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Abstract. A rigorous method is developed to handle the "large field problems"
in the Wilson-Kadanoff renormalization group approach to critical lattice
systems of unbounded spins. We use this method to study in a hierarchical
approximation the non-Gaussian renormalization group fixed point which
governs the infrared behaviour of critical lattice field theories in three
dimensions. The method is an improvement of the analyticity techniques of
Gawedzki and Kupiainen: using Borel summation techniques we are able to
incorporate the "large field region" into the "perturbative region" so that the
theory is completely described in terms of convergent expansions.

1. Introduction

A major obstacle in the analysis of critical statistical mechanics systems is the lack
of small expansion parameters. For example very little is known about scalar
lattice spin systems with non-Gaussian critical long distance behavior

^ (1.1)

Here, dμ is a translation invariant Gibbs measure on configurations < :̂Zd->IR.
Although renormalization group (RG) concepts provide a powerful framework to
think about such problems, it has been impossible so far to convert them into
rigorous results, except for certain limit cases [10-12].

The methods presented in this paper are not restricted to such cases. However,
we restrict our analysis to a class of hierarchical models. Such models have a long
history in the testing of RG ideas [13-20,25,26]. We prove here the existence of a
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Fig. 1. The fixed point dμ* for Jί and its stable and unstable manifold

non-Gaussian hierarchical fixed point for a Wilson-Kadanoff RG transformation,
in d = 3 dimensions. This type of transformation acts on a measure in two steps.
First, some short range degrees of freedom (those which are thought to be
irrelevant) are integrated out. Then the system is rescaled in a way that is consistent
with a long distance behavior as described in Eq. (1.1). In a suitable space of
measures, the RG transformation Jί is believed to behave as shown in Fig. 1.

Here, dμ* is a non-Gaussian hyperbolic fixed point for Jί, with an unstable
manifold iKu of dimension one. The codimension one stable manifold ifs through
dμ* represents the set of critical measures. These measures approach dμ* under
iteration of Jί, and from this setup it follows that they all have the same long
distance behavior. If such a picture is correct, a critical point βc will be observed in
smooth one parameter families βt-+dμβ passing near dμ*. Furthermore, if the
linearization DJί oίJί at dμ* is analyzed, it is possible to make precise predictions
about the rate of convergence or divergence (critical indices) of certain physical
quantities as β approaches βc. These rates are universal (i.e. independent of the
particular one parameter family considered), since every family intersecting Ψ*s is
mapped arbitrarily close to ifu under iteration of Jί, so that the behavior near βc is
controlled by the local properties of Jί near dμ*. We do not attempt here to prove
the correctness of Fig. 1, except for the existence of the fixed point dμ*.

Consider now probability measures of the form

dμ(φ) = dμc(φ)F(φ), (1.2)

where dμc denotes the Gaussian measure on the space Q)* of configurations
^:Zd->R, with covariance C. Here, C is some fixed positive operator on I2(%d\
as for example the inverse lattice Laplacean.

We specify a RG transformation by choosing an "averaging operator" B and a
"scaling parameter" α>0 such that

Γ = C-a2B*CB (1.3)

is positive. Given such a choice, we define the RG operator Jί by the equation

F(.), (1.4)
where

F(φ) = idμAψ)F(*B*φ + ψ). (1.5)

This definition realizes, for suitable choices of B and α, the above mentioned
desiderata for a RG transformation. It is motivated by the identity

ί dμc(φ)F(φ) = J dμc(φ) (J dμΓ(ψ)F(*B*φ + ψ)), (1.6)
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which shows that the image measure dμ, which we get by integrating out
fluctuations (integration with respect to dμΓ) and by rescaling, is again a
probability measure.

The following choice of B is tailored to the hierarchical model which is defined
below. We fix L to be an integer larger than one, and we set

B = Ld/2A*A2, (1.7)

for

Here, [x] is the point in Έd obtained from x e Rd by taking the integer part of its
coordinates. Note that A*A is the projection in Z2(Z

d) onto functions which are
constant on blocks of size Ld, and that AA* = Id.

Fix now

l = L\ a = L-(d~2)/2. (1.9)

Then our class of hierarchical models is defined by choosing the covariance C to be

C t f = ^

This covariance does not describe a very "realistic" spin-spin-interaction, since it is
not translation invariant. However, it mimicks the long distance behavior of
( — A)'1. For the fluctuation covaraince (1.3) we obtain from Eqs. (1.7) and (1.8)

Γ = ^ . I d . (1.11)

In order to get a first impression of this particular RG transformation, let us
apply Jί to a measure

= dμc(φ)Qxp(-^(φ, Mψ} - const), (1.12)

for M a nonnegative bounded operator on /2(Zd). A short exercise in Gaussian
integrals shows that dμ is again of the form (1.12), but with M replaced by

M = (X2BM(1 +ΓMΓ1B*. (1.13)

By using this relation, the domain of Jί can be extended to include measures which
are not necessarily continuous with respect to dμc. Consider e.g. the family of
Gaussians, formally corresponding to

M = λ-2A*A, λ^O. (1.14)

Inserting (1.11) and (1.14) into (1.13), we get

tt X %j^. (1.15)

The action of the map induced by Jί in /l-space is shown in Fig. 2.
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λuv-0 λHT=3/8

Fig. 2. The "ultraviolet" and "high-temperature" fixed points for the map lf-+Xin the case L = 2

It is an important feature of this RG transformation that the high temperature
fixed point has a finite mass (λm < oo in Fig. 2). It reflects the fact that the
"irrelevant" degrees of freedom integrated out in (1.5) are not just the fluctuations
of wavelength <L.

In the search for a nontrivial fixed point we will now focus on a class of
measures of the form

dμ(φ) = dμG(φ) Π gB(((A*Aψ)j)2), (1.16)
j

where

G~1 = C"1+M9 (1.17)

with M given by (1.14) for some fixed λ>0. To simplify the notation we have
omitted at this point any reference to an infrared cutoff. The functions gB in (1.16)
are chosen to be entire analytic, with a growth rate restricted in such a way that the
mass term (φ,Mφ) dominates for large fields φ. Using (1.4), ...,(1.11) we obtain

(1.18)
j

where

(1.19)

for some normalization constant Z. Our main goal is to prove that the reduced RG
transformation gB^g"B has a non-Gaussian fixed point in d = 3 dimensions, for
L = 2 and λ = ίβ.

The remaining part of the paper is organized as follows. In Sect. 2 we present
our main results and a theorem on Borel transformations, which we need in later
sections. Section 3 contains an outline of the proofs. In Sect. 4 we construct the
infinite volume limit of our model and analyze the correlation functions. Section 5,
finally, contains the details of our proofs in form of a computer program (written in
the programming language C [23]).

2. Results

Motivated by the reasons mentioned in the introduction, we consider here the
fixed point equation 3~BhB = hB, for a renormalization transformation of the form

(2.1)
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The independent parameters d (dimension), L (linear block size) and λ (mass
counterterm) will be fixed as follows

d = 3, L = 2, A = i . (2.2)

Then the block volume I and the scaling parameter α take the values

(2.3)

For convenience later on we choose the normalization constant c in (2.1) to be

c = c(hB) = ] ds exp( - ( 1 + λΐ)s2) \hB{s2)-]1, (2.4)
— oo

so that ϊΐB(O) = 1. Note that the fixed points of (2.1) and (1.19) agree up to a con-
stant factor.

In order to complete the definition of 2ΓB, we will now specify its domain.

Definition 2.1. For each ρ > 0, we define Sρ to be the Banach space of all functions hB

which are entire analytic, real valued on real points, and for which the norm

^ (2.5)

is finite. Furthermore, we define $+ = &Q\{0}.

Proposition 2.2. Let ρ be a real constant, satisfying 10/3 < ρ < 22. Then there exists
some positive constant σ<ρ such that 3ΓBis a C00 map from $* to $*.

Proof. Let ρ be fixed according to the above conditions. Then for every pair (σ, hB)

ψ<σ<ρ, hBe£:, (2.6)
satisfying 1 0

the integrals (2.1) and (2.4) converge and c(hB)>0. We shall now determine those
choices (2.6) for which fiB e SQ. By (2.2) and (2.3) we have

b X p ( ~ ^ 2 ) X
Using the fact that

for r e C and s e R, a short computation leads to the inequality

\hB(t2)\ exp ( - y ) ^ c™st e x P (w 2 ( i - ^ ) ) > (2-9)

with σ given by

(2.10)
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It is now easy to check that σ > ρ for σ sufficiently close to ρ. This implies that
C<C" The same estimates can be used to show that 3~B is C0 0. D

Note that SQ is a subspace of Sσ for σ < ρ. In fact the injection SQ\-^Sσ is compact
(see e.g. [22]). As a consequence we have the following result.

Corollary 2.3. Assume ρ satisfies 10/3 < ρ < 22, and let hB be an element of 8*. Then
the tangent map D3ΓB of 2ΓB at hB is a compact linear operator on 8ρ.

For more information on D3ΓB see below. We shall now state the main result of
this paper.

Theorem 2.4. For ρ = 7/2 there exists a non-Gaussian fixed point h% of ?ΓB in 8*'.

Remark. With the above choice of constants /l = l/3>2/7 = l/ρ, the function

/*(ί) = const- e-λth%{i) (2.11)

is exponentially decreasing along the positive real axis, i.e. the mass term
dominates the large field behavior of the (finite volume) measure (1.16). In Sect. 4
we will use this fact to control the thermodynamic limit.

We prove Theorem 2.4 by first designing an algorithm which reduces the
assertion to a large but finite set of inequalities (see Sect. 3). Then we use a
computer1 to generate and verify the inequalities. The listing of the computer
program is given in Sect. 5. As a by-product of this method we get very good
bounds on the function h%. We also have the following nonrigorous numerical
results (which we believe can be proved by the same methods used here and in
[1,3]).

Numerical Results 2.5. For ρ = 7/2, the spectrum of the tangent map D3ΓB of 3ΓB at
the fixed point h% is contained inside the unit disk, with the exception of a simple
eigenvalue (5 = 2.9040714988....

From these data we get, using the relations given in [18,19], the following
critical indices

v= 5 ° ^ =0.650... (vj«0.638 . . . ) , (2.12)
log δ

For a comparison we have listed in parenthesis the alleged values of the critical
indices for the Ising model, calculated numerically by various authors [27-36,
38-^*7].

The main idea behind the proof of Theorem 2.4 is to consider hB and ίιB to be
the Borel transform [6, 9,10] of two functions h and h, and then to study the fixed
point problem for the RG transformation

SΓ'.h^h. (2.13)

1 An IBM Personal Computer equipped with the 8087-math-coprocessor, and the Microsoft C
compiler 3.0 running on top of MS-DOS 3.1
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Note that this is exactly the opposite of what is normally done in perturbation
theory, which is usually carried out around the trivial Gaussian fixed point of ?ΓB

[8,9]. There the Borel transforms of hB and lιB are studied, and not the inverse Borel
transform as we do. The main advantage of our method is that it eliminates the
need to distinguish between large fields and small fields, which has been the
principal source of technical difficulties in [11,12]. In fact the fields in the inverse
Borel plane are bounded, and contrary to what one might expect, the new
transformation ZΓ takes a very simple form.

Since our definition of the Borel transformation differs slightly from the
standard one, we now first discuss some domain questions before we explicitly
define the action of ZΓ. The domain of £Γ will be chosen among the following
function spaces.

Definition 2.6. Given a positive number ρ, define sίQ to be the Banach space of all
functions h9 which are analytic on DQ = {z e <C| \z\ < ρ}, continuous on the boundary
dDρi real valued on real points, equipped with the norm

||Λ||β=sup|Λ(x)|. (2.14)
xeDe

Furthermore, we define j / ρ

+ = s/\{0}.
Note that the functions in j / ρ , as well as those in δQ, are uniquely determined by

their Taylor series about the origin. Before defining the Borel transform, let us list
first some simple bounds on Taylor coefficients. Consider two functions ges$σ and
hB e Sσ for some σ > 0, and suppose that

ίW=Σc/, \x\<σ, (2.15)
n = 0

V 0 = Σ bnt\ te<E. (2.16)
n = 0

Then for all positive τ < σ and for all k e N we have

llffL, \\0\\a Σ kjτ", (2.17)

ύ?U\\hB\\σ9 \\hB\\τZκ Σ | 6 J ^ , (2.18)
<rk\ n=o yn

where K is some constant, independent of g and hB. The first two estimates are
trivial. The third bound follows by using Cauchy's formula with contour \t\ = nσ,
and then Stirling's formula. The last inequality is obtained computing the norm of
monomials ίi—>ίM.

We define now our Borel transform Ĵ , which differs slightly from the standard
one. (see e.g. [6] for the standard definition). To make the difference more
transparent, we define J* in terms of its action on power series. An integral
representation will be given in Proposition 2.8.
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Definition 2.7? For fixed σ > 0 consider the spaces

eσ=()Λβ, aσ=f)^ρ. (2.19)
Q<σ ρ<σ

Assume that heaσ has the Taylor series

00

h(x)=Σcnx\ (2.20)
n = 0

Then we define its Borel transform @th e eσ by

Σcnj^%t\ ίeC. (2.21)

Note that from (2.17), (2.18) it follows that J* is a one-to-one map from aσ to eσ.
If a function hB e eσ is written in the form (2.16), then its inverse Borel transform is
given by (2.15), with

Cn=

Proposition 2.8. Assume that 0 < ρ < σ . Then there is a constant K such that for
and hB e Sσ,

dx

(2.23)
)zj z J

,^κ||ffllβ, (2-24)

(#-%)(*)= y= ]jtexp(-t2)hB(xt2), (2.25)

\\&~^h II <κ\\h II . (2.26)

Proof Assume that the above conditions are satisfied. Then it follows from (2.17)
and (2.18) that for ρ<τ<σ

This proves (2.26). To show (2.25) we use the fact that in Sτ the function hB can be
approximated by polynomials. Thus it is sufficient to consider hB(t) = t. Using the
identity j / π =(—1/2)!, we obtain

1 I Λ e - f 2 ( x ί 2 ) " = 4 = ί Λ β - V " 1 / 2 x " = ^ ^ x " , (2.28)
j/π -oo |/π o (-2)'

which proves (2.25). Assume now that 0 < τ < ρ. Then by (2.17), (2.18), it follows that

(2.29)

1 We prefer the notation x\ instead of Γ(x +1) = j txe ιdt for the Euler gamma-function
o
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Since polynomials are dense in j ^ ρ , it suffices to show (2.23) for g(x) = xn. Assuming
that n > 0 (the case n = 0 is trivial), the contour integral in (2.23) can be evaluated as
follows.

1 <£ dz ( t \ n λ ,. λ 1 n 1 e dz ft\ n Λ— ϊ — exp —)zn-1=(\+x)1-n— & —exp - z""1

=ρ z

"(S)! (130)

Using this together with a standard formula [37] for the beta-function, the right-
hand side of (2.23) becomes

There remains (2.24) to be shown. But this estimate is now an immediate
consequence of (2.23), since the exponential factor in the contour integral is
bounded by exp(|ί|/ρ). D

This completes our discussion of the domain questions related to our version of
the Borel transformation, and we start now the analysis of the renormalization
transformation 3Γ, as defined in (2.13). From the above discussion it follows that
the map F is related to the map ?ΓB by a "change of coordinates" in function space,
namely

Proposition 2.9. Let ρ = 7/2. Then the transformation 2Γ is a C00 map from s$£ to
j / / , and

1 1 Mi\
(.ΓΛ) (x) = h(x) = ~ ' , iβ~ \\βK\*)) (2.33)

for h in j / ρ

+ . Here, c = c(h) is defined such that h(0) = 1.

Proof The regularity property of 2Γ could be proved directly by using (2.33).
However we will not do this, since things already follow from Proposition 2.2 and
Proposition 2.8. To show (2.33) we start with formula (2.1). Using (2.25) we get

(2.34)



504 H. Koch and P. Wittwer

Next we change variables from (ί, s) to (ί, τ), setting

s = s(t,τ) = q(x)τ-τ^j-ι}/^t, (2.35)

where

Then the integral with respect to dt in (2.34) can be computed explicitly, and we
obtain

I ^ 2) (2"37)

Equation (2.33) follows by inserting the numerical values given in (2.2) and
(2.3). D

Theorem 2.4 is now a corollary of the following theorem for ST.

Theorem 2.10. For ρ = 7/2 there exists a fixed point h* of ZΓ in s/*. The function
h% = @h* is non-Gaussian.

The proof of this theorem is outlined in the next section. The details are given in
Sect. 5.

3. Proof

We prove Theorem 2.10 by reducing it to a large number of simple inequalities. We
start by rewriting the fixed point problem for the RG transformation SΓ as a fixed
point problem for a contraction Jί. Jί is then disassembled into a product of maps
which can be bounded individually. This procedure leads to a very large number of
inequalities which need to be checked, and we use at this point a computer to
perform the bounds, and to assemble them properly.

3.1. The Contraction Jί

In order to simplify some estimates, let us introduce the norm

(3.1)i) hr
Furthermore, we denote by sd the Banach space of functions h in 'sίγ for which the
norm (3.1) is finite. Instead of 9~> we will now analyze the transformation

where βr is defined for r > 0 by

φ (3.3)
Since si contains $£τ for every τ > l , it follows from Proposition 2.2 and
Proposition 2.8 that 91 is a C00 map on s/\{0}.
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We will now show how the fixed point problem for M can be reduced to a fixed
point problem for a contraction. More precisely, we first define a map Jί, which
has a "good chance" of being a contraction, and whose fixed point (if it exists) is
related to the fixed point of ffl. The necessary properties of Ji are proved
afterwards. A numerical analysis (whose details are irrelevant here) indicates that
01 has a nontrivial hyperbolic fixed point, with a one-dimensional local unstable
manifold which is approximately parallel to the lines

J ^ = {/z + s φ e I R , φ ) = z + fz 2}. (3.4)

From these findings we can expect that, given a function h close to the fixed point of
&, there are points on ^(i?ή) which are even closer. This motivates the following
definition of Jί. To simplify the notation, let us identify functions σ in si with
sequences (σ2,σ3,...). The identification is made by means of the power series

(3-5)
n = 0

Consider the family si—>US of "unpack" operators on si, given by

(3.6)

£ <v", (3-7)
« = 5

where a = 0.6989740... (see Sect. 5) and e(z) = z + (3/5)z2 are fixed. Then we define
Jί by the equation

UsJ?σ = mUsσ, s = s(σ). (3.8)

Here, s = s(σ) is implicitly defined by the requirement that the right-hand side of
(3.8) lies in the range of Us (see Sect. 3.2 below). Note that if σ* is a fixed point of M
in si, then

ft* = Λ " 1 ϋ s σ * , s = s(σ*)9 (3.9)

is a fixed point of 3Γ in sie.
The factors 3 and 2 in (3.7) have been chosen with the intention to minimize the

norm of the tangent map oίJt near cr*. Our next goal is to verify the conditions for
the contraction mapping principle. This amounts to show that there is a function
σ0 in si such that

a) Jί is C1 in a neighborhood Wp = {σesi\\\σ — σ0\\ <β} of σ0,
b) The tangent map DJίσ for σe%is bounded by \\DJίσ\\^θ<\,
c) σ0 is an approximate fixed point of Jί, i.e. \\Jiσ0 — σo|| ;gε</?(l — θ).
As a consequence of a),..., c) there is a unique fixed point σ* of ^ in <%β, and

Theorem 2.10 follows.

3.2. Formulas for Jt and DJί

We start the proof of a),..., c) by replacing a) by a stronger but more convenient
condition. Consider the function s( ) defined by (3.8). For given σ in si, s(σ) is
obtained as the fixed point of the map

, σ) = (0lUxσ)'(O)-a. (3.10)
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To find this fixed point we use Newton's method, i.e. we iterate the map

fe(x,σ)-ll \s(x,σ)-x), (3.11)

starting with x in some given interval /. To guarantee convergence, it is sufficient to
verify the conditions

^ and Nσ(x)Cl, (3.12)

for all pairs (x, σ) in / x °Uβ. Since s is C00 on / x tf/β, it follows that s( ), and thus also
Jί, are C00 on %β.

In the next subsection we will outline how the inequalities b), c) and (3.12) are
proved on a computer. As a preparatory step we decompose Jί and DJi into
products of more elementary maps. First we have

jiσ=υ;ι$υsσ, (3.13)

where s = s(σ) is the fixed point of (3.11). Note that all three factors in (3.13) are
nonlinear. The nonlinear parts of & are given by

T, (3.14)

and
1Kz). (3.15)

In order to be able to work with the spaces ee and sd only, we combine E with a
scaling βr with r=8.956>8. This leads to the following decomposition of 01.

(3.16)

Here, 38 is the Borel transform (2.21), and the remaining factors are defined by

(3.17)

r r i+^zi

and

(3.18)

Using the definitions of 0t and Us, we get the following expression for the tangent
map ΌJί of Jί,

σδσ=Wό;
1D<MϋsσWδsδσ, (3.19)

where s = s(σ), and where δs is given by

δσ. (3.20)
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The tangent map DM of 01, as obtained from (3.14), ...,(3.18), is

, (3.21)

(3.22)

z) = [Λ(0)] " 2(Λ(0) δh(z) - ft(z) δh(O)). (3.23)

3.5. Bounds Used on the Computer

We first give a definition of what we call a bound in the context of computer

assisted proofs.
Let Σ, Σf be sets, and define 0>{Σ) and &{Σ') to be the set of all subsets of Σ and Σ'

respectively. Let furthermore F and G be maps from DFC&(Σ) and DG C&{Σ) to

Definition 3.1. G is called a bound on F if

a) Z ) F 2 # G ,

b) F(K)QG(K),VKeD9.
"G is a bound on F " will also be written as G^F.
In this language, our estimate on the tangent map DM of Jί is a bound G on

the map

i^ i^{||Z)^J|σejQ, i£c^. (3.24)

Bounds of the type just defined have some general properties which make it
possible to "mechanize" estimates. One of them is the fact that if G = Gx o G2 is well
defined, with Gx ̂  Fί and G2 ̂  F2, then G is a bound on FλoF2. In order to ensure
that bounds can be properly composed, we adapt the following procedure.

• Given Σ and Σ\ we define a set of standard sets,

std(Σ) C S\Σ), s td(r) C ̂ ( £ 0 . (3.25)

• Given a map

F:0>(Σ)2DF-+0>(Σ'), (3.26)

we then construct a map

G:std{Σ)2DG-+std{Σ'), (3.27)

such that G ^ F .
Standard sets will be defined below for Σ = R, J / , and eρ. For products of such

spaces we define

s t d ^ i x Σ2) = std(Σ J x std(Σ 2). (3.28)

Let us start with the bounds for binary operations on real numbers, such as "sum,"
"product," "equal,".... Each of these operations is regarded as a map from

x R) to ̂ (R) . For example

product (K) = {x j>|(jt, j ) e iC}, K e std(R x R ) , (3.29)

R < > < < ^ x > } , (3.30)
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where 9Ϊ is a fixed finite set of rational numbers, containing zero and one (see e.g.
[1,2,24] for a discussion of such a set). Then for each of the maps F listed above,
there is a bound

G: std(R x R)2/)G->std(R) (3.31)

with nonempty domain, and the graph of G is a finite set. It is clear that in general G
is not unique. We have chosen 9Ϊ and G in such a way that G(K) can be evaluated
on a computer. The details can be found in Sect. 5. Following the tradition of [1,2],
the elements of 91 and of std(R) are referred to as reps and scalars, respectively. The
bounds on "sum," "product,"..., are now regarded as given, and they will be
denoted by "s_sum," "s.product," .... In order to make formulas more readable,
we will also use notations like

{x - y} = s _ product ((x, y)). (3.32)

Having chosen all the necessary scalar bounds, we proceed by considering maps of
the type (3.26), where Σ is a function space. A simple example of such a map would
be

norm(K) = {||/ι|||/ιeK}, KCs/. (3.33)

Following our standard procedure, we describe now first the standard sets for srf.
We fix, once and for all, an integer N>0. Then we define vectors as (JV + 3)-tuples
\ = (vo,vl9 ...,vN,v(G\v{H)) of scalars. To every vector v we associate a set

Γ N

ΰ= <hes/\h(z)= Σ ciz
i + zh{G\z) + zN+1hiH\z);cievi;I i = o

/z(G)esί9 ||/z(G)|| e v{G); h{H)e jtf, \\h{H)\\ e vmj, (3.34)

and we choose std(j/) to be the collection of all these sets v. In order to simplify the
notation, we shall only discuss here vectors v whose general components ι/G) and
higher order components v(H) are intervals which have zero as their lower
boundary. Then the correspondence vi—>ι3 is one-to-one, and we can identify
vectors and standard sets.

We are now in the position to give a bound on the norm (3.33). For example, if
s_abs is a bound on the absolute value function, then the map

(3.35)

clearly satisfies all the necessary requirements. Similarly we can construct vector-
valued bounds for elementary operations on si such as "sum," "product," .... For
a descritpion of these bounds we refer to Sect. 5. A detailed discussion can also be
found in [1-5, 7].

The bounds considered so far are the basic building blocks to prove
Theorem 2.10. Such blocks can be assembled to provide bounds for the map

F\K\->{\\Jΐσ-σ\\\σeK}, KZsd, (3.36)

and for the map given in (3.24). Due to the large number of steps involved in this
process, we have written this assembly plan in the form of a computer program.
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The main part of this program is the equivalent of Sect. 3.2, with the original maps
replaced by their corresponding bounds. A large portion of the other parts of the
program contains the exact definitions of the general purpose bounds such as
s_abs, t>_add,.... Finally, the program contains yet another part which is new and
specific to our problem. Namely, we bound maps from and to the spaces eρ. These
bounds will be discussed in the next subsection.

To complete our discussion on bounds we define now the standard sets for the
spaces eρ [see (2.19) for the definition of eρ~\. We define a Borel-function to be a list

whose first N + 3 components are scalars, and whose last component b{E) is a rep
(i.e. an element of ϊί). To every Borel-function b with b(E) = ρ, we associate a set

S=\hBeee hB(z) = Σ
1 = 0

(3.37)

and we choose std(eρ) to be the collection of all these sets b. In order to simplify
the notation, we shall only discuss Borel-functions b whose general components
biG) and higher order components bm are intervals which have zero as their lower
boundary. Then the correspondence bπ->fo is one-to-one, and we can identify
Borel-functions and standard sets.

3.4. Bounds on Borel-Functions

We construct here bounds for the following three maps,
a) The Borel transform

^ieJ, γ\->{08h\he\}. (3.38)

b) The inverse Borel transform

F:0>(eβ)2DF^0>(rf)9 \>^{{@Jc)~ιhB\hBe\>}. (3.39)

c) The product of Borel-functions

F: 0(eβl x eρ2)2DF^0>(eρ), K^{gB,x gBι2\gBtx x ft,,2 εK} . (3.40)

In the construction of these bounds we will use a map ci—>{c} which associates to
every real number c, \c\ sufficiently small, a scalar {c} which contains c. This allows
us to define a product of real numbers with scalars, namely (c, x)ι—>{c s}
= {{c} s}.

The Borel Transform. In order to bound the Borel transform (3.38), it suffices to
construct a map

tdfo), (3.41)

with the property that for all vectors v e DG,

. (3.42)
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Let now \ = (vo,vί, ...,vN,v{G\v(H)) be a vector. Then we define a Borel-function

in std(βx) by

= [0,6|],

(3.43)

(3.44)

(3.45)

where { } > denotes the upper boundary of the scalar { }. We claim that the m a p

G: Vr->b satisfies (3.42). It is clear that this is the case for polynomials, i.e. when v{G)

and υ(H) are zero. It is also easy to see, that it then suffices to restrict the analysis to

functions

(3.46)

(3.47)

from which (3.42) follows. To prove (3.47), we use the integral representation (2.23)

for the Borel transform @l. We have

h(z) = zk-l(z),

for k = \ or k = N + ί. We will show that for ί e C

dx Γ 1 f dz
ίΓ/=kl7. ί — e x P|ii z

t \h(z)Ί
+ X)J Z J

dx •'/(z)]

dx 1 dz 6 X PVz(l+x)

2πi \z\ = i z

The contour integral is bounded by using

K— Δ /- v

'— Σ —
v = o v !

k - 1 •/(z)

(3.48)

00 ϊ

Σ ^
= k-ί

1

: - l ) !

v-fc+l

v!
=

oo

ΣT-
v=o y\

» (fe-l)!v!
v?0 (V + /c - 1 ) !

ξ

+ k

ξv

v!

V

-1)!

1

= (*-!)!
(3.49)
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and therefore, using a standard integral representation for the beta-function [37],
we get

(3.50)

This proves (3.47).

The Inverse Borel Transform. We bound the map (3.39) for c>ρ and ρ e 9 ϊ by
constructing a map

G:std(eQ)2DG-+std(s/)9 (3.51)

which satisfies

{0»/ c Γ %\hB e b} ς G(b), beDG. (3.52)

Given a Borel-function b = (bo,bu ...9bN9b
{G\b{H\ρ)9 we define a vector

y = (vo,vl,...,vN^G\v™)

by choosing

{ f Ξ f j (3'53)

, (3-54)
-c/τ)J

, (3.55)

where τ = (2/5)ρ + (3/5)c. We claim that the map G: bι->v satisfies (3.52). As above,
the "polynomial part" (3.53) is trivial, so we may assume that b only contains
functions of the form

hB(t) = t%(t), lBe$Q, (3.56)

with /c = l or fc = JV + 1 . The inverse Borel transform of such a function hB is given
by

1 oo 2 ^ °°

h() (%-1h)() f

(3.57)

Therefore

i ife /ι I 2\

\h(z)\^η= I Λexp(-ί 2 )ί 2 ί l | | / β | | ρ exp(^), (3.58)
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and

sup | / τ - ^ ( z ) H sup \h(τz)\ί^=( J ί 2 f c exp(-ί 2 (l -τ/ρ))dt) \\lB\\Q
|z|^i \z\zi |/π\-oo /

To bound the norm of X " 1Λ as an element of si [see (3.1) for the definition
we use Cauchy's formula with contour \z\ = τ/ρ, and obtain

11/311 ^ γ^~ sup |Λ(τz)|

(k—-)! c f c 1
^ j " Z ^ * HU« (3.60)

This establishes (3.52) for the bound G, defined by (3.53), ...,(3.55).

Remark. The particular choice τ = (2/5)ρ + (3/5)c has been made in order to
minimize the right-hand side of (3.60) for k = 1. For large k, (3.60) yields a very poor
bound even for optimal choices of τ. We follow therefore the strategy to transform
"higher order bounds" into "lower order bounds" whenever this is possible
without negative consequences for subsequent estimates. More details can be
found below in the discussion of the product of Borel-functions.

The Product of Borel-Functions. Given Qι,Q2^Q3^% satisfying £ 3 > £ i + £2>
 w e

construct a bound

G:std(eρίxeρ2)2DG->std(eρ3) (3.61)

on the product (3.40), satisfying

b2)). (3.62)

Given two Borel-functions b t and b 2 in eρi and eQ2 respectively, we define
G((b1,b2)) = b3, where

b3,t=i Σ 6 l i k 6 2 t i _ J , i = O,...,ΛΓ, (3.63)

Ό,^)*], (3.64)

- [ 0 , 0 ] , (3.65)

with (bψ^ to be specified below. The sum in (3.63) is defined by repeated
application of the scalar bound "s_sum." For the precise order of summation see
Sect. 5. Since as noted above, the inverse Borel transform (3.53), ...,(3.55) gives
poor estimates on higher order terms, we have chosen here to add all of these terms
to the general bound bψ\ This can be done by using the inequality

xk ^ ί-j exp(x), k e N, x e R. (3.66)
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We define, for ε = {ρ3—{ρ1+ρ2)}>

+ Σ Σ bltkb2,i-k
= ί-N

+ Σ lfci.,1^1 7 ^ 7 ) + Σ |*2><I*F>{ τ f ^ 7 ) } • (3-67)

Again, the sums and products in (3.67) are to be replaced by their corresponding
scalar bounds. Similarly s\-*\s\ is a shorthand notation for the bound on the
absolute value function. It is now clear that the map G: (b l5 b2)f—>b3 satisfies (3.62),
and is therefore a bound on the product (3.40).

Remark. The domain DG of G is defined in terms of the domains of the maps
"s_sum," "s_ product," .... Namely, DG is restricted to pairs (b1? b2), for which the
scalar bounds in (3.63) and (3.67) can be evaluated. Similar restrictions apply to the
other bounds discussed in this subsection. Their exact definitions can be found in
the computer program in Sect. 5. Such restrictions are implemented there in the
form of "conditional statements," which result in error messages in the case of a
domain violation.

4. Infinite Volume Limit and Correlations

In this section we construct the infinite volume measure corresponding to the
function h% described in Theorem 2.4, and discuss its two point function.

Denote by / * the function defined by the equation

where h% is the fixed point of 3~B. Since h% is a solution of Eq. (2.1) for λ —1/3, / *
solves Eq. (1.19), for /l = 0, and for some choice of the constant in (4.1). From
Theorem 2.4 it follows that / * satisfies the bound

|/*(ί) |^constexp(-iReί+f|ί |), (4.2)

and therefore / * is exponentially decreasing along the positive real axis. A
repeated application of the identity (1.19) for / * leads to a bound

^ < / * ( ί 2 ) < ^ ) e x p ( - ( | - ί 5 ) ί 2 ) , ί eR, (4.3)

for every δ>0, 0<k(δ)<co.
We consider now finite volume measures dμ{n) associated with a sequence of

cubes Λί9Λ2,...

yln = {-L",...,L"-l}3. (4.4)
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If φ is a spin configuration on Aw then we define dμin) by the equation

i>), (4.5)

where

Fn{Φ) =^- Π f*(((A*Aψ)j)2), (4.6)

and where

Cn=
l-(ί+L-2 Σ2L

2\A*fA^j . (4.7)

The normalization constants Zn are chosen such that the measures dμ{n) are
probability measures. Cn is the hierarchical covariance introduced in (1.10),
restricted to the cube An.

Proposition 4.1. For n = 2,3,... the covariances Cn and the functions Fn satisfy the
following recursion relations

(4.8)

Fn -άΦ) = Fn(Φ) = ί dμΓ(ψ)Fn(aB*φ + ψ), (4.9)

wiίft B* = Ld/2(A*)2A and Γ = l/2 Id, as defined in Sect. L Furthermore the
normalization constants Zn satisfy Zn = Zί for all n.

Proof. T h e recursion relation (4.8) is an immediate consequence of the definition
(4.7). In order to prove (4.9) we compute F\,

Π j

Since the integrand only depends on the block part s[L-ij] = (A*Aψ)j of ψp the
fluctuations (1 — A*A)ψ can be integrated out, and therefore

f*(((L(A*)2Aφ)j+Sι)
2)

= i Π
£n ieΛn-i

= ^r Π f*(((A*Aφ)i)
2)=^Fn^1(φ)- (4.H)

There remains to be shown that Zn = Zn_ί. Using (4.8), we get

1 = ί dμCn(Φ)Fn(φ) = ί dμ^Xφ) f dμΓ(ψ)Fn(aB*φ + ψ)

1(φ)^Fn.1{φ)=^λ (4-12)

This completes the proof of Proposition 4.1. D
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In the following we discuss the thermodynamic limit of the measures dμ{n\ It is
convenient to do this by considering the corresponding characteristic functionals
ίfn. The characteristic functional, or Fourier transform, of the measure dμ{n\ is
defined by the equation

&n{g}=ίdμ<"Xφ) txp(Kφ, g», (4.13)

where <, > denotes the inner product in /2(^3)
The limit n-+oo will be performed by using the following properties.

Proposition 4.2. Let g be a complex valued function on Am and let β > \gj\ for all
jeΛm. Then for n^m

- % m - n ) , (4.14)

where K is some constant independent of m, n, and g, and where

s(g)=κ- Σ [(/? 4 / 3 +r 2 / 3 ) l0; l2/3 + l0/] (4.15)
JeΛn

Furthermore the characteristic functionals ίfn are entire analytic in all of their
arguments gp and they satisfy ί^{0} = l.

Proof The characteristic functional £fn can be written as

^(φ)Gxp(iφ -A*A)φ, g})

x Π f*(((A*Aφ)j)exp(/ gj(A*Aφ)j). (4.16)
JeAn

As in (4.10) the integral over the fluctuations r = (\—A*A)φ factorizes. It can be
computed explicitly, namely

If dμCn{r) exp(z <r, (1 -A*A)g»\ = |exp(-i<(l -A*A)g, Cn(l -A*A)g})\

» . (4.17)

The remaining terms will be bounded by using the exponential decay of the
function /*. From (4.3) it follows that there are constants k and κ9 such that for

f(t2) exp(|σί|) ^ (fit2))1 ~*{k exp( - t2/4)γ exp(|σί|)

^ (fit2))1 ~p exp (κ(β4/3 + β-2I3)σ213). (4.18)

The last inequality is obtained by taking p = (σ/β)2/3 <1. This bound can be
applied to each factor in (4.16) separately, yielding

({))U(Φ) Π U(ίtA*Aφ)j)2)y-»9 (4.19)

where s(g) is given by (4.15), and where

Pj=(\gj\/β)2l3<l. (4.20)
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Denote by F the product in (4.19). Using the relation (4.8) the integral in (4.19) can
be written as the integral of dμCn _lF, with

F(φ) = I dμΓ(ψ)F(aB*φ + xp). (4.21)

The right-hand side of (4.21) factorizes into one-dimensional integrals, which can
be bounded by using the fact that / * is a solution of Eq. (1.19) for λ = 0. Applying
Holders inequality we get

F(Φ)= Π A= ί d
]/π -oo

S Π lf(((A*Aφ)i)
2)']1-pi, (4.22)

ieΛn- i

where

Pt=i}^Λ_Pj (4-23)

Integrating this bound on F, we get

^ n - X Φ ) Π U(((Λ* Aφ),)2)]1 ~ pΊ. ( 4 . 2 4 )

The steps (4.19) to (4.24) can now be iterated n— 1 times. The integral which we
obtain that way is bounded by Z\ ~α", where an is the average value of the function
j\-^Pj on the cube An. This proves the bound (4.14). The analyticity of the
functionals £fn follows from the absolute convergence of the integral (4.13). This
completes the proof of Proposition 4.2. D

Corollary 4.3. There exists a thermodynamίc limit measure dμ for the sequence of
finite volume measures dμ(n). The Fourier transform £f.

Kφ,g)), (4.25)

is analytic in all gp and it satisfies the bound

|^te}|gexp(s(fif)), (4.26)

with s(g) given by (4.15).

To be more specific, £f is defined on the space 3) of functions g on Z 3 with
compact support, and is obtained as the limit of a subsequence of (6fu 5^2,...). The
limit is constructed by using MonteΓs theorem. It then follows (see e.g. [21]) that £f
is the Fourier transform of a probability measure dμ on the (algebraic) dual £^* of
9.

In the remaining part of this section we analyze the second moment of the
infinite volume measure dμ. Under an assumption on the tangent map of the RG
transformation ?ΓB, we will show that the long distance behavior of the two point
correlation function is canonical, i.e. that the critical index η, as defined through
Eq. (1.1), is zero in our model.

The moments of dμ are obtained by differentiating the characteristic functional
(4.25) with respect to the parameters gjm Note that by Cauchy's theorem, the
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moments of the finite volume measures dμ(n) converge to the moments of dμ, along
the same sequence Ω of indices as used in the construction of Sf. Since the
fluctuations (1 — A*A)g contribute only a trivial factor to (4.25), we shall assume
that (1 — A*A)g = 0. Then £f{g} can be written as a partition function

iT(f)=lim 1-ldμcSφ) Π MA*Aφ)j), (4.27)

neΩ Zn jeΛn

with a single spin distribution f:j\->fj given by

2 ^ ). (4.28)
Following the RG philosopy, we study the long distance behavior of the measure
dμ by successively integrating out small scale degrees of freedom in (4.27). From the
identity (1.6), we obtain

(4.29)

fit) = - L 1 ds exp( - s2) Π //at + s). (4.30)

Note that the moments oϊdμ can also be written in the form (4.27), if we allow some
of the functions fj to be replaced by the corresponding ̂ -derivatives. We shall only
consider here the two point functions

SμCn(φ) Π f*(«tA*Aφ)j)2) Π K(A*Aφ)j).
neΩ jLn jeΛn\{k,m} je{k,m}

(4.31)

In this particular case, and for \k — m|>3, the identity (4.29) reduces to

(4.32)

with T defined by the equation

(TΛ)(ί) = / ~ ϊ dsexpi-s^mfrt + sWy-^oit + s). (4.33)

We choose now, once and for all, the function h to be

h(t) = t f*(t2). (4.34)

For this choice of h the two point function (4.31) becomes

S2(k, m;h) = ί dμ{φ) {A* Aφ\{A* Aφ)m, (4.35)

and we can apply the identity (4.32) to estimate its long distance behavior. The
functions Th, T2h,... can be computed explicitly. The result is

(Tnh) (0 = (aΐ)ΨnXi) = (α/)M j ^ - [Λ2(ί) - L- 2"Λ1(ί)] , (4.36)
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where

*i(ί) = t (/*)'(ί2), h2(t) = ί ^ t -/*(ί2) + hβ). (4.37)

Remark. The map Γ is related to an extension of the RG transformation 3~B. This
extension has two additional eigenvalues of modulus > 1, namely ad and ocl/L2. The
functions ht and ft2 are the corresponding eigenvectors for T.

We now iterate the relation (4.32) as many times as possible. The maximum
number of iterations depends on the points fc, m e Z3, and is given by

tto = max{rc|[L-"fc] + [L-nm]} = - ^ -+Θ . (4.38)
logL \\k — m\J

This leads to the following bound on the two point function (4.35),

( ί \ \n°
[L~n°fc], [L~"°m]; τ T) h

\ ι )
— /v^oC ίΓT~n°lr~\ Γ J ~n®wι~\ ' h(n®)\
— UC O 2 vL ^ J ? [_•*-' rrlj , I )

Γ/2M0 / C (ΓJ - B Q Π Γ Γ - W 0 W I 1 ^ Λ /T]^Γ-2"0λ

where Z is some nonnegative constant. Here, we have used that there are three
constants X, 7, Z, such that

S2([L-"o/c],[L-Πom];ε/ι1+/ϊ2) = Xε2 + yε + Z, (4.40)

for every ε and for every choice of (fc, m, n0) satisfying (4.38). This can be seen by
iterating the RG transformation defined in (4.29). For the first step, the integrals
(4.30) are given by

A 1 , (4.41)

with p = 2 if i = [L~Π°~1fc] = [L~Π0~V], and p = 0 in all other cases. This shows
that the right-hand side of (4.40) is independent of fc, m, and n0. To bound the
constants X, Y, and Z, we can follow the proof of Proposition 4.2.

Remark. This does not prove that the critical index η as defined in (1.1) is zero, since
the field strength Z in (4.39) might vanish. To eliminate this possibility, we would
have to analyze the map T (or the tangent map of ̂ B) in more detail. A sufficient
result would be that the function g, defined by

g{i) = U%t2)Y'[h2{i)]\ (4.42)

has a nonzero component in the spectral subspace associated with the eigenvalue 8
of T.
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5. The Computer Program
/• 5.1. DEFINITIONS, TYPES, DECLARATIONS

i 6

#define degree_plus_one 56
#define numberjof-calculated-column-vi
#define radius_of_domain S.δe + OO
#define radius.of_ball 5.0e-09
#define scalingJactor 8.956e + 00
#define approxJinear.coefF 6.989740S95952895e-01

/• types and external variables +/
# include "Section5.2"

/» reps —macros and rup »/
#include "Section5.8"

/• More declarations */

main()

extern int
n,nl;

extern reps
rrho,rup(),rmaxab8();

extern
erho;

extern
varg,

int

scalar

vector
vfact;

jjmax;

reps
repsi lon,rbeta,rtheta;

scalar stl;

vector
vθ,vθi,vθtl,vθt2;

/* Initialisations */

nl = degree_pluβ_one,
n = n l - l ;
read _approx_fixed .point (&vθ);
rrho = radίuβ_of_domain;
8rcon8t(rrho,&srho);
init_pack_and_unpack();
imt_multiplication_by(&vfact);
init _composition_with(&varg);

/• The a p p r o x i m a t e fixed point */

/• calculate image •/
m(<fevθ,<kvθi),

/• calculate norm of dif ference •/
printf("NORM OF DIFFERENCE \ n \ n " ) ;
vequal(<kvθi,<kvθtl);
vminus(<kvθ,<kvθtl);
snorm(<kvOtl,<kβtl);
rep8ilon = rmaxabβ(<fcstl);
printf("epsilon %32.16e %S0.16e\n\n" (βtl.l,βtl.u),

/* Bound on the tangent map DM */

/* prepare ball around approx fixed point •/
rbeta = radius _of _ball;
8scalar(rzero,rbeta,<kv0.g);

( )

/• norm of polynomial part +/

/ printf("BOUND ON DM \ n \ n " ) ;
>/ j m ax = number_of .calculated -column .vectors;

for(j = 2;j<=jmax;j + +){
vβetzo(&vOtl);
sequal(&sone,vOtl.p+j);
dm(<fcvθtl,&vθt2);
snorm(<kv0t2,<k8tl);
pπntf(" column %d %S1.16e %30.16e\n" J.βtl.l.βtl.u);
rtheta = rmax2(rtheta,rmaxabs(<kstl)),

/• higher order term +/
vβetzo(&vOtl);
for( j = j m ax+1 j < = n j -f -f-)

8scalar(rzero,rone,v0tl.p+j);
S8calar(rzero,rone,&v0tl.h);
dm(<kvθtl,<kvθt2);
βnorm(&v0t2,<Siβtl); *
printf("higher order %27.16e %S0.16e\n\n" ,stl.l,βtl.u);
rtheta=rmax2(rtheta,rmaxabβ(&βtl));

/» check if contraction •/
if(repsilon<rdcprod(rddiff(rone,rtheta),rbeta)){

printf("* contraction on ball •\n");
pnntf ("•••••••••••••••• * » \n");

}

/* Include the subroutines */

^include "Sectionδ.S"

/• the contraction M */
#include "Sectionδ.4"

/• routine* involving borel — function* •/
#include "Sectionδ.δ"

/• vector operation* •/
#include "Sectionδ.6"

/• routine* acting on scalar* •/
#include "Sectionδ.7"

/• 5.3. TYPES AND EXTERNAL VARIABLES •/

#include <stdio.h>

typedef int logical;
typedef double reps;

typedef struct s{
reps 1;
reps u;

scalar;

typedef struct v{
scalar p[degree_plus_onej;
scalar g;
scalar h;

vector;

typedef struct b{
scalar p[degree_plus_one];
scalar g;
scalar h;
reps e;
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boreUunction;

int n,nl;

reps
rrho,r0save,rl5ave,r28ave,r3save,
rzero = O.0e-fOO,
rone =:1.0e-f00,
rtwo =2.0e + 00,
rthree = 3.0e + 00,
rfour = 4.0e + 00,
rhalf = 0.5e + 00,
r3half=1.5e + 00;

scalar
8a,8rho,sdnu,8rarg,Bnormal,
s2,s8,β4(si2,siS,βi4,
szero = {0.0e-|-00, O.Oe + 00},
sone ={l.Oe-hOO, l.Oe + 00},
stwo = {2.0e + 00, 2.0e-f-00},
8three={S.0e + 00, S.Oe + 00},
sfour ={4.0e + 00, 4.0e + 00},
shalf ={0.5e + 00, 0.5e + 00},
sShalf={l.5e + 00, 1.5e + 00};

vector
ve, varg, vf ac t ,vhhat,vpo we r[ degree .plus .one];

boreUunction bhto7;

/• 5.3. INITIALISATION ROUTINES •/
/
/
/m

/• r ead.appr ox S ixed-point •/
/• init .pack .and-unpack */
I* init.multiplication_6y */
/* init -composition.with */

read_approx_fixed_point(pv)
vector *pv;
{

extern FILE
fopen();

FILE fp;

int i;

double d;

fp=fopen(" Sectionδ.9" ," r" );
fscanf(fp,"%»86c")ί

( ){

srconst(d,pv— >p + i);
}
fclose(fp);

sequal(&szero,&pv—>g);
βeq ual(& szero, <fepv —>h);

}

init .pack .an d .unpack ()

extern scalar
sa,s2,sS,s4,8i2,siS,βi4;

extern vector
ve;

/• make approximate eigenvector ve •/
vsetzo(&ve);
srconst(rone,ve.p+l);
srconst(.6e-f-00,ve.p+2);

/* choote coordinate$ •/
8rconst(approχjinear_coeff,&sa);
8iconst(l,<ks2);

siconst(2,&84);
sinv(&β2,<Sίsi2);
8inv(<ksS,<fesiS);
βinv(&s4,<Sisi4);

init_nαtιltiplication_by(pv)
vector *pv;
{

extern scalar
srho;

scalar s;

/• produce v(z) = (l + z*rho/ZS)**{-l/2) •/
siconst(S3,<ks);
squot(<Si8rho!&8,<fcs);
V8etms(pv,<k8);

init .composition _-wit h(pv)
vector *pv;
{

extern reps
r0save,rl8ave,r2save,rSβave,
rmaxab8(),rnorm();

extern scalar
srho.srarg;

extern vector
vpowerj];

reps
rl,r2,rS;

scalar
stl,8t2;

vector

vtl,vt2)vtS,vz,vs[6];

srcons t (rone /scaling -fact or, &srarg);

/* produce the vector •// { ) { { /
siconst(S3,<k8tl);
squot(<ksrho,<fe8tl,<S2βtl);
V8etin(&vz,&βtl);
siconst(ll,&stl);
sprod(&;8tl,&8rho!<i!:8tl);
squot(<ksthree)<S£βtl,<k8tl);
8icon8t(22,<kst2);
8inv(<kst2,<kst2);
vsetli(&vtl,&stl,&9t2);
vmult(<kvtl,<kvz,&vz);
8inv((ksrarg,ίistl);
vsmult(<S£VZ,<k8tl,&vz);
vequal(<kvz,pv);

/• save powert of vector v +/
l ( & f e k 2 )

;
whi le( j<=nl){

vequal(<fevt2,<kvs[i+ + J);
vmult(<fcvt2,<kvt2,&vt2);

ii = l ;
vequal(<kvz,&vpower[ii+-f ]);
r l = rmax2(rone )rnorm(0 )&;vz));
r2 = rnorm (1, <k vz)
for(i = S;i< = nl;i + = 2){

k ( ) /
j ;
vsetli(<Sίvt2,<ksone,<k8zero);
while(k>0){
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kh = k/2;
if(kh + kh! = k){

vequal(&vs[j],&vtS);
vmult(&vt2,&vtS,&vt2);

}
k = kh;

}
vequal(&vt2,&vpower[ii+ + ]);
rl = rmax2(rl,rnorm(0,<fcvt2));
r2 = rmax2(r2,rnorm(Ί,&vt2));
if(ii< = n){

vmult(&vt2,&vz)&vt8');
vequal(&vt3,&vpower|ii + -f-]);
rl = rmax2(rl,rnorm(0,&vtS));
r2 = rmax2(r2)rnorm(l,<SivtS));

}
}
nh^n/2;
if(nh-fnh = =:n)

rS = rnorm(0,&vtS);
else

r3 = rnorm(0,&vt2);
if(r3>rone)

printf(" error in vcomp, norm = %30.16e\n" ,rS);

/* save constants •/
rOsave = rmaxabs(vz.p);
rlsave^rl;
r2save = r2;
rSsave —r3;

* 5.4. THE CONTRACTION M •/

/• m : the contraction
/* dm : the tangent map of m
/* r : the RG transformation
I* dr : the tangent map of r
f+ unpack : unpack operator used in m
I * dunpack : unpack operator used in dm
/* wzero : part of unpack and dunpack
/* pack : the left inverse of unpack
/* ujparam : computes parameter for unpack
/• w_param; computes parameter for dunpack

m(pvθ,pvθl)

vector pvθ,*pvθi;

scalar snu;

vector vtl;

unpack(pvθ,&snu,&vtl);

pack(<fcsnu,A:vtl
1
pv0i);

dm(pvθ,pvθi)

vector *pvθ,*pvθi;

βcalar snuO;

vector vtl;

dunpack(pvθ,&snuθ,&vtl);

dr(<kvtl,&vtl);
pack(<ksnuθ,<kvtl,pvθi);

r(pv,pvi)
vector *pv,*pvi;

extern scalar
snormal;

extern vector
vhhat;

extern borel_function
bhto7;

scalar
stl,st2;

vector
vtl,vt2;

borel_function
btl,bt2,bt4,bt8;

/* take borel transf orm •/
borel(pv,<kbtl);

/* take 8th power of bh +/
srconst(.02e + 00,<S£βtl);

(( )
srconst(.04e + 00,<kstl);
bmult(<kbt2Λbt2,<kβtl)<kbt4);
8Γconst(.04e + 00,<Sistl);
bmult(<kbt4,<S£bt4,<S£8tl)<Scbt8);

/* take inverse borel transform •/
iborel(&bt8,&vtl);

/• substitute varg in vhJiat */
vargcmp(&vtl,&vtl);

/• multiply with vfact •/
vmult(<kvtl,&vfact,<fevtl);

/•» normalize to one •/
sinv(vtl.p,i£βnormal);
vβmult(<kvtl,<k snormal, Ai vhhat);
8equal(<ksone, vhhat. p);
vequal(& vhhat, pvi);

/• save 7th power of bh */
ercon8t(.0Se + 00,<kstl);
bmult(<kbt4,<febt2,<Sc8tl,4£bhto7);
srconst(.OSe + 00,<kst'l);
bmult(&bhto7,&btl,&stl,&bhto7);
siconβt(8,<fe8tl);
bsmult(&bhto7)<fcstl,<kbhto7);

}

dr(pv,pvi)
vector pv,*pvi;
{

extern scalar
snormal;

extern vector
vhhat;

extern borel_function
bhto7;

scalar stl;

vector
vtl,vt2;

borel_function btl;

/• take borel transform •/
borel(pv,<kbtl);

/* multiply with 7th power of bh +/
8rconβt(.04e + 00,&stl);

( )

/• take inverse borel transform */
iborel(<Sibtl,&vtl);

/* substitute varg in vhJiat */
vargcmp(&vtl,&vtl);

/• multiply with vfact •/
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vmult(<kvtl,&vfact,&vtl);

/» renormalize •/
V8mult(&vhhat,vtl.p,&vt2);
vminus(<kvt2,&vtl);
sequalf&szerOjVtl.p);
vβmult(<S£vtl,&βnormal,&vtl);
vequal(&vtl,pvi);

}

•unpack (pvθ,pβ,pv)
vector pvθ, pv;
scalar *ps;
{

vector vt1;

wzero(pvO,pv);
sequal(&sone,pv —
sequal(&sa,pv—
u_param(pv(p8);
V8mult(<kve,ps,«fevtl);
vadd(&vtl,pv);

}

dunpack(pvθ,pβ,pv)
vector <pvθ,*pv;
scalar ps;
{

vector vtl;

wzero(pvO,pv);
w_param(pv,p8);
vsmult(A:ve,ps,&vtl);
vadd(&vtl,pv);

}

wιero(pvO,pv)
vector »pvθ;
vector pv;
{

int i;

reps
rl,ru;

scalar βtl;

βequal((tsaero,pv —
8equal(<kszero,pv — )
sprod(pvO->p-(-2,&8i2,pv->p-)-2);

( )p ( p
sprod(pvO-

for(i = 5;i< = n;i + + )
sequal(pvθ — >p + i,pv— >p + i);

ru = rmax2(rmaxS(βi2.u,8iS.u,8i4.u),rone)
rl = rmin2(rminS(βi2.1l8iS.l,βi4.1)>rone);
88calar(rl,ru,<k3tl);

sprod(&pvO — >g,<katl,<kpv->g);
sequal(<fepvθ->h,<kpv->h);

pack(pβ,pv,pvθ)
scalar *ps;
vector *pv, pvθ;
{

int i;

reps
rl,ru;

scalar βtl;

vector
vtl,vt2;

sequal(<S£sεero,pvO —>p);
sequal((kszero,pvO->p + l);
sprod(vtl.p + 2,<ks2,pvO->p + 2);
sprodivtl.p + S,&sS,pvO->p-(-S);

( )

( )
sequal(vtl.p + i,pvθ->p+i);

ru = rmax2(rmax3(s2.u,s3.u,B4.u),rone);
rl = rmin2(rminS(82.1,sS. 1,84.1), rone);
sscalar(rl,ru,&8tl);

sprod(<kvtl.g,<k8tl,<SύpvO->g);
sequal(<kvtl.h,«fcpvθ->h);

u.param(pv,pβ)
vector *pv;
scalar *ps;
{

extern logical
lsequal();

extern reps
rmaxabsQ;

extern scalar
sdnu;

int i;

reps
rtl,rt2,rrad,rdnu;

scalar
srad,seps,stl,8t2,stS;

vector
vtl,vt2,vdnu;

sequal(<ksaero,ps);

/• calculate precision of center */
vequal(pv,4£vtl);
r(&vtl,&vt2);
rtl = rmaxabs(<kvtl.g);
rt2 = rmaxabs(<kvt2.g);
sβcalar(-rtl,rtl,&9tl);
sscalar(-rt2,rt2,<kst2);
sadd(vtl.p+l,<fe8tl);
sadd(vt2.p+l,<Sίβt2);
sequal(^st2,&seps);
sminus(&stl, &seps);

/* eβtimate derivative on neighborhood »/
rrad = 5.e — S;
sscalar( — rrad,rrad,<fcsrad);

vequal(pv,<S£vtl);
vsmult(A:ve,p8,«kvt2);
vminus(&vt2,&vtl);

( ){
sequal(<ksrad,<kstl);
sadd(ps,<kstl);
vequal(pv,<kvtl);
vsmult(&ve,&stl,&vt2);
vadd(<kvt2,«kvtl);
r(&vtl,<kvt2);
dr(<S£ve,<kvdnu);
rt2 = rmaxabs(A:vdnu.g);
sβcalar(-rt2,rt2,&8dnu);
sadd(vdnu.p+l,<k8dnu);
sequal((fcsdnu,<kst2);
sminus(<ksonet(kst2);
squot(<kseps,(&:8t2,(kst2);
sneg(&st2,&st2);
sinter (<ksrad,<kst2,&stS);
if(!lβequal(<kst3,&st2)){

printf(" error in u.param, no contraction, step
sequal(&8tl,ps);
return;

\ n " , i ) ;
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sequal(&st2,&srad);

}
sadd(&srad,ps);

}

w_param(pv,pβ)
vector pv;
scalar *ps;
{

extern reps
rmaxabs();

extern scalar
sdnu;

reps rtl;

scalar βtl;

vector vtl;

dr(pv,&vtl);

rtl = rmaxabs(&vtl.g);
sscalar(-rtl,rtl,&stl);
βadd(vtl.p+l,<kβtl);
sequal(&sone,ps);
sminus(&sdnu,pβ);
squot(&8tl,p8,ps);

/• 5.5. R O U T I N E S INVOLVING BOREL FUNCTIONS •/

/• bsetzo : set borel function equal zero •/
/• bequal : copy borel function */
/• bsmult : scalar timet borel f unction •/
/• bmult : product of two borel functions •/
/• sabound : bound used in bmult •/
/* borel : the borel transf orm •/
I* iborel : the inverse borel transform •/

sprod(&pb- >h,<S£s,<fepbres-
pbres- >e = pb—>e;

bmult(pbl,pb2,pβepβ,pbreβ)
borelJfunction *pbl, pb2,*pbres;
scalar *psepβ;
{

extern logical
lsequal();

extern reps
rmaxabsQ;

scalar
8tl,8t2,8l,s2)

sbl,sb2,sbleps,sb2eps,
salg,salh,8a2g,sa2h,
sagres.sbres;

borel .function
btl;

sequal(&pbl ->g,&salg);
sequal(&pbl->h,&βalh);
sequal(&pb2->g,&9a2g);
sequal(&pb2- >h,<fesa2h);
srconst(pbl — >e,<kβbl);
8rconst(pb2->e,<fesb2);

/• compute polynomial part •/
bsetzo(<kbtl);
for(k = 0;k<=n;k

( ){
8prod(pbl->p+i,pb2->p+k-i,<k82);
sadd(<S£s2,<k8l);

}
sequal(<ksl,btl.p-|-k);

}

bβet»o(pb)
borel_function
{

int i;

( ; )
8equal(<kszero,pb— >p + i

sequalf <kszero,<kpb- >g);
sequal(4i8iero,Aίpb— >h);
pb— >e = rzero;

beqnal(pb,pbreβ)
borel_function »pb,»pbres;

( ; ; )
βequal(pb— >p+i,pbres- >p +

sequaU&pb— >g,<fepbres- >g);
8equal(<kpb— >h,4ίpbres- >h);
pbres — >e = pb—>e;

bβmult (pb,pβ, pbres)
borel_function pb,*pbres;
scalar »ps;
{

int i;

scalar s;

for(i = 0;i< = n;i-f + )
sprod(ps,pb— >p4-i,pbres— >p+

sabs(ps,<S£s);
sprod(<fepb— >g,<ks,<S£pbres->g);

/• determine constant in exponential •/
sequal( peeps ,&sbleps);
8add(&sbl,<S£sblep8);
sequal(p8epβ,<ksb2ep8);
sadd(&8b2)<ksb2epβ);
8equal(pseps,&sbres);

d d ( & )( )
βadd(<kβb2)<fc8bres);

/• bound error terms */
sequal(<k s zero, <fe eagres);

for(k = nl;k< = n + n;k+ + ){
sequal(<fesz,ero,A:8tl);
for(i = k-n;i<=n;i + + ){

sprod(pbl- >p+i,pb2- >p+k — i,i
sadd(<i!:8t2,<Sί8tl);

}
sabs(&stl,&stl);
sabound(<ksbres,k— I,<fest2);
sprod(<feβtl,«feβt2,<kstl);
sadd(<k8tl,<&sagres);

){
sabs(pbl->p-i-i,<$ίβtl);
sprod(<kstl,<ksa2g,<k8tl);
sabound(<ksbleps,i,A:st2);
βprod(<kstl,(kβt21<k8tl);

d d ( f c t l k )( g ) ;
8abs(pbl->p+i,&stl);
sprod(<fc8tl,<fe8a2h,«k8tl);
8abound(ά£8bleps,i + n,A:8t
sprod(<kβtl,<kst2,<k8tl);
sadd (& β tl,<k eagres);
βab8(pb2->pH-i,<kβtl);
sprodi&stl.&salg.&etl);
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sabound(<kβb2eps,i,&st2);
sprod(&stl,&*t2,&stl);
sadd(&stl,&sagres);
sabs(pb2->p + i,<kβtl);
sprod(&stl,<Sί8alh,<fcstl);
βabound(<ksb2epβ,i-hn,<kβt2);
sprod(&stl,&st2,<S£stl);
8add(&stl,<fcsagres);

}

βabound(pseps,l,&stl);
sprod(&salg,&sa2g,&st2);
8prod(<kstl1&:st21<kstl);
sadd(&stl,&sagres),

if(!lsequal(&8alh,&szero) &
!l8equal(&sa2h,&szero)){

sabound(pseps,nl + n,<festl)
sprod(&8alh,&sa2h,&st2);
8prod(<k8tl,«S£8t2,<S£Stl);
sadd(<fcstl,&sagres);

}

/• return result +/
8scalar(rzero,rmaxab8(&sagres),&btl.g);
arconflt(rzero,&btl.h);
btl.e = rmaxabs(<Sdsbres);
bequal(<kbtl,pbre8);

}

βabonnd(pβep8,k,pg)
scalar *pseps,«ps;
int k;
{

scalar
stl,βt2,sexpl;

if(k = =O)
sequal(&8one,ps);

elβe{
βrconst(2.718281828e-|-00)<fcsexpl);
s prod (peeps, &sexpl,&stl);
siconβt(k,&βt2);
βquot(&st2,&stl,&stl);
§power(<kstl,k.^stl);
ercon8t(etl.u,p8);

bor«l(pv,pb)
vector •pv;
borel_function *pb;

extern reps
rmaxabβQ;

int i;

reps
rfive = 5 e + 00;

scalar
stl)8t2,8t8,sag,8b)

srhohat,sfact,stdiff;

3equal(<fesone,<kstl);
sequal(<kshalf,<k8t2);

( ){(
sprod(pb- >p + i,<kstl,pv->p + i);
sprod(&8tl,<fc8t2,<fc8tl)i
sadd(<kβone,<SίBt2);

}
sequa^&stl^sfact),

/» extract exponential growth •/
/• and determine domains */

srconst(pb->e,&sb);
8prod(&sb)&srarg,<fcstl);

if (st 1 u>rone)
printf(" domains in iborel incompatible

sprod(<fe83half,<kstl)<k8tl),
( )

.16\n" ,βtl.u)

q ί . . ) ;
srconst(rtwo/rfive,<kst2);
8prod(<fe8tl,<kst2,<kstl);
srcon8t(βtl.l,&βrhohat);

/• adapt polynomial part to this domain •/
sequal(&sone,<!ketl);
for(i = 0;i< = n;i+ + ){

sprod(pv- >p4-i,<kstl,pv->p+i);
βprod(<fcβtl,<Siβrarg1&stl);

}

/• calculate error terms on this domain •/
srconst(pb— >g.u,<Jίβag);
sprod(&sag,&shalf,&8tl),
sprod(<ksb(<S£βrhohat,<kβt2);
8equal(<ksone,<5£βtdiff);
sminu8(<k8t2,&stdiff);
88qrt(<kstdinΓ,<k8tdiff);
βpower(<S£stdiff,S,&st2);
squot(&srarg,&st2,&st2);

( )
q ( g , , ) ;

βequal(&βone,<S£8tS);
8minus(&βt2,&stS);
8quot(<fc8tl,<kβt3,<kβtl);
8scalar(rzero,rmaxab8(<kstl))<5£pv
8equal(<S£8zero,<S£pv—>h);

}

scalar
8tl,st2;

sequal(&βone,<&istl);
sequal(<k8half,&8t2);
for(i=0;i<=n;i + + ){

βquot(pv— >p+i,4£βtl,pb— >p+i),
8prod(<kstl,<S£8t2,<k8tl);
sadd(&sone,&Bt2);

}
βquot(&pv->g,behalf ,4iβt2);
ascalar(rzero)rmaxabβ(«kβt2))ipb->g);
squot(<S£pv->h,<kβtl1<S£βt2);
8scalar(rzero)rmaxab8(<k8t2),<kpb->h);
pb— >e = rone,

}
iborel(pb,pv)
borel_function *pb;
vector pv;
{

extern reps
rmaxabs(),

/• 5.6. OPERATIONS ON VECTORS •/

/• = = = = = = = = = = = = = = = = = = = = = = =•/

/• vsetzo . set vector equal zero */
/• snorm . norm of vector •/
/* rnorm . bound partial norm of vector */
/» vequal . copies vector •/
/* vadd sum of vectors •/
/• vminus . difference of vectors +/
/* vsmult . product of vector and scalar */
/* vmult . product of two vectors •/
/* vargcmp : substitute varg in vector •/
/* vsetlx . create vector v(z) = c-j-lz •/
/• vsetin . create vector v{z) = l/(l + sz) •/
/• vsetms . set vector υ(2) = (H- z) (-l/2) •/

vβetio(pv)
vector *pv;
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( ; ; )
sequal(<S£szero,pv->p+i);

sequal(<feszero,<kpv — >g);
sequal(<5dszero,<kpv->h);

en o r m ( p v , pares)
vector *pv,
scalar *psres;
{

int i;

scalar
s.stl;

8equal(<S£Szero,&s);
for(i = 0;i<=n,i + + ){

s a b s ( p v - > p + i,&stl);
sadd(&stl,&s);

}
sadd(&pv-
βadd(&pv —
sequal(&s,psres);

}

for(i = 0;i<=n;i + + )
sminus(pv—>p + i,pvres- >p+i) ,

3equal(<kpv->g,«Sί8tl),
sminu8(«S£pvre8->g,<k8tl);
βequal(<kpv->g,<kβt2);
Badd(<kpvres->g,Aj8t2);
88calar(rminab8(&8tl),rmaxabs(&st2),<fepvreβ->g);

8equal(<kpv->h,<k8tl),
8minu8(<S£pvres->h,(kstl),
8equal(<kpv->h,<kβt2);
βadd(<S£pvreβ->h,<Scst2);
sscalar(rminabs(&!:βtl))rmaxabs(&3t2),<kpvres— >h),

vβmnlt(pv,pβ,pvreβ)

vector pv,*pvres;
scalar *ps;
{

int i;

scalar β;

reps rnorm(irαin,pv)
int imin;
vector *pv;
{

extern reps
rmaxabsQ;

scalar
s.stl;

βequal(&βzero,&s);
for(i = imin;i< = n;i + + ){

βabβ(pv- >p + i,&stl);
βadd(&stl,&β);

}
sadd(&pv — >g,&s);
sadd(<kpv- >h,<ks);
return(rmaxabs(<S£s));

vequal(pv,pvreβ)
vector *pv,*pvres;
{

int i;

( ; ; )
sequal(pv- >p + i,pvres

sequal(<Sipv->g,<kpvres —
βequal((kpv->h,<S£pvre8—

}

vadd(pv,pvreβ)
vector •pv, pvres;

for(i=:0;i<r:n;i+ + )
sadd(pv— >p + i,pvre§

sadd(<kpv- >g,<kpvreβ —
βadd(<kpv— >h,(kpvres —

}

vminuβ(pv,pvre§)
vector •pVj pvres;

{
extern reps

rminabs(),rmaxabs();

scalar
st l ,st2;

( ; ; )
sprod(pv— >p+i,ps,pvreβ-

sabs(p8,<feβ);
sprod(<kpv— >g,<Sds,<kpvres —
sprod(<kpv— >h,<ks,<kpvre8-

vmult (pva,pvb,pvres)
vector *pva,»pvb, pvres;
{

scalar
sl,s2,s3,8tl,βt2,
βeg,8eh,8ag,sah,θbg,8bh,
8x[degree_pluβ_onej;

sequal(<kpva —>g,«ksag);
sequal(&pva — >h,i£βah);
sequal(<kpvb- >g,<ksbg);
sequal(<Sipvb- >h,<ksbh);

/• calculate polynomial part */
for(i = 0;i< = n;i + + )

k = 0;k<=n;k+ + ){
( )

( )
sprod(pva —>p + i,pvb- >p + k -
sadd(<k82Λsl);

}
sequal(&al,sx+k);

}

/• eβttmatc higher order error •/
sequal(&8zero,&8eh),
for(k = nl;k<=:n + n;k+

βequal(&sz,ero,&βl);
for(i = k - n ; i < = n ; i + + ){

8prod(pva->p + i,pvb- >p+k— i,«Scs2);
sadd(<fcβ2,&βl);

}

}
sequal(&szero,<ksl");
sequal((k8zero,<ks2),
for(i = l;i< = n;i + -f-){

sabs(pva — >p+n — i,<
sadd(&sS,&sl);
sabs(pvb— > p + n —i,

( )
}
βabβ(pva —>p+n,«k8tl);
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sadd(&sl,&stl);
sprod(&sbh,&stl,&stl);
βabs(pvb- >p + n,<kst2);
sadd(&β2,&st2);
sprod(&sah)&st2,&st2);
sadd(<kst2,&βtl),
sprod(&sah,&sbh,&st2);
sadd(&st2,<fcstl);
sprod(&sah,<ksbg,<fcst2);
8add(<kst21<ic8tl))

sprod(&sag,&sbh,&st2);
sadd(&st2,&stl),
sabs(pvb->p+n,&st2);
sprod(&8t2,&βagI<fcst2))

sadd(&st2,&stl);
sabs(pva —>p-t-n1&st2);
sprod(&st2,&8bg,&8t2))

sadd(<fcst2,&stl);
sadd(&stl,&seh);

/• eattmate general error »/
sprod(&s2,&sag,&stl))

sprod(&sl,&sbg,&st2);
sadd(&8t2,&stl);
βprod(&sag(&sbg,&βt2),
8add(&st2,&stl);
sequal(&8tl,&8eg);

/• return result */
for(i = 0;i< = n ; i + + )

8equal(sx+i,pvres— >p + i);
s e q u al (& s e g, & p vr e s — > g)
sequal(&seh,&pvres- >h);

}

vtrgcmp(pv,pvreβ)
vector • pv^pvres,

extern reps
rmaxabsQ;

int ί;

reps rtl;

scalar
stl,st2;

vector
vtl,vt2;

/* calculate polymomial part */
vβetzo(<kvtl),

(( ){
vequal(<Jivpower(nl — i],&vt2);

l ( k l i &

}
sadd(pv- >p,vtl.p);

/* add error terms */
srconst(rOsave,<fcetl);
8abs(<kstl,&stl);
spower(<fc8tl,nl,iiβtl);
srconst(r0βave,<kβt2);
sabs(&st2,<k8t2),
8prod(<5ist2,A:pv->g,«kst2);
sprod(A:stl,<kpv->h,&stl);
sadd(<kst2,<Sdβtl);
rtl = rmaxabs(&stl);
sscalar(-rtl,rtl,<S£8tl);
sadd(<kstl,vtl.p);
srconst(r38ave,<kstl);
8rconst(rlsave,<kst2),
sprod(&stl,&st2)&stl);
sprod(<5i8tl,<kpv->h,<festl);
8rconst(r2save,<kst2);
8prod(<kst2,<kpv->g,«kst2)1

8add(<k8t2,<fcstl),
rtl =:rmaxabs(&8t l);

βscala.r(rLero,rtl)<kstl);
sadd(&stl,&vtl.g),

vequal(&vtl,pvres);

vfletH(pv,psc,pβl)
vector "pv,
scalar *psc,*psl;
{

vsetzo(pv);
sequal(p8c,pv— >p)
sequal(psl,pv—

vβetin(pv,pβ)
vector *pv;
scalar *ps;
{

extern reps
rmaxabs();

scalar
8tl,βt2,8t3;

if(rtl>=:rone)
pπntf("error in vsetin, radius^

sequal(<S£βone,pv— )
f(

0.16e\n",rtl);

( ){
sprod(pv— >p+i — 2,ps,<kstl);
βneg(<kstl,pv->p+i-l);

}
sequal(<k8z,ero,<kpv—>g);
Babs(ρs,&8tl) ,
8power(<k8tl,nl,&st2);
8equal(&sone,<kst3);
sminus(<k8tl,<kst3);
squot(&8t2,&8tS,<S£stl);
sβcalar(rzero,stl u,&pv —>h);

vβetmβ(pv,pβ)
vector *pv;
scalar *ps;

{
extern reps

rmaxabsQ;

int i;

p
rtl = rmaxabs(pe),

scalar
stl,st2,si,sf;

if(rtl> = rone)
printf(" error adius= .16e\n",rtl),

sequal(Aί8one,pv- >p);
sneg(&shalf,&sf);
8prod(&sf,ps,<ksf);
for(i=2;i< = nl,i + + ){

sequal(<kβf,pv->p-f i-1
sicon8t(i,<fesi);
βequal(&shalf,&stl);

( )
q ί . )

8prod(<k8f,<S£8tl,<fcsf),
8prod(p8)<ksf,<Sisf))

}
sequal(&szero,&pv — >g
sequal(&sone,<k8tl);
sabs(ps,<kst2);
sminu9(&st2)<fcstl))
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sabs(&8f,&st2);
squot(&st2,&stl,&stl); βneg(pB,psres)
8scalar(rzero,stl.u,&pv->h); scalar *ps,'»pares;

} {
reps

r= —ps—>u;
/• 6.T. R O U T I N E S A C T I N G ON S C A L A R S •/
/• = = = = = = = = = = =:=. = = = = =. = = = = = = = = = = = •/ psres— > u = - p s - >1;

pares— >l=r;
/* Iβequal : compare two scalar $ */ }
/• rmaxabβ : largest distance from zero •/
/• rminabβ : smallest distance from zero */ βinv(ps,pares)
/• siconst : convert integer to scalar */ scalar •p8, pβres;
/» trconst : convert rep to scalar */ {
/• sscalar : interval with given boundary •/ extern reps
/• sabs : absolute value of scalar */ rup();
/• sneg : zero minus scalar •/
/• sinv : one divided by scalar */ if(ps—>1 <— rzero <k«fe rϊero < = ps->u){
/• sequal : copies scalar */ printf("error in sinv %S0.16e %S0.16e\n" ,ps —>l,ps->u);
/• sinter : intersection of two scalars •/ sequal(p8,p8res);
/* sadd : sum of two scalars +/ }
/• sminus : dif ference of two scalars */ else
/• sprod : product of two scalars •/ 88calar(rdquot(rone,pB->u),
/• squot : quotient of two scalars +/ ruquot(rone,pβ- >1),pares);
/* spower : scalar to the power k */ }
/* ssqrt : square root of scalar •/

8eqnal(pB,p8reβ)
scalar ps,*psres;

logical l8equal(pβl,pβ2) {
scalar •pβll*ps2; psres—>l = pβ—>1;
{ psres—>u=ps—>u;

return((psl->l = = ps2->l && }
psl->u = = ps2->u)? 1:0);

} 8inter(psl,ps2,pares)
scalar p8l,»ps2) psres;

reps rmaxabβ(pι) {
scalar pβ; reps
{ rl—rmax2(pβl->l)p82->l),

return(rmax2(—pβ- >l,ps— >u)); ru=rmin2(pβl->u,ps2—>u);

if(rl>ru){
repβ rminabβ(ps) printf(" error: no intersection. βl,s2=: \n");
scalar »ps; printff" %S0.16e %S0.16e %S0.16e %S0.16e \n"
{ ,psl->l )psl->u,ps2->l )ps2->u);

return(rmaxS(rzero,p8->l,-ps— >u)); sequal(pβl,pβre8);
} }

else
βiconβt(i,p8) esc alar (rl,ru, psres);
int i; }
scalar <*pβ;
{ Badd(pβl,pβre8)

ps->l = (reps)i; scalar •psl. pβres;
ps- >u=(repβ)i; {

} extern reps
rup();

8rconβt(r,pβ)
reps r; reps
scalar *ps; rll = psl —>1,
{ rlu = pβl —>u,

ps->l=:r; r21 = psres->l,
ps—>u —r; r2u = psres —>u;

}
if(rll= = rsero){

8βcalar(rl,rτi,ps) if(rlu= = riero)
repe rl.ru;
scalar *ps; else if(r2u = = rr,ero)
{ 8scalar(r21,rlu,psres);

ps->l = rl; else
ps — >u = ru; sscalar( r21, rue um(rlu,r2u), pares);

else if(r21 = = Γϊero){
8abβ(p8,pβre8) if(r2u = = rzero)
scalar *ps,*psres; sequal(psl,pares);
{ else if(rlu = = rzero)

reps sscalar(rll,r2u,psres);
rl = ps— > 1, else
ru = ps—>u; 88calar(rll,rusum(rlu,r2u),psres);

}
psres— >l = rmaxS(rzero,rl,—ru); elβe{
psres— >u = rmax2(-rl,ru); if(rlu = = rzero)

} sβcalar(rdsum(rll,r21),r2u, pares);
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else if(r2u = = rzero)
ββcalar(rdsum(rll,r21),rlu,psreB);

else
sscalar(rdsum(rll,r21),

ruβum(rlu.r2u). pares);
}

8mizms(psl,pβreβ)
scalar •psl,*psres,
{

scalar s;

sneg(pβl,<ks);
sadd(&s, pares);

}

sprod(pβl ,ps2, pares)
scalar psl,*ps2,*psres;
{

extern reps
rup();

reps
rlu,rul,ruu,rll,

m,mh;

scalar
βl.stl;

if(k<0)
pnntf("error in spower, k not positive\n" );

else if(rmaxabs(ps) = = rzero){
if(k=r = O)

sequal(<ksone,psre8);
else

sequal(<kβzero,psrea);

else{
m = k;
sequal(ps,&sl);
sequal(&sone,&stl);
while(m>0){

mh = m/2;
if(mh + mh! = m){

sprod(&stl,&βl,<kstl);
m;

elae{
βprod(<ksl,«feβl)<5<:sl);

h

21 = ps2->l,
2u = ps2->u;

}
sequal(<fcstl,psres);

l = = rlu| |
)

8equal(<fe8zero,psres); ββqrt (ps,psres)
else if(rll>=rzero){ scalar *ps,»psree;

if(r2l>=rzero) {
βscalar(rdcprod(rll,r21),rucprod(rlu)r2u))pβres); extern double

else if(r2u<rzero) sqrt();
escalar(rdcprod(rlu)r21),rucprod(rll)r2u))psres);

else extern reps
88calar(rdcprod(rlu)r21)1rucprod(rlu,r2u),psre8); rup();

}}
else if(rlu<rzero){

if(r2l> = rzero)
8scalar(rdcprod(rll,r2u),rucprod(rlu,r21),psres);

else if(r2u<rzero)
sscalar(rdcprod(rlu)r2u))rucprod(rll)r21),psres);

else
sβcalar(rdcprod(rll)r2u),rucprod(rll)r2l),pβreβ);

}
else{

if(r2l = = rzero)
S8calar(rdcprod(rll,r2u),rucprod(rlu,r2u),psres);

else if(r2u<rzero)
β8calar(rdcprod(rlu,r21),rucprod(rll,r2l),psres);

else{
rlu = rdcprod(rll,r2u);
rul = rdcprod(rlu,r21);
ruu = rucprod(rlu,r2u);
rll = rucprod(rll,r21);
sscalar(rmin2(rlu,rul))rmax2(ruu,rll),psrea);

}
5

βquot(pel,ps2,pares)

scalar *pal, pβ2,*pβreβ;

scalar s,

βinv(ps2,<fes);
d ί ^ )

βpo-wrer(p»,k,pβreβ)
scalar *pa,*psres;
int k;

extern reps
rmaxabsQ;

reps
rl.ru;

if(pβ- >l>=rzero){
rl = rmax2(rzero,sqrt(ps->l));
while(rucprod(rl,rl)>ps- >1)

rl=rdown(rl);
ru = rmax2(rzero,sqrt(ps->u));
while(rdcprod(ru,ru)<ps— >u)

ru = rup(ru);
sscalar(rl,ru,psres);

}
else{

printf("error in sqrt, argument negative %S0.16d\n" ,ps->
sequal(&szero,pares);

}

/• 5.8. OPERATIONS INVOLVING ONLY REPS •//

I

/
I

/• rup : successor in the set of reps */
/• rdotυn . predecessor in the set of reps */
/• rmax2 . maximum of two reps +/
/• rmaxS : maximum of three reps •/
/* rmin2 : minimum of two reps */
/• rminS : minimum of three reps */
/• rusum . upwards rounded sum of reps */
/• rdsum . downwards rounded sum of reps */
/» rddiff : downwards rounded diff. of reps */
/• rucprod : upper bound on product of reps •/
/* rdcprod . lower bound on product of reps •/
/* ruquot . upper bound on quotient of reps •/
/• rdquot . lower bound on quotient of reps */

/• Remark.
The type reps (^double) is in 64-bi t IEEE format.
The standard IEEE format ( see [24] ) is as follows.
Sign bit, 11 —bit binary exponent with bias
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#define rucprod(x.y) (fir8t(x,y).(8econd(x,y)rup((x)*(y))))
of 1028, 52-bit mantissa ( with "hidden" most

significant bit = l ). The mantissa represents a

number < 2 but not < 1. A zero exponent means a

value of zero, and the exponent 11111111111 means #define rdcprod(x,y) (fir8t(x
)
y).(8econd(x

1
y):rdown((x)*(y))))

"not a number". Bytes are in reversed order;

the lowest addressed byte is the least

significant mantissa byte. •/

reps rup(r)

reps r;

reps r;
unsigned long int i[2];

union convert
con;

unsigned long int
low ,exp _and .high;

con.r=r;
low = con.i(θ];
exp_and_high = con.i[l];

if(low = = 0){
if(exp_and_high = = O)

exρ_and_high = 0X00100000;
else if(r>rzero)

low = l;
else if(exp_and_high = = 0X80100000)

exp_and_high = 0;
else{

low = 0XFFFFFFFF;
exp_and_high;

}
}
else if(r>rzero){

if(low = = 0XFFFFFFFF){
if(exp_and_high==0X7FFFFFF){

printf(" overflow error in up %S0.16e\n" ,r);
return(r);

else{
low = 0;
-f-4-exp_and_high;

}

else

else
--low;

con.ilθ] = low;
con.i'l] =exp_and_high;
return(con.r);

/* Reps macros */

#define rdown(r) (-rup(-(r)))

#define ruquot(x.y) (first(x,y).rup((x)/(y)))

#define rdquot(x.y) (first(x,y).rdown((x)/(y)))

1 5.9 COEFFICIENTS OF THE

#define rmax2(x,y) (

#define rmaxS(x,y,s)

#define rmin2(x,y) ((

#define rminS(x,y,r)

#define ruβum(x,y) rup((x

#define rdsum(x,y) rdown((x

#define rddiff(x.y) (-rup((y)-(x)))

#define firβt(x.y) ((x) = = rzero||(y) =

#define second(x,y) ((x) = = rone||(y

(x) (y))

? rmax2(x,a).rmax2(y,z))

(x):(y))

rmin2(x,z):rmin2(y,z))

APPROXIMATE FIXED POINT

0 OOOOOOOOOOOOOOOOe-f 000

O.OOOOOOOOOOOOOOOOe + 000

5.0910744110871690e-001

9.5003399093995690e-001

S.S899471598550260e-001

7.5228788724207240e-002

• 2.9166025860828S40e-002

9.7809075474681730e-00S

2.8435242149942920e-008

7.16036618S7487S70e-004

1.5546221099S74870e-004

2.8821170499654220e-005

4 4811455122526670e-006

5.6476122738011440e-007

5.355262970S58S600e-008

3.0116983547275270e-009

-5.6475304807471550e-Oll

-3.0876243410078330e-011

-2.53448000SS482360e-012

4.5983279951728720e-014

2.5517826728299680e-014

1.2620701467321130e-01δ

-1.5954295084724120e-O16

-1.9577090887265150e-017

5.6384521S25252770e-019

1.6946227528291020e-O19

-5.8050871684659000e-021

-1.5252782196365650e-021

3.5918686798167610e-022

8.9115968244695160e-02S

-4 8724320918072580e-O24

-5.12561405046143SOe-024

- 5.5171555999740080e-025

2.0355284891894S70e-025

5.54487220179S9900e-026

-6 24185S7679217950e-027

-S.6414430696016150e-O27

1.6372588275807S40e-028

2.1526142159118610e-O28

-6.1726379503092100e-030

-1.2428705431S72500e-029

5.9617241S43875S10e-031

6.9991573813170870e-0Sl

-6.9906713111864140e-032

-S.6182464583042550e-032

6.9244538361489700e-033

1.4733779930696580e-O3S

-5.5893664296982620e-034

-2.0798556973059780e-OS5

3.5409929658481840e-0S5

-S.78S8449518599820e-0S6

-1.5159188525456280e-036

4.6350294425125140e-037

9.9086553208077940e-039

-2.9079748380155910e-0S8

4.936941S872234490e-0S9
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5,10. OUTPUT OF THE PROGRAM

NORM OF DIFFERENCE :

epsilon - 1.8246895661559250e-032

BOUND ON DM :

4
5

9.777555649216734Oe-O12

7.364132226389323Oe-OOl
5.891474278O98661Oe-OOl
5.3166452511130540e-001
4.567291O93679998Oe-OOl
1.735167O56274119Oe-OOl
5.0912756751644280e-001

* contraction on ball *
***********************
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column 2
column 3
column
column
column 6
higher order

3.7694842329324760e-001
5.3664316424268770e-001
4.95892762483O959Oe-OOl
4.0981788472088450e-0Ol
1.3411764334767070e-001
0.OOOOOOOOOOOOOOOOe+OOO
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