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Abstract. An explicit formula is derived for the Mumford form on the moduli
space of algebraic curves. According to the Belavin-Knizhnik theorem, this
gives a formula for the Polyakov bosonic string measure.

Introduction

1. Polyakov's String

The quantum bosonic Polyakov string theory is defined by a path integral taken
over random surfaces in the (Euclidean) d-dimensional space IRA The partition
function of the closed string has a perturbation series expansion Z = Σ Zg:

^0

(Y)

Here JV is a fixed compact oriented surface of genus g (= "loop number"), za are
local coordinates on it, x = (xμ) is a map from JV to Rd, γabdzadzb is a metric on JV.

On the space of classical fields (x, γ) a gauge group C tx D acts, leaving the
classical action J(x, y) invariant. It is a semidirect product of the diffeomorphism
group D of JV and of the conformal group C (= real-valued positive functions on
JV). Using this action, we can reduce (1) to a finite-dimensional integral in the
following way. First, the integral over x's is Gaussian, hence it equals (def J 0 y )~ d / 2 ,
where AOy is the Laplace operator on the functions on JV, corresponding to γ9 det'
its determinant without zero modes, regularized, say, by the formula det'JOy

= exp( - ζ'Jβ)). The remaining integration over the space Met JV of y's then reduces,
via the Faddeev-Popov trick, to an integral over Met N/C jx Z), which is the same as
the moduli space of Riemannian surfaces (or complex algebraic curves) of genus g.
As is well known, this moduli space Mg is a complex variety of complex dimension
0 for 0 = 0, 1 for 0 = 1, 3g-3 for # = 2.
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Strictly speaking, this reduction is spoiled by the conformal anomaly: the
regularization breaks the conformal invariance of the quantum effective action.
But the anomaly cancels in the critical dimension d = 26 (cf. [2, 3]), and one has

Z =const f rfvdet/zl2idet/zl0,)-13

? g^2, (2)

where dv is the Petersson-Weil measure on the moduli space, Δ2^ is a Laplace
operator on quadratic differentials, γ is a metric of constant curvature — 1 in a
given conformal class (for g = 1 the formula differs slightly).

2. Results

The main result of this paper (Theorem 6, Sect. 1) is an explicit formula for the
Polyakov measure dπg on Mg, appearing in the right-hand side of (2). Here
"explicit" means "written in terms of the complex geometry of the surface itself
and not in terms of it spectral invariants. Note that certain explicit formulae for the
Laplace operator determinants were given by Ray and Singer [20]. In several
papers, including [5, 21] they were applied to the string measure case. In this
approach, logdet'J is transformed into a sum over lengths of closed geodesies by
means of the Selberg trace formula.

The formula of our paper looks very differently and is of a different nature since
it utilizes the holomorphic invariants and not the metric ones.

One may consider this formula as a generalization to the genus g ̂  2 case of the
well known genus 1 result:

00

n = l

Mi = {τ| |τ| ̂  1, |Reτ| ̂ | , Imτ >0}.

Observe that (3) may be expressed in terms of the theta function,

θ(z,τ)= Σ e

since

_ Z 7 2πiτ,

elπinz+πin2\
n = — oo

= e2πίτ(θ(0, τ)0(l/2, τ)0(τ/2, τ))8 .

3. How to Compute Polyakov's Measure

The computation presented here is based on the results of Mumford [8] and of
Belavin and Knizhnik [7]. Here is a brief summary of their work.

The moduli space Mg is a complex algebraic variety. It has no convenient
global coordinates. However, holomorphic 1-forms on Mg admit the following
nice description: they correspond to the quadratic differentials on the complex
curves, parametrized by the points of Mg. Let w1,..., w3g _ 3 (here g ̂  2) be a basis of
such differentials (depending holomorphically on parameters from Mg)9 and let
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ωί9..., ωg be a basis of differentials of the first kind. Mumford [8] shows, that there
exists a unique, up to a constant multiple, holomorphic function F (depending on
the choice of w{, ω )̂, such that

„ Wi Λ . . . Λ W1/7_α

0 (ωίA... Aωg)

is a global section of the appropriate line bundle on Mg. This section is
meromorphic at infinity (i.e., it is algebraic) and has a pole of order two; moreover,
it has no zeroes on Mg. (Actually these properties are automatic for g7z 3, and for
0 = 2 they should be imposed additionally.)

We shall call μg a Mumford form.
Comparing this with (2), one is lead to believe that "13" in Mumford's formula

coincides with the half of the critical dimension. This was suggested by Yu. I.
Manin and supported by certain evidence from the operator quantization
approach.

In a remarkable paper [7] Belavin and Knizhnik pushed this much further.
Namely, they proved that the Polyakov measure coincides with the modulus
squared of the Mumford form. More precisely, let Wt be a 1-form on Mg,
corresponding to wfJ then one has

W Λ W W A Wo
3g — 3 og—3 /r\

. .-. .13 ( 5 )

Here bar means complex conjugate, and the integral is taken over the Riemann
surface on which ω/s are defined.

Hence to compute dπg it suffices to describe explicitly the Mumford form, a
priori defined only by the implicit global conditions. This is the task we
concentrate upon in what follows.

Note that in [14] dπg already was calculated in this way. This was done with the
help of Faltings' paper [9], which developed in turn the ideas of Arakelov, namely
the Noether theorem for arithmetic surfaces. The formula presented below is
shorter than the one in [14]. We hope also that its derivation clarifies somewhat
the arguments of Faltings.

The expression for the curvature form of the determinant of the Laplace
operator on j-differentials, found by Belavin and Knizhnik and directly implying
(5), appears to be a particular case of the similar formula for the determinants of
Dirac operators on arbitrary compact manifolds, due to Bismut and Freed [17]
(this was pointed out in [18]). The Bismut-Freed result (generalizing the earlier
theorem of Quillen) in the context of complex Hermitian geometry may be viewed
as an exact Riemann-Roch-Grothendieck formula for cu valid on the level of
forms, and not on the cohomology level only. A similar formula for higher cf

remains to be found. We are sure it will help to understand both anomalies in
physics and arithmetic geometry, in the spirit advocated in [19].

4. Superstrings

The Polyakov string has a fermion analog, described in [2, 4]. The critical
dimension for the superstring is d = 10. A computation of an analogue of dπg on the
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corresponding moduli superspaces was done in [6] by means of a supervariant of
the Selberg trace formula. However, the relation with the right Polyakov measure
seems not quite clear, due to two circumstances, a. The superversion of the Belavin-
Knizhnik theorem is not available at the moment, b. One does not know how to
sum up a Mumford superform over different spin structures before taking the
modulus squared. We discuss this question briefly in Sect. 3.2.

5. The Contents of the Paper

Our basic result is, after some preliminaries, stated in Sect. 1.6. Its proof is
presented in Sect. 2. The third section contains some remarks and complements.

Finally, the appendix deals with the following problem. Mumford forms μg are
defined a priori only modulo multiplication by a constant, depending on the genus.
We shall explain how one can normalize all μ̂ 's canonically and simultaneously.
Conjecturally, one should have eβ(2~2g)\μg\

2 = dπg with this normalization.

1. Notation and Statement of Results

1. Calculus on Riemann Surface

Let X be a compact complex Riemann surface of genus #Ξ> 1, or, equivalently, a
smooth projective algebraic curve over C. Marking of X is a choice of a symplectic
basis (aί9..., ag; bu ..., bg) in #Ί(X, Z). This means that (αί5 α,) = (fci9 bj) = 0, (ab bj)
= δij. One can construct such a basis making a classical system of cuts, which turns
X into a polygon with pairwise identified sides (see e.g. [12]).

The space of holomorphic 1-forms (or differentials of the first kind) on X has
the Riemann basis ω l 5 ...,ωg uniquely determined by the conditions f ωj = δij,

Hi

ij = l,...,g. Put J cOj = Tij9 τ = (τij). One has τij = τji, Imτ>0, hence τ lies in the
bi

Siegel upper halfspace Hg. The curve X together with its marking can be
reconstructed from τ up to unique isomorphism.

Let TcC^ be a lattice, generated by columns of τ and Έ9. The Jacobian of X is
the complex torus J = <Ee/T. For each POGX,ZOEJ there is a standard embedding

/ P \
ψ:X-+J, mapping P o to z0, defined by the formula ψ(P)= [ zo+ J ω modΓ,

V Po J
ω = (ωί). If zt is the ίth coordinate on Cff, the T-invariant form dzt on (C9 may be
viewed as a holomorphic (translation invariant) form on J. Any standard
embedding ψ:X^>J induces the same isomorphism between the space of such
forms on J and the space of the differentials of the first kind on X: ψ*{dz^) = ωt.

The Jacobian J classifies the divisor classes of degree zero on X, or,
equivalently, the isomorphism classes of invertible sheaves L on X with c1(L) = 0.
Namely, a sheaf OX(Σ atP^ corresponds to a point Σ a^{P^), where ψ is any
standard embedding.

2. Theta Function

The function θ:<Lg x Hg-+<E is defined by the classical series
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It has a kind of periodic behavior:

θ(z + τn, τ) = θ(z9 τ) exp2π/( — n*z — l/lmhri).

In particular, the zero divisor of θ(z,τ) (as a function of z; τ being fixed) is
T-invariant and hence comes from a divisor Θ on J.

For α = β + τ<5e<C*, put

0[α] 0, τ) = exp2πi(5f(z + ε) 4- \l2διτ$)θ(z + ε + τδ, τ).

If ε, (5 G ί/2Έ9

9 then the class α mod ΓG J is called theta characteristics. The parity of
such α is 4εc>mod2. The function 0[α](z,τ) is even or odd with respect to z
according to the parity of α. The theta characteristics are the second order points
on J. Their total number is 4*, of which there are 2g(20 -1) even ones and 2 (̂20 +1)
odd ones.

3. Moduli of Curves and Moduli of Λbelian Varieties

The complex tori, corresponding to the points τ G Hg, are algebraic. They are called
abelian varieties. The Siegel halfspace Hg of dimension g(g +1)/2 parametrizes the
pairs (A9 (ai9 bj))9 where A is a principally polarized abelian variety and (ai9 bj) is a
symplectic basis in H^A.Έ). Those pairs that come from (Jacobians of) curves
from a closed analytic subvariety Ng C Hg of dimension 1 for g = 1, 3g — 3 for g ̂  2.
Hence for #^4 one has dimΛ/^dimflg.

To the same curve there corresponds many points of Ng9 since we can change
the marking. Such a change transforms τ by an element

This action of Sp(2^,Z) on Hg,Ng is discrete. The space Sp(2g,Z)\Ng = Mg is
called the (coarse) moduli space of curves of genus g, and Sp(2#, Έ)\Hg = Ag is the
(coarse) moduli space of (principally polarized) abelian varieties.

The functions τij9 ί 2y\ are global holomorphic coordinates on Hg. Locally they
are coordinates at any smooth point of Ag (or a covering space of Ag). And,
although the the functions τ o being restricted to Ng9 become dependent (for g ̂  4),
at any point of Ng corresponding to a nonhyperelliptic curve Xx9 one may choose
3g — 3 of τf/s that form local coordinates at x on Ng. To be more precise, let k be the
Kodaira-Spencer map identifying the quadratic differentials on Xx with the fiber of
Ω 1 ^ at x. Then one has k(ωaωb) = (2πϊ)~1dτab. Below we shall describe the
Mumford form in terms of (ωfl), (coaωb). Processing it into the Polyakov measure
one should replace ωaωb by (2πϊ)~1dτab\Ng.

4. Theta Characteristics and Differentials of Half-Integral Weight

For any integer d denote by Jd the variety, parametrizing the isomorphism classes
of the invertible sheaves of degree d on X. This is a principal homogeneous space
over J. For almost all sheaves L of degree g — \ one has ho(L) = h1(L) = 0, More
precisely, the sheaves with h°(L) > 0 form a divisor Θg^ίCJg-i. According to the
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Riemann theorem, there exists a unique isomorphism J->Jg_ί9 compatible with
J-action, which maps Θ to Θg_v It identifies OeJ with the Riemann point
ΔeJg_1. One has 2Δ = class of Ω1 in J2g-2> where Ω1 is the sheaf of 1 -forms onX
(see [12,15]). Note that Δ depends on the marking of X. In this way the set of theta
characteristics transforms into the set of square roots of Ω1. Therefore below we
shall indiscriminately call "theta characteristics" a point in J, or in Jg_ 1 (a half of
Ω1), or else a sheaf Lα together with an isomorphism L®2 A β 1 ,

For any curve X there exists such an odd α (the "typical" odd one), that
h°(La) = 1. We choose one and fix it. We put Ω1 / 2 = Lα and Ω1' = L? 2 / for i e 1/2Z.

5. Distinguished Bases

Using Ω1 / 2 we shall define now certain bases in the spaces of differentials and
quadratic differentials on X. We assume that g ^ 2 and that X is not hyperelliptic, if

3.
a) The basis (φθ9φί,...,φg_1) in ΩX(X). Put

i ^ . (1)
7 = 1

0 - 1

This differential has double zeroes on X. Assume that divφo = Σ 2Pf with

pairwise different P, (this is true for an open dense subset in Ng). We have φ 0 = v2,
where vα is a certain 1/2-differential.

Choose local parameters tj at Pj in such a way that φ 0 = t)dty Clearly, tfP)

( p Y/3 r
= 1 3 ί φ 0 1 , so that ί- are defined up to multiplication by \j\.

\ PJ /

Now the conditions
φj = (δjk + ajktk)dtk + O(tldtk) near P k j , fc = 1,..., # - 1 (2)

define the differentials φ7- uniquely. Put moreover

Clearly, (φy =
b) The basis (w1?..., w3 g_3) in Ω2(X). For ^ = 2 or for non-hyperelliptic X

(0^3) put

•, ^ g - l g- l ) •

The last group of these differentials is defined on an open dense subset of Λ/̂ , where
all αif0_ i are invertible. Off this subset one should change this choice as explained
in Sect. 2. The only important thing is that

W 2 9 - i + j = δ j A ( d t k ) 2 + O(tk

2(dtk)
2) n e a r P k , j 9 k = l,...9g-29

and also a possibility to explicitly present wt as bilinear combinations of ωaωb for
computation of the map k.

We can now write down formulae for μg and dπg.
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6.

Theorem, a) For g^2 the Mumford form is

Λ4W1Λ.,.ΛW3g_3

(φ0Λ...Λφg)
1

b) In the same conditions the Polyakov measure is

dπ, = const |detJ?Γ 1 8 (detImτ)" 1 3 Wi AWXA ... Λ W3g-3 A W3g_3,

where Wt = k{w^), k(ωaωb) = (2πί)" ^ τ ^ .

2. Proofs

1. detRπ^ formalism

Let π:X-+S be an algebraic family of projective varieties Xs, parametrized by
points seS, or, as an algebraic geometer would say, just a projective flat
morphism. Consider an (algebraic coherent) sheaf L on X, flat over S; roughly
speaking, this is a family of sheaves Ls on the fibers of π. If for a certain i the
dimensions of the cohomology groups H\XS, Ls) do not depend on s, then they are
fibers of the higher direct image sheaf R^π^L, and this sheaf is locally free. If this
holds for all /, we may define a "multiplicative Euler characteristic"

d(L): =(g)(detΛ iπ J | IL) (" 1 ) l : = d e t l i ^ L ,
i

which is an invertible sheaf on S.
Knudsen and Mumford in [10] have shown how to define d(L) with nice

properties for any L flat over S, without assuming that dimHXXs, Ls) does not
jump. To be more precise, they proved the following result.

2.

Proposition. For any family of projective varieties π: X->S, any flat sheaf L on X
and any isomorphism of sheaves f: L-^L one can construct an invertible sheaf d{L)
on S and an isomorphism d(f): d(L)->d(L') in such a way that d becomes a functor
with the following properties. (Below equalities mean canonical isomorphisms.)

a) d(L) = detRπ*L, if all Rιπ*L are locally free.
b) d(L) is compatible with base change ( = change of parameter space S).
c) Let E = (Eί,di) be a finite complex of locally free sheaves on S, whose

cohomology is Rιπ^L universally (i.e. after any base change). (See [13] for an

explanation of this Grothendieck's construction). Then rf(L) = (X)(det£I)(~1) ι.
i

d) For any exact triple 0-+U—> L—• L"->0 one has a canonical isomorphism

= d(L/)(x)(i(L//), compatible with exact triples of exact triples and base change.

Note that if a: L-+L is multiplication by a e (C*, then d(a) is multiplication by
aχ(L\ where χ(L) = Σ (~ l)VfcR£π#L. This explains the name "multiplicative Euler
characteristics."
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We refer to [10] for further details. In concrete computations below we shall
not use much more than the following particular case. Assume that Rιπ^L = 0 for
ί ^ 1 and let / = (lt,..., la) denote some free generators of R°π%L. Then d(L) is freely
generated by

d(/) = /1Λ...Λ/βedetΛ°πJ(tL.

If the same holds for the terms L, L\ L" of an exact triple, as in d) above, and if the
bases are chosen in such a way that

then, under the canonical isomorphism d{L) = d{L)®d(L") we have d(J)

3. The Sheaves λt

Now let π: X^>S be a flat family of smooth projective curves, g = genus, Ω = ΩιX/S
the sheaf of relative 1 -forms. Put λt = d(Q®% We have λt = λx _ t in a canonical way
[since, by Serre's duality, d(L) = d(L~ι®Ω) for any invertible L].

The sheaves λt play a crucial role in the Polyakov string measure theory due to
the following facts.

a) Mumford's theorem [8]: there exists a universal isomorphism
1 _ τ6i2 + 6 i + l

Λi+l— Al

This means that we have such an isomorphism for any family of curves, and we
can normalize them in a way compatible with base changes. Such a universal
isomorphism is unique, up to multiplication by a constant, depending on g only,
for g ^ 3 (for g = 2 the uniqueness also holds if certain assumptions on the behavior
at infinity are added).

The uniqueness for g ^ 3 follows from the fact that every holomorphic function
on Mg is constant. To see this, consider the closure of Mg in the Satake
compactifϊcation of Λg. A holomorphic function can be extended from Mg to this
closure by Hartogs' theorem, since at infinity lies a subset of codimension *> 2. But
the closure is compact, hence a holomorphic function on it is constant.

In the appendix we describe a canonical normalization for all g.
b) Theorem on modular families: if π: X-+S is a locally universal family, then

the Kodaira-Spencer map R0πχΩ®2X/S-+ΩίS is an isomorphism. Passing to the
determinants we get λ2 = Ω3g~3S.

The combination of a) for i = ί and b) gives us a universal section
μgeΩ39~3S®λϊi3, called earlier the Mumford form.

c) The Belavin-Knizhnik theorem: Polyakov's measure equals const\μg\
2 in

the sense explained in the Introduction.
Below we shall reprove the Mumford theorem by a method that does not use

the Riemann-Roch-Grothendieck global type arguments, and allows us to trace
out the behaviour of convenient generators in λ{.

Essentially this type of argument can be found in the Faltings paper [9].
Before proceeding further we need one more algebraic-geometrical

construction.
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4. The Sheaves <L, M>

Let X be a smooth projective curve; /, g meromorphic functions on it with disjoint
divisors. Put

<f,g>=f{άivg)=l\f{x)υ*(β),
xeX

where υx(g) is the order of g at a point x. According to A. Weil, </, g} = <#, / > : this
generalizes the classical symmetry of the projective cross-ratio [look at the case
X = P\ f=(z-a)(z-b)-\ ff = (2-6)(z-c)-1].

Assume now, that L,M are invertible sheaves on X, and s, t are their
meromorphic sections with disjoint divisors. We can still define <s, £> = Π s(x)Vχit)

X

as an element of one dimensional vector space <L, M > s ί = (X)LfMί), instead of the
X

base field of complex numbers. But it appears, essentially due to the Weil
symmetry, that these vector spaces admit a lot of canonical identifications. In
particular, for a different couple of sections s\ t' of L, M one has a canonical
isomorphism <L, M> s > ί = <L, M> s % ί,. Hence we may omit the index s, t and deal
with <L, M> depending on L, M only. If X, L, M depend on parameters S, then
L, M form a line bundle or an invertible sheaf on S.

This formalism was developed by Deligne in [11]; here is a brief summary.

5.

Proposition. Let π:X-^Sbea flat family of smooth projective curves. Then for each
pair of invertible sheaves L,M on X and each pair of isomorphisms φ\L-+L\
ψ: M-^M\ one can construct an invertible sheaf <L, M> on S and an isomorphism
(φ, ψ} : <L, M}-+(L\ M'> with the following properties.

a) This construction is a bimultίplicative symmetric bifunctor, i.e. there are
natural identifications

b) For each pair of meromorphic sections s of L,t of M with disjoint divisors
flat over S, an invertible section <s, ί> of <L, M> can be defined in such a way that
with respect to the identifications in a) we have

Moreover, <s,/>=/(divs), if f is a meromorphic function.
c) Let M — 0x(D), where D is a relative positive divisor with structure sheaf 0D,

locally free over S. Then

<L, QX(D)} = det O s (L®0 l ) )®(det ( ) s 0 I ,Γ ' = d(L®OD)®d(ODyι,

(s,tD}~= determinant of the Os-morphίsm 0D-
sending 1 to s®ί.

Here tD is a canonical section of 0x(D), equation of D.
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This data is compatible with arbitrary base change and is determined in a
unique way, up to a unique isomorphism.

A relation between d(L) and (L,M} is established by following Deligne's
result:

6.

Lemma. There is a canonical isomorphism

The essence of this lemma is that the functor d behaves in a (non-homogeneous)
quadratic way with respect to the tensor product, and <,> is the associated
bimultiplicative functor.

For our purposes we need an explicit construction of the last isomorphism.
Take M = OX(-D). Then the exact triples

0->L(x)M->L->L(x)0I)->0

together with Proposition 2d give

OD) = d(L)®d(L®Myι.

Hence, by Proposition 5c we get

ί®d(My1= d(L®M)®d(Ox)®d(Lyί®d(M

7. Proof of Mumford's Theorem

We shall proceed in three steps.

a) Λi+1=A1<ΩJ

In fact, according to Lemma 6 and using d(Ox) = λu we have

Now induction by i shows what we want. (From now on we sometimes omit ® in
notation.)

b) Assume that on the family π : I - > S a relative theta characteristic is given,
utilizing which we define λι = d(Ω1/2®2i) for half-integral fs. Then

In fact,

and, by Lemma 6,

, Ω1 / 2> = d(Ω)d(Ox)d(Ω^2) ~ 2 = λ2
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c) Under the same assumptions, λ\λ\j2 = 0s. Unfortunately, we could not find
a proof local by S and are bound to reproduce a global and analytic argument due
to Faltings.1 It consists in a reinterpretation of λx and A1/2 in terms of Jacobian and
in the subsequent proof of the corresponding fact for a universal family of all
abelian varieties.

To do the first reduction, denote by Θg^1cJg-1 the relative theta divisor of the
family and let oc:S-^Jg^ί be the relative theta characteristics, corresponding to
Ω1/2. Finally, let e: S-* J be the identity section. Then

For the second step recall a classical result on the behaviour of 0(z, τ) under the
simultaneous action of Sp(2#,Z) upon z and τ. The group Sp(2g,Z) consists of

integral matrices ί I conserving the form a(xux2;yi,y2) = xt

ίy2 — xt

2yι;
\C D/

x^yjθΈ9. Let Γx 2 be the subgroup, conserving also xί

1;x;2mod2 (this means that
the diagonal elements of A*C, BιD are even).

Then for all T= ί I e Γ12 one has

where ζ is a 8th root of unity, depending on T.
The proof, given in [12], consists of two steps. First, one checks this relation for

a simple generator system of Γ12; to do this, one needs only periodicity and
Poisson formula. Second, one establishes a group property of the transformation
formula.

Namely, the transformation formula is equivalent to the Γ12-invariance of
certain expressions involving theta constants, in particular

)(ί/z1 Λ ... Λdzg)%=0. (3)

This invariance can be restated in geometric terms.
Let τ vary in the Siegel half-space Hg. Instead of Ag = Sp(2#, Z)\Hg consider a

space A'g, parametrizing pairs (abelian variety, degree one symmetric ample line
bundle). Every such pair essentially is (A, O( — <9α)), where α is a point of second
order on A. Let jtf->A'g be the universal family of such pairs, e\A!g-*si its
identity section. Then the expression (3) defines a canonical invertible section of
the sheaf * ( O ( 0

i.e. an isomorphism of this sheaf with 0^.
Restricting this isomorphism to Mg, parametrizing pairs (J, O( — <9α)), we get

finally λ\l2λ\ = 0M,g.

d) End of proof.
Putting together a), b), c), we obtain

1 A similar argument may also be found in [7]
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The independence of this isomorphism of the choice of Ωί/2 follows for g ̂  3 from
global topological considerations. For a precise statement see the appendix.

8. Distinguished Bases

The only advantage of this proof with respect to Mumford's original one
(Riemann-Roch-Grothendieck plus global topological arguments) is that it gives
rise to explicit formulae. To derive them, we shall now construct distinguished
bases in the sheaves Rkπ^Ωι/2, hence in λi/2, compatible with various canonical
identifications. In this subsection we deal with the family π : X->M~, where M~ is
a subspace of Mφ parametrizing pairs (curve, odd theta characteristics Lα with
h°(La) = \. The base M~ projects onto Mg; Ωi/2 is, by definition, Lα.

a) A basis in λί/2. The section vα = φl/2, defined by (1), Sect. 1, generates π^Ω112.
Serre's duality identifies ( R ^ Ω 1 ' 2 ) " " 1 with π^Ω112. Hence λ1/2 = (π:¥Ω

1/2)2 ac-
quires a generator d1/2 = v2.

b) A basis in λv Choose a basis (φ0,..., φg_ J in π^Ω1 according to (2), Sect. 1.
Identify ^π^Ω1 with 0 M - by the Serre duality. The distinguished generator of λx is

g

Recall that B is a matrix, transforming ω into φ (Sect. 1, N°. 5).
We assert now that the isomorphism 0 M - = λ\i2λ\ maps the unit section of 0M-

0 £ ) > i Λ ... Λ ωgy = d*/2dΐ(detBy4. (4)

To see this, denote by p: X x Jg_ x -> J^_ 1 the projection, by L the universal sheaf of
degree g — ί on X x J^_ v Then d(L), constructed with respect to p, is canonically
isomorphic to 0{ — Θg^ι). In fact, on the complement Jg^ι\Θg-ι we have
d(L) = 0j, and the unit section t of this sheaf has a pole of the first order at Θg_ v At
a simple point α e Θ r l this isomorphism is given by the formula tah->(ss/)oc, where
5 6fί o(X,Lα), 5 / 6H 1 (Z,L α )* = fί0(J!(r5ί2

1(8)L"1) are such that (ss% = (dt)a. In
particular, if α is a theta characteristic, ία goes into (|/dί^)2. But this is precisely v2

from (1), Sect. 1.
c) A basis in Λ,3/2. The sheaf π^.Ω3/2 has the distinguished basis

where tp7- fulfill the conditions

V y = M Λ » ) 3 / 2 + O(ί*(ί/ί*)3/2) near P , , (5)

j,fc = l, .. .,# — 2. Observe that the principal part of ψ7- near Pg-ι is determined

from the equation Σ resPk(vα φ 7 ) = 0. Clearly (5) determines ψj up to differentials

vanishing at all P k , but one normalizes ψj in a unique way, as in (2), Sect. 1, if one
demands the vanishing of the term v\12 = tl(dtk)

3/2 in the expansion of ψj near Pk.
The other choices below can be normalized similarly.

The distinguished generator of λ3/2 is

d) A basis in λ{i + 1 ) / 2 , *' ̂  3. Since one has R^π^Ω1'2 = 0 for i ̂  3, the above game
may be continued further inductively. One declares that the distinguished basis in
π^Ωii+1)l2 is one in π^Ωίl2, multiplied by vα, plus the differentials with principal
parts δjk{dhf+l)l2 at Pfc,j,fc = l, . . . , < / - ! .
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The distinguished generator of λ{i+1)/2 is

d ( ί + 1 ) / 2 = the wedge product of the elements

of the distinguished basis of π^Ω{i+1)/2.

9-1

e) A basis in <Ώ 1 / 2 ,Ω 1 / 2 >. Put D= Σ Pu According to Proposition 5c, we
g - l 1

have <Ώ 1 / 2,0(D))= (X)ί2p/2, and <vα, 1> under this isomorphism maps into
g-i 1

(X) Vp., where vPι is vαmodί t v, i.e. ί^ί/ / 2 modί 2 . The isomorphism 0 ( D ) - ^ Ώ 1 / 2 ,

lι-»vα, sends this class into the distinguished generator of <Ω 1 / 2,Ω 1 / 2>, which we
denote

id, vα> Γ(g) vPιJ = r ί <vPi, v> = v.

Now the formal properties of the functors d and <, > imply, that

di+ί= d{υ
4i via identification λi+1= λ^Ω,Ω>1

(N°. 7a) (6)

d\ = d\j2v via identification λ\ = /l 2

/ 2<Ω 1 / 2,Ώ 1 / 2>

(N°. 7b) (7)

9. Proo/ o/ Theorem (5, Secί. 7

Putting together (6), (7), and (4), we get formally

which implies the statement a) of the theorem. To deduce b), note that

det I - J ωa A ώb) = det Imτ,
\2χ J

hence

det ( ̂  j φa A φ A = det \B\2 det Imτ.
\2χ J

3. Remarks and Complements

1. Admissible Metrics

The formula for the Polyakov measure, given in [14], was derived by almost the
same method as the one above. The difference between two formulae owes partly
to a different choice of distinguished bases, but mainly to the fact in [14] the
machine of special hermitian metrics on invertible sheaves was systematically
used. Since it may have a wider use in various contexts, we add here some hints on
the derivation of the formula in [14].

Let (L, 11) be an invertible sheaf with hermitian metrics on the complex variety
of M. Its curvature form is the C°° (1, l)-form δδlog |s|2, where s is an arbitrary local
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invertible section of L. This form is closed, and its cohomology class equals
2πic1(L). If M is compact, one gets in this way a bijection

[(l,l)-forms Ί ["metrics on L 1

in the class c^L)] |_up to proportionalityJ'
On a Riemann surface X of genus g^ 1 there is a canonical (1, l)-form

Qx = iβgω*(Im τ) ~λ A ω,

where ω is the Riemann basis. Therefore any invertible sheaf L admits metrics with
the curvature form proportional to ρx. Such metrics are called admissible. For
example, the sheaf 0(P) has a canonical admissible metric, defined by \tP\ (Q)
= G(P, 0 , where G is the exponentiated Green function of the Laplace operator

A = dd. To be more precise,

f(P)=-SlogG(P,Q)Af(Q)Qx(Q) for
x x

Faltings [9] has shown, that if an admissible metric on a sheaf L is given, then
d(L) can be endowed with a canonical metric that transforms in an explicit way
under the canonical isomorphisms of Sect. 2. One can then use it instead of
distinguished bases to compute \μx\

2 = dπg (but not μx itself).
For example, the isomorphism

which we used constantly, becomes an isometry, if d(L) and d(L( — Σ Λ ) a r e

endowed with Faltings' metrics, while ®LP. gets the metrics

®(induced metrics on LP)® Π GiP^Pj)'1.

Such arguments, together with another result of Faltings on the metric change via
λ{3-^λ2 give the formula of [14].

2. The Problem of Measure for Superstrίngs

One hopes that Polyakov's measure for the superstring in the critical dimension 10
should also be computable in the same vein, through an intermediary Mumford-
Berezin form on a super algebraic moduli space Ms

g of dimension 3g — 3\2g — 2 (for
g^2). At the moment, however, only some parts of the whole picture are on a
mathematically sound base.

a) It is unknown (at least, to the authors), whether an analogue of the Belavin-
Knizhnik theorem is true.

b) The supervariety M*, or rather an infinite covering of it, was constructed by
one of us (Yu. I. M.) by means of Schottky's superuniformization, but not all
techniques needed for transposition of calculations of Sect. 2 are worked out yet.
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At our present level of knowledge, we can calculate at least the analog of the
Mumford form on the "component" version of the superspace Ms

g, which
parametrizes certain (1 |l)-dimensional superalgebraic curves with superconformal
structure in the sense of [6], having odd typical structural theta characteristics. By
definition, the underlying space of this superspace is M~ (see Sect. 2, N°. 8), and the
sheaf of holomorphic superfunctions is Λ'(π^Ω3l2\ where π:X->M~ is the
universal family.

Denote this supervariety by Ms

g and consider the family of supercurves
ft: X-+Ms

g9 where odd superfunctions on X are generated by the functions, lifted
from Ms

g9 and the sections of Ω1/2, lifted from X.
On Ms

g there are analogs of Mumford's sheaves

where (ί2s)1/2 comes from Ω1/2. The results of Sect. 2 give us a canonical
isomorphism on M~, (^i^Γ/i)5 = ̂ 2̂ 1/2? which after lifting to Ms

g becomes an
isomorphism A* = A3.

The section of Aϊ 5A3, corresponding to 1, is a component analogue of a "true"
Mumford's form. The second formula of [14] gives its modulus squared. The
computations of Sect. 2 give an explicit formula for this section itself in terms of
distinguished bases.

3. Distinguished Bases and Canonical Models of Algebraic Curves

If a curve X of genus g ^ 3 is not hyperelliptic, then the distinguished basis
(φ0, ..^(pg-i) embeds it into a coordinatized projective space P 3 " 1 .

An advantage of this choice over Petri's one (see [16, pp. 123-135]) is that this
embedding is defined only up to finite ambiguity. In fact, to define it, one fixes a
typical odd theta characteristic and g — 1 cubic roots of unity. The formula for φ0

in terms of the theta function seems to introduce a transcendental element into this
construction, but one may well avoid it. E.g. we can leave φ0 defined up to
multiplication by c, and φj9j"^ 1, up to multiplication by c~1/3 [the normalization
(2), Sect. 1] is crucial here).

The ideal of equations for X in this embedding is generated for g ^ 4 by
quadratic relations between φjs. (excepting plane quintics and trigonal curves).

The basic quadratic relations can be written in the form

30-3

ψkΨι= Σ 4/Wi> M = o , . . . , 0 - i .

Here (wf) is the distinguished basis of quadratic differentials, and coefficients a\x

can be calculated through the expansion coefficients of φt by vα near Pk.
This refinement of the Petri method may be of independent algebro-geometric

interest.

Appendix. Simultaneous Normalization of Mumford's Forms

In the main body of the paper Mumford's forms μg were defined only up to
multiplication by a constant, depending on g. In this appendix we shall show how
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to normalize μg in a canonical coherent way by purely algebraic means. Hopefully,
in this normalization dπg = eβ(2~2β)\μg\

2 for a certain (zero?) value of β. This
conjecture is equivalent to a factorization property of dπg.

To achieve this goal, we need to fix the behaviour of μg when a curve acquires a
singularity. Let us first introduce some notation. Below "curve" means "projective
algebraic curve, possibly reducible or even disconnected, with quadratic singular-
ities only." For a curve X, let Ω*X be the sheaf of 1-forms on it and ωx the dualizing
sheaf (which is always invertible). They are related by a canonical morphism
i: Ω1X-^ω)x, which is an isomorphism off singular points. The image off coincides
with π#ΩxX, where π: X-+X is the normalization map, pulling apart the double
points. Now let α be such a double point; xl9x2 parameters of two branches,
crossing at α. The one-dimensional fibers of Ken', Coken at α are generated by
x1dx2, xϊidxί — x2

ίdx2 respectively. Put

λj(X) = det £Γ(X, ωf 0, j e Z; λ(X) = det RΓ(X, ΩXX),

These are one-dimensional vector spaces with the following properties.
i) They vary in a holomorphic way, when X varies. The symmetries of X act

upon them.
ii) There is a canonical element detie^(X), vanishing iff X is singular.
iii) (Serre's duality). λJ{X) = λ1.J{X).
iv) (Disjoint sums). If X = X 1 uX 2 , then there are canonical identifications

λj(X) = λj(X1)®λj(X2\ and similarly for X,δ.
For λj this comes from the exact sequence 0->ωf •/'->ωf 1->>ωf/-^0; similarly

for X; and δ expresses through λuX. Observe that this isomorphism for λ pX
multiplies by ( — I)*(°*i)χ(θχ2)5 if one changes the order of X1? X2\ while one for δ
does not depend on this order.

v) (Glueing points). Let X be a curve, α l5 α2 smooth points on it. Denote by X a
curve, obtained from X by glueing these points together into a point α. Put
li = (ΩiX)aι. Then there are canonical identifications

δ(x)=δ(x)(i1ι2y
1.

To see this, consider the glueing map π: X->X, and let xί9 x2 be parameters at
α1 ?α2. This data defines the following exact sequences:

a ) 0-ωf^π 1 | l (ω J ί (α 1 + α 2 ) ) ^ - ^ C α - 0 .

b ) 0->ωf M < % ( a i +

c) O - K / ^ - ^

Here the maps φ and ψ are defined by

\y~72(α2),

= cxιdx2.
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Applying to these exact sequences detRΓ, we get:

) d t / ? Γ ( X ( + ) ® 0

<gldet«- V<Θ<- V<2) = λ

The isomorphism for δ comes from ones for λl9 λ. Again, the isomorphisms for
λpX change sign, when the order of α1 ?α2 is reversed.

vi) (Projective line). If X is a smooth curve of genus zero, then λj(X) = λ(X)
= δ(X) = C canonically.

Indeed, by ii), iii) it suffices to look at the case λpj^O. Choose a point xeX.
Consider an exact sequence

0->ωf •Uωf j((2j- l)x)->F->0,

where F = ωχj((2j—ί)x)/ω®j. The middle sheaf is acyclic, being isomorphic to
0x( — 1), hence λfX) = (det F) ~x. But detF = C, under the isomorphism, mapping 1
to ί"1(dί) /Λ...Λί"2 /+1(ίiί)/, where t is an arbitrary parameter at x. This
isomorphism does not depend on choices made to construct it.

Now put

Clearly, the above implies
vii) The properties i), iii), iv), vi) hold for λp Vj. In the situation v) we have λfX)

= λj(X), Vj(X) = Vj(X) ("factorization property").
We can state now the main result of this appendix.

Proposition. There is a unique identification Vj(X) = C compatible with i), iv), and v).
It is then automatically compatible with iii) and for X^P1 coincides with vi). The
element μu\X) e vfX) is the normalized Mumford form (or, rather, its value at X).

Sketch of Proof Assume first that such μ exists. According to iv), v) it is defined by
its values on smooth connected X. But any such X is a member of a family of curves
with compact connected parameter space, in which P 1 with a number of double
points also occurs. (Take, e.g. the Deligne-Mumford modular family.) This shows
that μiP1), together with i), v), determines μ uniquely. It remains to see that μ(Pι)
coincides with 1 in normalization vi). Consider a constant family P1 xA1 and blow
up a point in a fiber over 0 e A1. In this new family the fiber over 0 is P 1 u P 1 with
two points glued together, i.e. P^P1. We have μ(Px vP 1 ) = μ(P1) μ(P1), and

μ(P* vP 1 ) = limμ(Pί

1). This forces μ{Pι) to be 1.
ί->0

As for existence of μ, one can prove it by a simple induction on genus, using the
structure of Deligne-Mumford moduli space at infinity, together with iv), v) to
normalize the Mumford forms.

Acknowledgements. Our deep thanks are due to A. A. Belavin and A. S. Svarc for very illuminating
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Note added in proof. Since this paper was written we became aware of a very interesting letter by
P. Deligne to D.Quillen, dated back to 20 June 1985, where a refinement of the Grothendieck-
Riemann-Roch for c1 of direct images of rank 0 virtual vector bundles over Riemann surfaces
was given and the normalized Mumford forms were defined.




