-fermions should give a
factor of one in order to reproduce the result (4.14), leading us to identify the
normalization factor

jV = <TT r F / 4*. (4.35)

Projecting onto the subspace Vγ then reproduces the result TrRe~F/2π in (4.23) (with
an extra minus sign from the fermion number of the η fields, which was ignored
above).

4.2 The Character-Valued Index. To calculate the character-valued index, we first
specialize to the case where there are no background gauge fields. Inserting the
factor oΐb in the functional integral amounts to integrating over configurations with
twisted boundary conditions rather than simple periodic ones.

As β -> 0, paths which go from a point x to its image bx under b will have their
contribution to the functional integral suppressed by an exponential factor of

e-d2(χ,bx)/β^ w here d(x,bx) is the distance between x and bx, unless this distance is
zero, i.e. unless x = bx is a fixed point of b. The functional integral is dominated by
the contribution from the fixed point space Mb.

The neighborhood of Mb in M is well approximated by the normal bundle
NM(Mb) to Mb in M. On this normal bundle, b acts as a simple rotation, and can be
block-diagonalized to rotate pairs of coordinates xr and xr through an angle θr:

( 4 3 6 )

In terms of the complex variable Xr — xr + ix\ this transformation can be written

b\Xr\-+eiθrXr. (4.37)

The transformation of the fermionic variables, which describe tangent space
coordinates, is identical:

φr\ fcosθr -si

*vrU*
In terms of complex fermionic variables Ψr = φr + iφr this becomes

b: ψr^e

iθrΨr. (4.39)

For a discrete symmetry b there is some integer n such that bn = 1, and we must
have nθr = 2πm for some integer m. If b = eiλT belongs to a U(l) group generated by
T with e2πιT = 1, then we must have θr = mλ for some integer m.

Imposing the twisted boundary conditions

Xr(β) = eiθrXr(0), Ψr(β) = eιθr Ψr{0) (4.40)

simply shifts the Fourier expansion of these variables

00 GO

J Σ {ar

m + ib'm)e«2™^,Ψ'= Σ {dm + iά'm)eV™^. (4.41)
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The kinetic piece of the action then becomes

I j dt(x'2 + xfί) =
0

f t(ψψ + ψψ~) = - Σ(2ππ + θr)cr

nd
r

n, (4.42)
0 "

and the properly normalized functional measure reads

^ (4.43)

In addition to the interaction terms for the base-space variables, there is an
additional contribution from the normal-bundle variables which remains important
as β->0. It is

^ oψ
j

o(Rirrx'xf + Rψrx
fxr) = ^Ωr(xr*f ~ xrn (4.44)

where Ωr = iΨoΨjoRijrr is the curvature 2-form on the normal bundle, specialized to
the case where the normal bundle can be split into plane bundles. The contribution
to the action of this interaction term is

^l^X^ - x'xr) = l-^Σ(2πn + θr)(ar

n

2 + K2) (4.45)

Including the integral (4.14) over the base space, the functional integral becomes

ΩJ4π _ 1

άb n sinh (ΩJ4π) V 2ι sin (0r/2)
(4.46)

1 top form.

where ϋr = θr -h (ί/2π)Ωr In the special case where there are only isolated fixed
points, this reproduces the standard expression [14]

IM.Q))= Σ Π J
fixed pts. r

4.3 The Character- Valued Index with Gauge Interactions. Since ηa and ήa are vector
space coordinates, b will simply rotate the 77-fermions among themselves. Since these
are complex variables, a rotation here is equivalent to multiplication by a phase:

b:ηah>eiθaηa, ήa^e~iθaήa. (4.48)

This first method for dealing with the f/-fermions allows the straightforward
generalization of simply inserting the operator b into the group trace. Including the
factors in (4.46) this gives

- f Yc-trΠ ΩJAπ Π 1 Ϊ449)
άbr Vsinh(ββ/4ίr)1

r

12isin(0",/2)' l ' ;
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where Sa = θa — (i/2π)Fa and we have assumed that the gauge vector bundle splits
into complex line bundles as indicated.

The second method for dealing with ?/-fermions produces the same result.
Inserting b into the functional integral imposes twisted boundary conditions on the
/7-fermions:

^β(j8) = e i V(0), ήa(β) = e-iθaήa(O), (4.50)

and shifts their Fourier expansions to

η° = Σ nyv™ + Θ«W, ηa = £ ήane ~ «2πn + θ ^ . (4.51)
n n

The kinetic term in the action for η then reads

+ θa)i\ann

a

n. (4.52)

(4.53)

0

Again, the only interaction piece which does not vanish as β->0 is

L i F V

The resulting ί?-fermion effective action is

Sfffo) = Σ ΨΛ2πm + iθa + FJ2π - iλ)ηm. (4.54)

The net effect is to replace — Fα/2π with — iθa — ¥J2π = — iθa, which transforms
(4.23) into (4.49) as expected

4.4 Spinor Representations, Euler Character, Hirzebruch Signature. In the case
where R is a spinor representation of S0(2N) we may calculate the index and the
character-valued index as in the previous section, but in this case there is another,
more interesting possibility. Instead of using fermions in the representation R, which
leads to the indices (4.23) and (4.49), we may use fermions in the Clifford algebra of R.
To distinguish from the previous case, I will denote such fermions by y, indicating
their relationship with the Dirac y-matrices. The resulting indices will differ from the
previous ones in a way which corresponds, in the notation of Sect. 3, to keeping the
same operator Q, but choosing a different Γ.

In the case where R is the same representation as that of the tangent spinors these
indices correspond to familiar topological invariants associated with the deRham
complex on K. The index defined in the previous sections corresponds to the
Hirzebruch signature and its character-valued generalization, the Atiyah-Bott
signature [15]. The index coming from fermions in the Clifford algebra will lead to
the Euler character and the Lefschetz number.

The free Euclidean lagrangian for y-fermions is

L = i£/f (4.55)
i

The y-fermions, like ^-fermions, are real. To quantize them, it is useful to transform
them into a complex basis ηa = \jj2{fa'1 + iy2a) and ηa = \/^/2{y2a~l - iy2a). Up
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to a total derivative, the lagrangian takes the form

L = Σηaή«. (4.56)
a

The representation R can then be identified with the Fock space generated by the
operators ήa, i.e. with antisymmetric products of the complex vector representation
generated by the ηa. In calculating the Witten index, we will be assigning fermion
number to the vectors in this Fock space according to the number of ^-fermions they
contain1. In Eqs. (4.23) and (4.49), on the other hand, all the vectors in the
representation R are assigned fermion number one. This construction therefore
results in a different index from the one calculated above. In the case where the
spinors in R are tangent spinors on M, the resulting index will be the Euler character,
where the earlier construction would have given the Hirzebruch signature.

When using Clifford-algebra fermions for calculating the index, the projection
onto the one-fermion subspace is no longer necessary. The resulting functional
integral is similar to (4.34) but without the variable A, i.e.

IMA,g)) = ί Π - S ^ Π 2 s i n h ( F a / 4 π ) (4.57)
M n smn(ί<y4π) a

for the ordinary index, or

^ ^ (438,

for the character-valued index.
For tangent spinors / the connection is precisely the spin connection and the

curvature is the Riemann curvature. The interaction lagrangian is

When the curvature 2-form has the skew-diagonal form (4.11), this reads

iΩ . . - _ ίX
Άa (4.60)

The eigenvalues ¥a correspond to the skew-eigenvalues — Ωa. The result is a
remarkable cancellation in (4.57), leaving

^Λ (4.61)

where χ(M) is the Euler character of M. For the character-valued index, the
cancellation in (4.58) is equally impressive, leaving

IbW(A, g)) = ί Π ( ~ y1 ) = x(M*y ( 4 6 2 )
Mb n \ 2.U I

1 The separation into rf and ηa may be possible only locally and not globally. Fermion number may not

be well-defined in general, but (— 1)F is
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The reason for this cancellation is that the lagrangian in question has a higher
supersymmetry than before, N — 1 instead of N = \. The fields, relabeled as

φ^φ^ Ϋ^Φί (4.63)

and including the auxilliary fields F associated to / fit into a single N = 1 superfield:

Φι = xi + iθ.φ1, + iθ2ψ
ί

2 + iθ1θ2F
i. (4.64)

The euclidean lagrangian for these fields is

L = hgtβ1** + Φ\Dtφ[ + φ2Dtφ{) + ΪRijklψ\ΨiΨk

2ψ
ι

2. (4.65)

This model has the supersymmetry

δχi = ξ* ψi δΨι= - iξx1 - Γ)kξ Ψj* Ψ\ (4.66)

where ξ is a complex fermionic parameter and Ψi = φ\ + iφ\.
Upon quantization, the states |ω> of the theory are identified with the

differential forms ω on M, the fermionic variables with the basis 1-forms
Ψι\ω) = \dxι A ω> and the supersymmetry charge with the exterior derivative
β|ω> = \dω). The operator (— 1)F is simply (— l)p on p-ϊovms. The hamiltonian is
the laplacian A = QQ* + β*β = dd* -h d*d, so the zero-energy states are the
harmonic forms, and the corresponding index is just the Euler character

Tr((- Vfe-W) = Σ(~ m p = X{M\ (4.67)

where bp = dim (Hp) is the pth Betti number, the dimension of the space Hp of
harmonic p-forms.

The second result above can be restated in the language of forms as

T r ( ( - ΐfbe-*H) = ΣxP(b) = 7&Mb\ (4.68)
p

where χp(b) = TrHP(b) is the trace of b in the space of harmonic p-forms. This result
(4.68) is the Lefschetz fixed point theorem, a special case of the character-valued
index theorem.

The earlier indices (4.23) and (4.49) defined when the fermionic representation is
the one-particle space generated by fermions in that representation, rather than by a
Clifford algebra, is also familiar in the special case of tangent spinors. In this case, the
states in the "gauge" fermion vector space are all assigned fermion number one. This
is as if φ\ were given fermion number one and φ2 fermion number zero, and
corresponds to the chiral symmetry of the lagrangian (4.59)

In the language of forms, this interchanges p-forms with (n — p)-forms, and
implements Hodge duality Q 5 |ω> = |*ω>.

The corresponding index using Q5 in the place of (— l)p is the Hirzebruch
signature, which (4.23) gives as

/π ^ ( 4 7 °)
π)
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the Hirzebruch signature the theorem. The corresponding character-valued index
(4.49) is

J^ (471)

the Atiyah-Bott fixed point theorem [15].

5. Conclusions

When a manifold M has a nontrivial group of automorphisms which extend to
automorphisms of a vector bundle E over M, the Atiyah-Singer index theorem has a
natural generalization, the character-valued index theorem. This index theorem
describes how the zero-modes of the Dirac operator transform under this
automorphism group. This theorem has an important physical application to
theories in more than four spacetime dimensions, where it describes the transform-
ation properties of the massless fields, which in turn restrict the possible interactions
in the low-energy field theory.
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