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Abstract. In this paper we investigate classical spin systems on a semi-infinite
lattice. We establish detailed properties of such systems near the surface layer.
For the Ising- and the classical XY models on a semi-infinite lattice we study
the phase diagram, the critical properties and the decay of spin-spin
correlations near the surface layer.

1. Introduction

1.1. The Models

This paper is devoted to the study of some surface problems for classical bounded
spin systems with a continuous internal symmetry group G. We consider models
on a semi-infinite sublattice ΊL of 2£3, say ΊL={x = (x1,x2,x3)εZ3 :x3^0}. We
propose to study the behaviour of the system near the boundary surface Σ,
Σ = {x E L; x3 = 0}. Let us introduce the simplest model of this kind. The spin at
xeJL is described by a unit vector in Rn, S(x) = (S\x)9 ...,Sπ(x)), n^l, and the
Hamiltonian is

-Σ K(x,y)S(x).S(y)9 (1.1)
{*,?}

where S(x) S(y) is the Euclidean scalar product in 1R". We consider only short-
range interactions and, for the sake of simplicity, we take K(x, y) = 0 if x and y are
not nearest neighbours. If x and y are nearest neighbours,

K(x9y) = K if {x,y}ίΣ, (1-2)

and

K(x,y) = J if {x,y}CΣ- (1.3)

The inverse temperature β is one, and we investigate the behaviour of the model
when J and K are varied, and (primarily) for n^2.
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1.2. Absence of Symmetry Breaking in the Surface Layer

Since Σ is a ίwo-dimensional sublattice and the internal symmetry group is
continuous, a natural question is whether one can break the internal symmetry
near or on the boundary Σ. It is well-known that this is impossible on a strictly
two-dimensional space. This is the content of the Mermin-Wagner theorem [1, 2].
However, in our model the bulk, i.e. the part of the system for values of x3, with
x3->oo, is three-dimensional, and the behaviour on the surface will be different
according to whether the bulk is ordered or not. To be more specific, let us consider
the ferromagnetic model, J > 0 and K > 0. We know that there is a critical coupling
K* such that, for K>K*, the bulk is ordered and, for K<Kl, the bulk is
disordered. In the latter case we do not expect that the bulk part of the system plays
a significant role, and therefore we do not expect to have symmetry breakdown
near Σ. In order to prove this result, we compute an effective hamiltonian for the
spins on Σ, using a high-temperature expansion in the coupling K. Provided that
this expansion is convergent, i.e. for K small enough, we get an effective
hamiltonian with many-body interactions which decay exponentially. A straight-
forward application of the relative entropy argument [3], shows that there is no
symmetry breakdown for this effective hamiltonian, for any value of the coupling
J. Details are given in Sect. 2, for n = 2. However it is clear that the proof is valid for
quite general models. The basic hypotheses we need are the following:

a) The internal symmetry group G is a compact connected Lie group.
b) The interaction is smooth (C2) with respect to the action of the group and

satisfies some decay properties. For precise hypotheses, see [4, pp. 182, 188].
c) We have a convergent high-temperature expansion for the spins which are

not on Σ.

1.3. Existence of Ordering on the Surface Σ

If we consider the opposite situation for which the bulk is ordered, i.e. K > K3 in
our ferromagnetic model, we find a completely different behaviour. Intuitively, we
can think that the ordered bulk acts upon the spins on Σ like an external magnetic
field. Therefore the symmetry on Σ should also be broken for any value of J. This
argument is of course not a proof. In the mean field Potts model (# of components
g-»oo) Lipowsky found a disordered surface state in presence of an ordered bulk
state [5]. We can prove the existence of a spontaneous magnetization in the
ferromagnetic XΎ model (n = 2) by the method of [6]. Here n = 2 is a genuine
restriction: we cannot adapt the method of [7], which is based on the infrared
bound, since we do not have full translation invariance. Therefore, if J = K, and
K > 0 is large enough, the spins on Σ are ordered in the X Y model. Let K* be the
infimum of the couplings K for which the model with J = K is ordered on Σ. By
correlation inequalities, we extend this result to arbitrary values of J and K>K*.
These topics are discussed in Sect. 3.

1.4. Phase Diagram for the Ferromagnetic XΎ Model

Let us summarize the above results for the ferromagnetic X Y model, (J > 0, K > 0,
n = 2). It is convenient to parametrize the spins S(x) by an angle φ(x) so that

), sin^x)). (1.4)
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If we add an external magnetic field we can choose its direction so that its
contribution to the Hamiltonian is given by

— Σ hcosφ(x).
xeΊL

The corresponding equilibrium state is denoted

;Λ) and <.> + (J,K)
Λ J , 0

There is a K*, Kc

3 ̂ K* < oo such that

and a K^ >0 such that

= 0, VJ}.

(1.5)

(1.6)

(1.7)

(1.8)

In order to describe the behaviour of the model more precisely, we introduce
the boundary susceptibility χΣ(J> K}>

= Σ

the boundary correlation length ξΣ(J, K),

1^ lira --ln<cos^(0,0,0)cos^(x1,0,0)> + (J,
jci-^oo X

and the transverse correlation length ζ±(J,

- lim - - l
X3->GO X

(1.9)

(1.10)

(1.11)

Let us assume that there is no intermediate phase in the three-dimensional model.
In other words, if K < K* there is no bulk spontaneous magnetization, the bulk
correlation length is finite and the bulk susceptibility is finite. Let us also make the
very plausible assumption that

K* = K* = K?. (1.12)

Under these two assumptions the phase diagram is very simple (see Fig. 1). There
are three different regions. Region I corresponds to the high temperature phase

π

Fig.l
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and it is characterized by <cos^(0)> + (7, K) = 0 and χΣ(J,K)<oo. Region II
corresponds to the Kosterlitz-Thouless phase where <cos^(0)> + (J, K) = Q but
χΣ(J, K) = c£). Region III corresponds to the ordered phase, where
<cos^(0)> + (J, K) > 0 and χΣ(J, K) = oo .
Let us examine region I in more detail. This region certainly contains the square
{(J, K): J<KC.,K<KC}. Inside this square the boundary correlation length
ξΣ(J, K) is finite, since in the three-dimensional model the bulk correlation length
is finite, for K<K*. We can prove, by adapting an argument of Simon [8], that for
κ<κl

χΣ(J,K)<oo o ξΣ(J,K)<ao. (1.13)

Therefore, inside region I, ξΣ(J, K)< oo. The boundary of the region consists of
two pieces: Γ1?

(1.14)

which separates regions I and III, and Γ2,

(1.15)

which separates regions I and II. The function JKT(K) is monotone decreasing in
X, Jκτ(Q) = Jκτ> and Jκτ(Kc) = J^Kc. By correlation inequalities

0£χϊl(Jl9K)-χϊl(J2,K)^4(J2-Jι), J2^Jι (1-16)

Thus χΣ

 1 is a continuous function of J and χΣ

 X(J, K) = 0 on Γ2 (provided that Γ2

does not have vertical pieces). Γ2 is a critical line. In particular, if we go from
region I to region II along a straight line {(J,K):J = βJ0,K = βK0,β^Q} and
cross Γ2 at (J, K) ΞΞ (βjθ9 βK0), the susceptibility χΣ(βJ0, βKo) diverges at least like
(β — β)~l. [We have assumed that the function K^JKT(K) has a tangent.] At β we
have a Kosterlitz-Thouless transition. If we continue along that straight line, we
find a second transition with symmetry breakdown at /?, βK0 = K^. On the other
hand, if J0 is small we have only one transition with symmetry breakdown at β.

More generally, the inverse correlation length ξΣ

l(J,K) is a continuous
function of J and K. The proof is the same as in the bulk case, (see e.g. [9]). Inside
region I, ξΣ«x>9 and when we pass from region I to regions II or III ξΣ diverges.
The boundary of region I, ΓίuΓ2 is therefore a critical line.

Finally, inside regions I and II we expect that the transverse correlation length
is finite. If J ̂  K this correlation length is indeed equal to the bulk correlation
length ξBuikCK) However for J^K we have established only the inequality

ξx(J,K)^ίBulk(K). (1.17)

It is likely that we have equality in (1.17). This would show that ξ± diverges when
we go from regions I or II to region III across the line K = K^.

Let us finally remark that we get qualitatively the same phase diagram if we
make only the assumption that the model with J = K has no intermediate phase.
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1.5. Behaviour of the Two-Point Function
for Small or Large Values of the Coupling Constants

In the following, we summarize our results on the behaviour of spin-spin
correlations near the surface Σ. We define

where the expectation <(•)) is given by <( )> + (J, X), and if

is an n-component spin S(x)S(y) stands for Σ Sα(x)Sα(;y)
α = l

(1) High-Temperature Behaviour of Spin-Spin Correlations. We assume that the
bulk couplings, K, and the surface couplings, J, are chosen to be so small that the
model is well inside the high-temperature phase I. If the external magnetic field
vanishes then <S(x)> = 0, i.e. <S(x);S(<y)>-<iS(x)5(j;)> and <S(x)SGO> decays
exponentially, as |x — y| -> oo . It is natural to ask what the power law corrections to
exponential decay are. It turns out that this problem is closely related to the
problem of the wetting- or unpinning transition for an interface in the two-
dimensional Ising model studied by Abraham and others [10, 11]. Mathematically
closely related problems are analyzed in [12, 1 3]. Using the techniques in [1 3] one
can prove the following

Result. Consider a classical, ferromagnetic n- vector model, as described above, in a
^-dimensional half lattice JL = {x e Zd : xd Ξ> 0}.

(a) I fO<K^J<^l, and for x and y in (or near) the surface Σ,
_ d-2

<S(x)%)> - const \x-y\ ~^~e~
lx~yllξ (1.18)

\x-y\->co

for some ξ = ξΣ(J, K) < oo .
(b) If 0< J^K^Kd

c, and for x and y in (or near) Σ
_d+l

<S(x)SG>)> ~ const|x-};| 2 e" | x"y |/5, (1.19)
|x-y|-»oo

for some ξ<oo.
The proofs are sketched in Sect. 5.

Remarks. 1) We shall see that behaviour (a) corresponds to the "dry" phase of the
two-dimensional Ising model, while behaviour (b) corresponds to the "wet" phase,
[10].

2) Deep inside the bulk [e.g. x = 0, y = (0, ...,0,n), with rc->oo) one finds the
usual Ornstein-Zernike behaviour

d-l

^ const |x-y| 2 e^x'^ξ , (1.20)

where ξ = ξ±(J9 K) < oo if K <^ Kd

c. See e.g. [13] for proofs and references to earlier
work.

3) Results like those described in (1.18) and (1.19) were discussed, on a heuristic
level, by Fisher and Camp [14]; see e.g. the beautiful review of Fisher [11] and refs.
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given there. We are informed that Abraham, Chayes, and Chayes have independ-
ently found results closely related to (1.18) and (1.19) which describe the decay of
connected correlations of an Ising model in three or more dimensions near a
surface, at low temperatures.

4) We are indebted to Jean Bricmont for having explained to us techniques
useful for the proof of (1.18) and (1.19).

(2) Behaviour of Spin-Spin Correlations Near a Surface in the Kosterlitz-Thouless
Phase. We consider the spin-spin correlation

<S(x)S(3θ = (ei(φ(x}-φ(y»y , x, y near Σ ,

in the Kosterlitz-Thouless phase, II, of the three-dimensional X Y model (n = 2) on
1L, i.e. for K<^KC

3, J>JKT. For this model we can prove

(c) lίK^Kϊ, then

\x-y\~*, (1.21)

for some α = α(J,K)>0, with α(J,K) = θ( -1, as J-^oo.
\ v

(d) If J>JKT, then
<S(x)S(jO> ̂  const |x - y\~ α/ , (1 .22)

for some α/ = α/(J,K)>0, with a'(J,K) = oi — I, as J->oo.
Vy /

Remark. Result (c) is a rather straightforward generalization of the McBryan-
Spencer bound [15], and the proof is sketched in Sect. 2.3. Result (d) follows from
the bounds in [16] by using Ginibre inequalities [17]; see Sect. 3.

(3) Spin-Spin Correlations Near an Ordered Surface. Next, we propose to study the
behaviour of <S(x) S(j;)> > x and y near Σ, for values of K deep inside phase III, i.e.
K > K*. In the Ising model, for J > J2 (the critical coupling of the two-dimensional
Ising model) and either K very small, or K very large, <5f(x);S(j/)> decays
exponentially in |x — y\, x9y in Σ, as follows from standard low-temperature
expansions. Power law corrections have been studied by D. Abraham, J. T.
Chayes, and L. Chayes, with results similar to those summarized in (1.18) and
(1.19). When K passes through the transition point of the bulk the behaviour of
<S(x) S(y)y is not known precisely, but the power corrections for J > J2 , K = 0, are
different from those for J> J2, KΦO; see e.g. [18].

For the classical XY model we prove the existence of spontaneous magneti-
zation when K is large enough (phase III); see Sect. 3: If a symmetry breaking
magnetic field, h, in the 1 -direction is turned off then a spontaneous magnetization
(S1(x)y>0 remains. By the Goldstone-Mermin- Wagner theorem [1,2],
<S2(x)S2(y)> must then be expected to have slow decay in |x — y|, and this is indeed
the case.

For example, one can prove that <S2(x)S2(y)>, xeΣ, y elL, decays slowly in
|x — y\, in an average sense with respect to y. This follows in a simple way from the
positivity of the spontaneous magnetization, a "Ward identity" for <S1(x)> and
correlation inequalities; see [19] for similar results. More precisely, let Ω be some
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half sphere in 1L centered at x, and let 8Ω be the set of nearest neighbours y, y7, with
y e Ω, / φ Ω. By a simple integration by parts one finds

+ K Σ <S2(x)(S2(y)S1(y')-S1(j')S200)>

<S2(x)S2(y)>
dΩnI

Σ <S2(x)S2(y)> , (1.23)

by omitting negative terms and bounding positive terms by correlation in-
equalities, [20]. Here

<S1> = sup<S1(y)>.
y

Now, since the proof of spontaneous magnetization (a straightforward
adaptation of [6]) shows that, for large K, Gaussian spin wave theory is correct, up
to small corrections, it is reasonable to conjecture that

<S2(x)S2(y)> ~ const Jr^Cx, y ) 9 (1.24)
\x-y\-* oo

for large K, where GN(x, y) is the Green's function of the finite difference
Laplacian, AN

9 with Neumann boundary conditions at Σ, but we have no rigorous
proof of this.

Whatever the exact behaviour of <S2(x)S2(y)>, the behaviour of <S1(x) -S^GO)
is constrained by the inequality

(^(x); ̂ (y)) £ const <S2(x)S2(y)>2 , (1.25)

due to Dunlop and Newman [21].

2. Absence of Ordering on the Surface Σ

2.1. Effective Hamiltonίan

We compute the effective Hamiltonian when K is small. We choose a specific
system, the X Y model with Hamiltonian (1.1) (n = 2). We use the parametrization
of the spins by angles and normalize the angles so that (1.1) becomes

- Σ K(x, y} cos2π(^(x) - φ(y)) (2.1)
χ,y

and ^(x) e [0, 1), mod 1. Any pair {x, y} of nearest neighbours is a bond b = b(x, y).
The coupling constants are therefore K(x, y) = K(b) = Kiϊb$Σ, K(b) = J if b C Σ
and K(x,j/) = 0 otherwise. Let ΩL be the finite boxClL

xί|^L, i= 1,2, ...,d-l, xd^L}. (2.2)

We fix a configuration of spins outside ΩL, i.e. on ΩC

L = ]L\ί2L, and denote it by
φ(Ω€

L). We can write the Boltzmann factor in ΩL for (2.1) with the boundary
condition φ(Ωc

L) as

Π W= Π I(b) Π W, (2.3)
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where

7(6) = l(b(χ, y)) = exp(K(x, y) cos2π(φ(x) - φ(y))) = 1 + U(b) . (2.4)

Since K is small we write 7(b) = 1 4- C/(b) for any f> such that K(b) = K. We apply the
standard polymer formalism [22] to exponentiate the second product on the right-
hand side of (2.3), which is the product over the b's such that K(b) = K and
br\QL φ 0. Let X C IL, and let y be a graph, whose vertices are in V(γ) C 1L and with
bonds in B(y). We say that XcIL, \X\^2, is connected if the graph y, with vertices
V(y) = X and bonds B(y) = {bonds bCy}£B(JSQ» (the set of all bonds on X), is
connected. (\X\ is the cardinality of X.) Let XcIL, \X\ ̂ 2, be finite and connected.
We introduce

VL(X) = Σ Π U(b)9 (2.5)
V beβ(y)

where the sum extends over all connected graphs y with V(γ) = X and whose bonds
are bonds, b, in B(̂ ) such that K(b) = K and bnΩLΦ0. In all other cases
UL(X) = 0. Using the ^/-function we can write

Π W= Π (ί + U(b))=ί+Σ~ Σ Π^A ,), (2.6)
bnΩL*Φ bnΩL*<t> n^ 1 n\ χlt ...,χn ί= 1

b<tΣ K(b) = K

where the sum extends over all families of n disjoint subsets. Let QL(X} be the result
of the integration of UL(X) with respect to the angles φ(y), with y e Xr\(ΩL\Σ). Let
ψ(Xι, . . ., Xn) = 1 if all the subsets X{ are disjoint, and ψ(Xl9 . . ., Xn) = 0, otherwise.
After integration of the spins φ(y), with y e ΩL\I", we get for (2.6)

1 + Σ ^ Σ Π QL(Xϊtψ(Xι, ...,*„). (2.7)
n ^ l W ' A Ί , . . . , Λ n ί=l

Let

C(fe)=||ex(6)coβ2^-l||00. (2.8)

Notice that C(b) bends to zero if K(b) tends to zero. We have

\QL(X)\ £2*WC(byW ^γd(K)W (2.9)

and

£ Σ A y d ( K ) ) « α ^ - - , (2.10)
n>ι

where α^ is an upper bound for the number of subsets XcZd with X 3 0 and \X\ = n.
Provided that (2.10) is smaller than 1, we can write (2.7), using the Mayer
expansion, as

exp Σ Σ Π QL(XύVc(Xι, .. Xj, (2.11)
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where the factor ιpc(Xί9 . . ., Xn) is a well-known combinatorial coefficient (see e.g.
[22]). We can now read off the effective interaction. Let 7c£nί2L, and define

ΦL(Y)=Σ^ Σ nQL&ύΨc&^ . XJ, (2.12)
f i ^ l nl Xlt...,Xn ί=l

/ n \

where the second sum extends over all Xl, ...,Xn9 such that I (J Xί\nΣ=Y.Iϊ
(2.10) is smaller than one, ^ ί=1 '

(2.13)

with C independent of L. We can write (2.11) as

Σ

where ΣL = ΩLnΣ and RL is independent of φ(x), x e ΣL. The expectation value of
any local observable on ΣL is given by the Gibbs formula for a spin model defined
on ΣL with Hamiltonian

-Σ Jcos2π(φ(x)-φ(y}) -Σ^OO (2.15)
b(x,y)nΣL*Φ YCΣL

b(x,y)CΣ

Remark. φL(Y) depends on the boundary condition φ(Ωc

L). We can always
decompose φL(Y) as

(Y), (2.16)

where φlίL(Y) does not depend on φ(Ω€
L) by definition. Thus φί>L(Y) is invariant

under a rotation of all φ(x), x e Γby the same angle. Let <5,0 < 5 < 1, and X so small
that

ΣIQLWI^"1^^^!. (2.17)
xczd

Then

Σ \\φ2,L(X}\\ao^constδd[si(x>Σ\ΣL} (2.18)

with a constant independent of L.

2.2. Absence of Symmetry Breakdown

We take again d = 3 and we choose K small enough to ensure the validity of (2.17)
and (2.27) below. We want to prove that any Gibbs state obtained by taking the
thermodynamic limit of a model with Hamiltonian (2.15) is necessarily invariant
under the internal symmetry group, which is the circle group G in our specific
example. We use the method of [3]. In this method we must find a uniform upper
bound on the relative entropy of a perturbed equilibrium state with respect to the
unperturbed equilibrium state. The unperturbed equilibrium state can be
constructed as the thermodynamic limit of finite volume Gibbs states. Therefore
we work with finite volume Gibbs states and try to find a bound which is also



346 J. Frόhlich and C.-E. Pfister

uniform in the volume. Let μL be a Gibbs state on ΣL with Hamiltonian (2.15) and
some boundary condition. The perturbed equilibrium state μ'L is obtained from μL

by the following transformation. We choose an arbitrary positive number /, and
choose L > 21. Let g e G and consider the transformation R(g} : φ(x) -» φ(x) 4- g(x)
given by

g(x) = g if maxίl*1!,!*2!)^/,

if max(|x1|,|x2|) = / + fc, 0<fc^ί, (2.19)
rC

= 0 , otherwise .

This is a local transformation and inside

it is a rotation by g. Let μ'L = R(g)μL [for any observable μ'L(f) = μL(f°R(g)y]. If
there is an upper bound, C, uniform in L, / and the boundary condition,

) , (2.20)

then all equilibrium states for L-» oo are rotation invariant; (see [3]). Technically it
is simpler to estimate

Sfa'M + SfaM, (2.21)
where μ"L = R(g)~ VL

Let XCΣL, X = {x1, ...,xn}. Let

and

We write φ(X) + g(X) = {φ(xί) + g(xί), . . . , φ(xn) + g(xn)} . Since L is fixed we write
φ(X) instead of </>L(X). We also introduce φ'(X) = φ(φ(X)-g(X)) and ψ"(X}
= φ(φ(X) + g(X)~). It is easy to compute (2.21):

J[2 cos2π(φ(x) - φ(y)) - cos2π(φ(x) - φ(y)
ϊ

- 9(x) + 000) ~ cos 2π(φ(x) - φ(y) + g(x) - 000)] >

Σ (2^(JQ - φ'(X) - φ"(X)) . (2.22)

Let us consider the most difficult terms in (2.22). We know that φ = φv+ φ2. Using
(2.1 8) and choosing L large enough, the contribution of the terms φ2 to (2.22) can be
made arbitrarily small. Therefore we have to worry only about

Σ 2φ1(X)-ψ'1(X)-ψ'ί(X). (2.23)
XCΣL

XnΣ2ι*Ψ

Φι(X) is invariant by rotation. Therefore

and a similar expression holds for φ'[(X). The interaction is smooth; we use only
the fact that it is C2 in order to make a Taylor expansion with remainder. The first
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order terms in (2.23) cancel exactly. Therefore we get the upper bound

^ ; Σ
j=2 k=2 dφ(xj)dφ(xk)

From the definition of R(g) we have

Therefore let

Cll 1Λ— a Up
x, eX j φ i f e φ i

(*t,xj)ά

S2Φι
dφ(xj)dφ(xk)

ist(xi9xk).

If K is small enough, we have

(2.24)

(2.25)

(2.26)

(2.27)

XCΣ

and the constant is independent of L. We have immediately a uniform bound for
(2.23)

Σ \\2φ,(X}-φ',(X}-φ'[(X}\\^ Σ Σ Pi Wil l-( |Y^ const,
XCΣL xeΣ2ι Xzx \U

*ni 2 Z Φ0 x / (2.28)

[see (2.24) and (2.25)]. This, combined with standard arguments [3], yields (2.20).

2.3. McBryan-Spencer Bound

In this subsection we show that if O^ , and for xεΣ,

<?<*))> ̂  const |jc|- α , (2.29)

for some positive α - α(J, K) = 0 - . See Sect. 1, (1 .21). The lower bound in (2.29)
\J /

follows from Ginibre's inequalities [17]. To prove the upper bound, we use the
method of complex translations of the angular variables, φ(/)» introduced in [15]
and the effective Hamiltonian (2.15). Our arguments are very similar to those in
Subsects. 2.1 and 2.2, so we only sketch them.

Let 7 eL, and set [/| = max([/1|, [/2|). Instead of the real translations, φ(])-*φ(j)
+ g(j), introduced in (2.19), we perform complex translations,

where ax = a is defined by

i f l / Ί > M ,

iϊ\j\ = \x\-n.

(2.30)

(2.31)
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From the observable, exp2π/(φ(0) — φ(x)) we obtain, after the change of
variables (2.30), a small factor

exp(-JL(|x|)V (2.32)

where

|x |-l \

m*l)= Σ 7— r~log|x | ,

and we have chosen C = - — - in the definition of «(/). Next we must prove an
upper bound on π

G(0, x) = <exp2πί(φ(0) - φ(xj) exp (H(φ) - H(φ + ia))> + , (2.33)

where H is the Hamiltonian of the model. We re-write (2.33) as follows:

G(0,x) = l i m f Π dφϋ)exp2πi(φ(0)-φ(x))Zβi

1 Π /β(&)
L^oo jeΣL &n^LΦ0

x J Π (̂0 Π /,(&), (2.34)
jeΩL\ΣL bnβ L Φ0

where ftc^

Jβ(6) - exp {£(/, 0 cos 2π[φO) - φ(0 + i(αϋ) ~ «(0)1 } ,

with K(j, /) = J if 7 and / belong to Σ, and = K, otherwise, and where α(/) is defined
by (2.31).

We now note that, for j and I nearest neighbours,

a - (235)

This bound is uniform in x and in j, I. It follows that

Cβ(k)=||l/a(k)L^expKcosh2π(/^) -1->0, (2.36)
\J /

as K->0. Furthermore, if

(2.37)
jeJΓ

where

^L,αW= Σ ΠUβ(b),
y:F(y) = X b ε y

y connected
and

1/.00 = /„(&)-!.

Equation (2.37) follows from the periodicity of the cosine by shifting the
integration contour for φ(j) by —ia(j). It follows from (2.36) and (2.37) that the
expansion of Subsect. 2.1 still converges if I(b) is replaced by Ia(b), for every b, etc.,

provided \K\ < K I — , for some positive number K ( — which only depends on λ
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and J, but not on our choice of x. Let 7cΓnΏL, and define

1

( n \

0 X{ 1 r^Σ= Y We
enow i^vnjuv '=1 /

H^(φ) = — Σ ^cos2π[φ(/) ~ φ(0 + Ka(J) ~~α(0)l ~ Σ <l>L,a(Y)

b(j,l)CΣ /9 τo\
\Δ.Jb)

Then

G(0,x)limZL-,M Π
L->oo

= lim <β2πlWO)^W)exp[Hf0(φ)-Hffl(φ)]>L

+ . (2.39)
L^oo

We Taylor-expand #l%(φ) — fljfα(<p) to second order in α, noticing that the
modulus of the exponential of the first order terms is equal to one. Let X C Σ9 and
let y(X) denote the site in X closest to the origin, 0. (If there are several such points,
we choose the smallest one in lexicographic order.) Let y(X) = ieX,je X. Then

|α(0 - α(/)l ̂  7 "Σ ' ̂ r ^ ̂ Γ IJ ~ ϋ (2.40)J fc = |i| k+l μ| + l

In estimating the modulus of the second order remainder oΐHe^0(φ) — He^a(φ), the
nearest-neighbor terms yield a contribution of order

The terms depending on φ2(X) tend to 0 exponentially, as L-»oo, for every x, and
hence can be ignored. Finally, we must estimate a term analogous to (2.23). When
summing over X we first sum over all X with y(X) = y fixed. This yields a
contribution bounded by

see (2.24), (2.25), (2.35), and (2.40). The sum of all these contributions over all y, with
/ ^2\

[y|<;|x|, is therefore bounded by 01 K-^ )log|x|. This, together with (2.41) and
V ^ /

(2.32), completes the proof of the upper bound in (2.29) by choosing λ small
enough.

3. Existence of Ordering on the Surface

For the XY model, with J = K, we can prove that, for large K, there is a
spontaneous magnetization on Σ. The method is that of [6] which is also described
in [25, Sect. 8.5], This proof, even for the Villain model, is relatively long. Since it is
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essentially the same in our case as in [25], except for minor details, we do not
reproduce it. Let us however describe the main ideas. It is sufficient to prove that
there exists a positive constant C > 0, such that for large K

<exp2πi(<p(0) - φ(x))> + ̂  C > 0, (3.1)

where x e Σ is arbitrary. The state < > + is clustering, and we can conclude that
there is a spontaneous magnetization. In order to prove (3.1) we use a duality
transformation to express the model as a model of spin waves and vortices. In the
Villain model there is no direct interaction between spin waves and vortices, and
this simplifies the analysis somewhat.1 If the vortices were absent the result (3.1)
would be true for any K>0: In our case the spin wave part is a Gaussian
measure whose Boltzmann factor is

(3.2)

In (3.2) θ(x) E 1R and Δ is the lattice Laplacian on 1L with Neumann boundary
condition on Σ. The main part of the proof is to show that the vortices do not
destroy the effect of the spin waves for large values of K. This is a kind of Peierls
argument, more complicated than the usual Peierls argument in the Ising model,
which is used to show that the defects in the system do not destroy the ordering
present in the ground states. The only differences between the situation analyzed in
[6] and the present one is that, in the situation studied here, vortices can terminate
on the boundary, Σ, of IL and that the finite difference operators appearing in the
estimates now have to obey specific boundary conditions on Σ. But these
differences are minor and do not warrant presenting a detailed proof.

We show that for K>K* and any J there is always an ordering on the surface.
By definition of K*, <cosφ(0)> + (K,K)>0 if K>K*. Therefore it is sufficient to
show that <cosφ(0)> + (J = 0, K) > 0, for K > K*. In this expectation the spin S(0) is
only coupled directly to S(x), with x —(0,0,1). It is easy to compute the
conditional expectation value of cosφ(O), given the value of φ(x). We find

(3.3)

where In(K) is the nth modified Bessel function. By Ginibre inequalities [17]

<cosφ(x)> + (J-0,K)^<cosφ(0)> + (K,K), (3.4)

and therefore

(3.5)

1 The usual XY model can be analyzed too, but the proof is somewhat more complicated; see
Sect. 6 of [6]
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4. Phase Diagram for the Ferromagnetic XY Model

4.1. Boundary Susceptibility χΣ

We use an argument given in [9] in order to analyze χΣ. We leave out some minor
technical points. Details can be found in [8, 9]. In order to simplify our notation,
we write <0,x> or <xjλz> instead of <cosφ(0)cosφ(x)>+ or

(cosφ(x)cosφ(y)cosφ(z)y+ .

We compute

<zw> ̂  <zwxj;> - <zw> <xy> , (4.1)
, y)

where we have used the inequality [20],

<cosφ(z) cosφ(w) smφ(x) sinφ(y)>+ <^ <cosφ(z) cosφ(w))'1'
(4.2)

We have

— <zw> ( xy) — <zx

^ <zx> <wj;> + <zy> <wx> (4.3)

if <x>-0, [23]. We apply (4.3) for K<K*.

^χΣ=-jjΣ <Oz>^Σ Σ
UJ άJ ZeΣ zeΣ {x,y}CΣ

dίst(x,y)= 1

= 2 Σ <0y>fc = 4fe)2. (4.4)
{*,y}

By integrating (4.4) we get

Jι), J2^Jι (4.5)

The function JKT(K) is defined by

JKT(K) = inf { J : χ,~ ̂ J, K) = 0} . (4.6)

If K-*JKT(K) is the graph of a function, then by continuity of J-^XΣ 1(J, K) we
must have χ^ l(JKT(K}, K) = 0. Thus in this case the boundary Γ2 is critical. Let us
assume that we cross Γ2 at (J, K) along the straight line

Let j5 be given by J = βJ0, K = βK0. From (4.5) we get

0) - βJ0)

β)J0) . (4.6)

If K-» JKT(K) is Lipshitz-continuous at K, we see from (4.6) that χΣ diverges at least
like (β-βΓ1 when β]β.
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We now analyze the behaviour of χΣ in the neighborhood of Γ± [under the
assumption that Γ± ={(J, K):K = K^ J^J*}]. Since Γ^ is a vertical line, we
cannot conclude from (4.5) that χΣ

 i(J, K) = 0 on Γ^. However, if we suppose that,
for the special choice J = K, one has a critical point at K3, with a divergent
suceptibility χΣ(K, K), with critical exponent y, we have, by correlation inequal-
ities, that χΣ

1(J,Kc) = Q, for K3^J:gJ*. Moreover, using the argument of
Sect. 3, we see that the same result is true for J rg K3, and the critical exponent γ is
independent of J, at least for J ̂  K*. Therefore we have that Γx is also a critical line,
under the above assumption.

4.2. Boundary Correlation Length ξΣ

We define, for j e L,

X j V , K ) = Σ < J x > (4.7)
xelL

The first step of the argument is to show that χΣ < oo and K < K% imply that
χ/J, K) < oo . Let us consider the case where j = 0. Exactly as for (4.4)

dj
~^ Σ Σ«Oy><xz> + <Ox><X» = 4Mo. (4.8)

CM { χ , y } C Σ zelL
dist(x,y)=l

By integration we find

Zo(J2,K)^0(J1?K)exp {4? χΣ(J'9K)dJ'\ (4-9)
I -Ί J

In (4.9) we choose J^=K. Then, by correlation inequalities

(4.10)

where χχy(K) is the susceptibility of the 3-dimensional X Y model with coupling
constant K. [Strictly speaking, χXY(K)<co for K<K* is not known as a
mathematical fact. It was assumed in Sect. 1.4.] In the 3-dimensional XY model
with coupling constant K we choose R so large that

i (4.11)

where |j7|=max{|/|,i = l,2,3}. Similarly we define, for xelL,

a(x;K) = a(x)= Σ <xy>(J,K). (4.12)
yelL

\y-x[ = R

It is not difficult to prove that the limit of <φc; R), when x3 -» oo, exists and is equal
to Σ <0.y>z3(K). Indeed, for J^K, a(x #) is a monotone increasing function of

|y| = «
x . For J>KWQ add to the model a boundary field on the first layer and let this
field go to infinity. We get an upper bound α+(x; R) for α(x; R), and a+(x; R) is
monotone decreasing in x3. Since there is a unique Gibbs state for the
3-dimensional model when K < X3, we have the result. We can find L < oo so that,
for x3>L,

max(J,K) α(x,R)g|. (4.13)
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For each x, with 0^x3^L, we choose R(x) so that

max ( J, K)a(x9 R(x)) ^ | . (4. 1 4)

This is possible, since χ/J, K)<co. Let .R = max{jR;K(x),0<x3^L}. It is now
possible to apply the argument of Simon. Let ΩR(0} be the box (2.2) and let x be
outside ΩΛ(0)nΓ = £Λ(0). We have the inequality [20],

^ Σ Σ K(j;z)<θ3;><xz>^max(J,K)α(0,^(0))<xf>, (4.15)

where <xz> is the maximum of <xz> for z such that dist(z, ΩR(0}) = ί.lϊ\x\^.n R9

then, by repeating this argument, we get

<0x>^(fy, i.e. ξΣ<ao. (4.16)

4.3. Transverse Correlation Length

We have the inequality

<cos φ(x) cos φ(y)> + = <cos φ(x) cos φ(y) (cos2 φ(z) + sin2 φ(z))> +

^ <cos <p(x) cos φ(y) cos2 φ(z)> +

^<cosφ(x) cos φ(z)> + <cos φ(j ) cos φ(z)>+ . (4.17)

Let z = (0,0,z3) and x0 = Q, x1=(0,0,x?)5 x2 = (0,0,xl), ...,xn-(0,0,xn

3) with

Using (4.17) we get

-}ln<0z>^ Σ -f In <x f _ !*,•>. (4.18)
1̂  j : = 1 L

We choose xf so that xf — xf_ ± = D, for all i.
We replace each <x ί_ 1x ί> by <xl _ 1 x I >z3=

:<OD>Z3, the corresponding expec-
tation value in the bulk equilibrium state (defined with free boundary condition).

To evaluate the error we make, we use the following property: for any ε>0
there exists a subset Λε such that, for any Λ^Λε, we have

(4.19)
Using this result we get

L->oo
_ in <0z> = (£±(J, K)) ~ 1 g - - In <OZ)>z3 + 0(ε) , (4.20)

for ε small enough, depending on D. We can choose ε arbitrarily small and then
take the limit D->oo. Thus

(4.21)

[The value of J does not matter since <x ί_ 1

^<x ί_1x i>(J/,K;) if J'^K]. On the other hand, if J^K, we have

(4.22)

and therefore we get ^(J, K) = £Bulk(K), for J^K.
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5. The High-Temperature Behaviour of Spin-Spin Correlations

In this section we describe the main ideas behind the proofs of results (a) and (b)
described in Subsect. 1.5, see (1.18) and (1.19), taking for granted some technical
results of [12,13].

By performing a partial resummation of the standard high-temperature
expansion (see e.g. [24, 13]) one can represent the spin-spin correlation function
<S(x)S(y)> as a sum over walks, ω, taking nearest-neighbor steps, which start at x
and end at y. More precisely,

<S(x)SGO> = Σ ΠK(b)zKtJ(ώ)9 (5.1)
ω .x ^ y beω

where b — <Λ j) is a nearest-neighbor step in ω, and K(b) = J, for b C Σ, K(b) = K,
otherwise. Furthermore, zKtJ(ώ) is a positive weight on the set of walks from x to y
with the properties that correlations between distant pieces of ω are very small, and
zκ j(ω)-»l, as max(K, J)-»0. For explicit representations of zκ,j(ω), see [24,13].
We now choose x = 0 and y = (r, 0,..., 0).

The techniques developed in [18,13] permit one to show that if either
K<^J<U, or J<;K<^1 then (5.1) behaves like

constr"^exp( — r/ξ), as r-»oo, (5.2)

for some ξ = ξ(K, J) > 0 and some δ which may be calculated as follows. Define a
function G(r) by

G(r)= Σ UK(b), (5.3)
<S:0->(r,0,...,0) beω

where ώ is an arbitrary directed walk from 0 to (r, 0,..., 0) without back-tracking,
and K(b) is as above. One then shows that G(r) behaves like

const/r~<5'exp( — r/ξ'), as r-»oo, (5.4)

for some ξ' = ξ'(K, J) >0, with ξ'(K, J)/ξ(K, J)-»l, as max(K, J)->0, and for some
δ'. The point is now that, under the hypotheses specified above,

δ' = δ. (5.5)

The details of a proof of (5.5) are quite lengthy and technical, but it should be
possible to adapt the methods of [18,13] to provide them. The analysis of the
behaviour of (5.3) in the two extreme situations K<ζJ<ξί and J^K<ζl is
contained in the literature; see e.g. [11], or Sect. 3 of [18]. When K<ξJ<|l, the
easier case, the sum on the right-hand side of (5.3) is dominated by walks, ώ, which
are contained in the surface layer, Σ, except for rare and short excursions into the
bulk whose contribution can be estimated by a simple Mayer expansion for a "gas
of excitations," as in [13,18]. Hence the power correction, r~δ\ to the exponential
decay of G(r) is an ordinary Ornstein-Zernike correction for the generating
function of directed walks, ώ, without back-tracking from 0 to (r,0, ...,0) which

d-2

are entirely contained in Σ = Tίd~l. This is well-known to be r 2 9 i.e.

«3 = <5'=^2. (5.6)

This is what has been claimed in (1.18).
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If, however, J ̂  K <^ 1, then the sum on the right-hand side of (5.3) is dominated
by walks, ώ, contained in {/ e Zd :jd > 0}, where/ is the dth component of j, which
have only rare and short encounters with Σ. Now, all d — 1 components of the
projection, ώ, of ώ onto a plane, π, perpendicular to the 1-axis are simple random
walks indexed by an integer time which is the 1 -coordinate of each site on ώ. The
rf-component, ώd, of ώ is a simple random walk subject to the constraint

ώdO)^0, for all n = 0, l , . . . , r . (5.7)

The other components, ώα, α = 2, . . . , d — 1 , are simple random walks on TL. Hence

= exp(-r/O Π
a = 2

where, for α = 2, ...,d — 1,

Prob{ώα:ώα(r)-0|ώα(0)-0} ~ r~ 1 / 2 ,
r-> oo

while
d:ώd(r)- 0|ώd(0) = 0} ~ r~ 3 / 2 . (5.8)

-r-> oo

For the easy proofs, see e.g. [11]. In conclusion,

l.V.

ί = 5'=^ (5-9)

This is precisely what is claimed in (1.19).
The arguments outlined here represent a complete proof of (1.18) and (1.19),

assuming (5.5). The details of the proof of (5.5) which is based on an analysis of (5.1)
and of the weights zκ j(ω) appearing therein are rather tedious, but are sufficiently
close to the arguments in [10, 12, 13, 18] that we feel we may omit a detailed
presentation.
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