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Abstract. We study the bifurcations of two parameter families of circle maps
that are similar to fbιyv(x) = x-\-w-\-(b/2π)sin(2πx)(modi). The bifurcation
diagram is constructed in terms of sets Tr, where Tr is the set of parameter values
(b, w) for which fhw has an orbit with rotation number r. We show that the
known structure when b < 1 (for r rational, Tr is an ArnoΓd tongue and for r
irrational, it is an arc) extends nicely into the region /?>!, where fbw is no
longer injective and can have an interval of rotation numbers. Specifically, the
tongues overlap in a uniform, monotonic manner and for r irrational, Tr opens
into a tongue. Our other theorems give information about the dynamics of fbtW

(e.g., bistability or aperiodicity) for (b, w) in various subsets of parameter space.

0. Introduction

In this paper we construct the bifurcation diagram of two parameter families of
circle maps which are similar to what has been termed the "canonical" family [16],
fbf w(χ) = x + w + (b/2π) sin (2πx) (mod 1). These families are used to model various
periodically forced nonlinear oscillators (e.g. [8, 17, 23]) and in the renormaliza-
tion group analysis of the transition from quasiperiodicity to chaos [9, 22, 24]).
When b< 1, fb w is a C°° circle diffeomorphism. The dynamics of such maps are
well understood from the classic work of Poincare and Denjoy. All orbits rotate at
the same asymptotic rate, so one may define the rotation number of the
diffeomorphism which essentially classifies the dynamics. When b > 1 however,
fhw is no longer injective and can display the dynamic complexity which is well
known for maps of the interval. Different orbits can rotate at different asymptotic
rates, and fhw can have an interval of rotation numbers [18].

Of particular interest in the bifurcation theory of dynamical systems is the
description of the transition from simple to complicated or "chaotic" dynamics. In
studying this transition in the canonical family it is natural to examine the
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bifurcation diagram in terms of the sets Tr, where Tr is the set of parameter values
(b, w) for which fhw has an orbit with rotation number r. The manner in which
these sets overlap and accumulate indicates how the rotational dynamics are
changing as b and w are varied.

The structure of the Tr when b < 1 is given by ArnoΓd [1] and Herman [15] who
use the canonical family as an example. When r is rational, Tr is a tongue shaped
region with its narrow tip on the line b = 0, while for r irrational, Tr is an arc
connecting the line b = 0 to the line b = 1 (see Fig. 1). We prove that this structure
extends nicely into the region where b > 1. Specifically, the tongues overlap in a
uniform, monotonic manner and for r irrational, Tr opens out into a tongue with its
tip on the line b = \ (see Fig. 1).

Our other main theorems describe finer structure of the bifurcation diagram
within Tp/q for p/q an arbitrary rational. For (b, w) in these various subsets of
Tpίq,fb,w has such dynamical behavior as a superstable periodic orbit, a stable
periodic orbit, a saddle node or a homoclinic orbit, all with rotation number p/q.

As a corollary, we delineate the ways in which /b w can make the transition from
having a single rotation number to having an interval of rotation numbers. It is
also shown that for each pair of rationals r2>rx, there is an open set U so that
(b, w)e U implies that fbw has exactly two stable periodic orbits zx and z2 with
rotation numbers rγ and r2 respectively (i.e. "bistability"). Finally, we show that if
the set of rotation numbers of fbtW is the interval [α, β~\ with α and β irrational, then
fbtW has no stable periodic orbits (i.e. is "aperiodic").

We have been especially guided in our study by the numerical work and
description of the canonical family by Glass and his various coworkers (sum-

Fig. 1. Sketch of the bifurcation diagram of the canonical family
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marized in [10]). Our theorems give analytic proof to many of their descriptions
and conjectures. Our other source of motivation and guidance was the bifurcation
diagram proposed by Aronson, Chory, Hall, and McGehee in their computer
assisted study of bifurcations from an invariant circle in families of plane
diffeomorphisms [2]. We shall see many interesting similarities between the
bifurcation diagram of the canonical family and the diagram proposed by Aronson
et al. (A detailed description of the possible relationship of the bifurcation diagram
of the canonical family to the phenomenon of the breakup of a mode locked
invariant circle is contained in the appendix of [22].) We wish to emphasize,
however, that the bifurcation structure of a family of circle maps is certainly
inadequate to explain all the diverse phenomena that can accompany the loss of
an invariant circle in a family of plane diffeomorphisms (e.g. infinitely many sinks).
We also note that a bifurcation diagram similar to that proposed by Aronson et al.
occurs in a somewhat different context in Greenspan and Holmes' study of a
periodically forced Duffing equation [11].

This paper is organized as follows. In the first section we present some
generalizations to noninjective circle maps of some well known results about circle
homeomorphisms. The second section is devoted to the study of a particularly
simple form of noninjective circle map. Each noninjective member of the two
parameter families we will study is of this type. With Sect. 3, we commence our
study of two parameter families of circle maps of the form /&(W(x) = x + w
+ bp(x) (mod 1), where p(x) satisfies hypotheses which make it qualitatively similar
to (l/2π) sin(2πx). It turns out that one only needs p(x) continuous to construct the
overall organization of the bifurcation diagram. In Sects. 3 and 4 we obtain more
information about the bifurcation diagram and the corresponding dynamics of
fbt w by requiring p(x) to be increasing like (l/2π) sin(2πx). In Sect. 4, p(x) is C1, and
in Sect. 5 we require fhw to have negative Schwarzian derivative for all b>\.

1. Rotation Intervals of Degree One Circle Maps

In this first section we introduce notation and collect together some lemmas
concerning the set of rotation numbers of degree one circle maps that will be useful
in our study of two parameter families. These results are straightforward
generalizations of known results concerning the rotation number of circle
homeomorphisms contained in ArnoΓd [1], Brunovsky [6], and Herman [16].

We begin with some standard definitions. For a function f:S1->S1, define the
nth iterate of /, fn=f°fn~1. The orbit of x under / is defined as o(x,/)
= {x,f(x),f2(x),...}. The rotation number of x under /, ρ(x,/), measures the
asymptotic rate of rotation of an orbit. It was first defined by Poincare for circle
homeomorphisms and was generalized to degree one circle maps by Newhouse,
Palis, and Takens as follows [21].

For / S 1 - ^ 1 a degree one map, fix a lift F:R->]R, i.e. πoF = F°π, where
π R-^S1 is π(ί) = exp(2πiί). Choose x' with π(x') = x and define

g(x, f) = Q(X', F) = li ^ ^
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Next, define the rotation set of f as ρ(f) = {ρ(x, / ) : x e S1}. If we had chosen a
different lift F, the entire rotation set could be translated by an integer. Poincare
showed that if/ is a homeomorphism, ρ(x, /) is independent of the choice of x, and
so ρ(/) is a single number, called the rotation number of /. If / is a continuous
degree one circle map, Ito [18] (see also [21]) has shown that ρ(/) is a closed
interval which we denote [ρi(/)? ρ2(/)]

Any map F: R->R which satisfies F(x +1) = F(x) +1 may be treated as the lift
of a degree one circle map. In what follows, it will usually be more convenient to
work with lifts of circle maps rather than the circle maps themselves. We note for
future use that ρ(x, Fq) = qρ(x, F). The proof is straightforward. As above, we may
write, ρ(F) = lQl(Flρ2(F)l

The first lemma introduces some simple relationships between the lift of a rigid
rotation Rr (Rr(x) = x + r), the lift of a degree one circle map i7, and ρ^F) and
ρ2(F). The proof is standard. We include it because of the importance of these
techniques in the sequel. As will be the case for many of our lemmas and theorems,
the statement will involve both ρx and ρ2, but we will only prove the result for ρ1?

the proof for ρ2 being completely analogous.

Lemma 1.1. F is the lift of a degree one circle map, rίsa real number and p and q are

integers with (p,q) = l.

(a) If F^Rr (respectively, F^K), then ργ{F)^r ( ρ 2 ( F ) ^ r ) .

(b) IfF>Rr (F<Rr), then Ql(F)>r (ρ2(F)<r).
(c) Fq>Rp (Fq<Rp) if and only if Ql(F)>p/q (ρ2(F)<p/q).

Proof We prove (b) first. Since F(x + l) = F(x) + l, F(x) — x is periodic and thus
has compact image. So we may find an ε>0 with F(x)>x-\-r + ε for all x in R.
Using induction this implies that Fn(x) > x + n(r + ε) or

Fn(x)-x
— — >r + ε

n

for all n and all x in R.
The proof of (a) is similar. To prove (c), note that Fq > Rp implies by (b) that

ρi(Fq)>p. Thus ρ1(F)>p/q. For the converse, assume there exists a z with Fq(z)
^z + p. Then using continuity, either Fq < Rp in which case ρx(F) ̂  ρ2(F) < p/q, or
there is a point x with F9(x) = x + p so ρ(x) = p/q, and so p/qeρ(f). Thus ρ^F)

•
Throughout the remainder of this work, p and q will always be integers with

(p, q) = l. A point z belongs to Άplq-periodic orbit under / S ^ S 1 if ρ(z,f) = p/q
and z is periodic with least period q.

The next two lemmas are contained in Newhouse-Palis-Takens [21]. The
proofs are straightforward applications of Lemma 1.1.

Lemma 1.2. / S 1 ^ ^ 1 is degree one and continuous. F is its lift satisfying
F(0) G [0,1). The following are equivalent:

(a) p/qeρtf),
(b) / has a p/q-periodic point z,
(c) There is a point z with Fq{z) = z-\-p.
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It has been known since Poincare that the rotation number of a circle
homeomorphism depends continuously on the function. The first published proof
was apparently given by ArnoΓd [1]. The next result generalizes this to the
rotation interval of degree one circle maps. Note, however, that simple examples
show that ρ(x, /) is not continuous in either x or /. Let Endf̂ S1) denote the set of all
continuous, degree one circle maps with the C°-topology.

Lemma 1.3. ρ = (ρ1,ρ2)
:End(S1)-»IR2 is continuous.

We remark that in Lemma 1.3 we must choose lifts that are C°-close when
computing the rotation intervals of circle maps that are C°-close. Now let

Note that

and is thus closed. The statement "Fq^Rp with equality attained" means that
Fq^Rp and there is a point z with Fq(z) =

Lemma 1.4. If fs Bd(Ep/q), then either Fq ^ Rp, or Fq ^ Rp with equality attained in
both cases. In the first case, Qi(f) = p/q and in the second, Q2(f) = P/cl'

Proof. Since Ep/q is closed, feBd(Ep/q) implies that p/geρ(/). Thus Fq>Rp and
Fq<Rp are impossible by Lemma 1.2. So if the conclusion of the lemma does not
hold, there are points z1 and z2 with Fq(z1)>z1 +p and Fq(z2)<z2 + P- But these
inequalities will also hold with G in place of F for any g C°-close to /. Thus there is
a point x (depending on g) with Gq(x) = x + p. Therefore, p/qeρ(g) for any g
C°-close to / so fφBd(Ep/q).

To prove the second statement of the lemma, since p/qeρ(f), ρx{f)^p/q
ύQiifl Using Lemma l.l(c), if Fq^Rp, ρtf^p/q, so Q,(f)=f/q. Similarly,
Fq^Rp implies Q2(f)ύp/q> so ρ2(/) = pΛz i n this case also. D

One interpretation of Lemma 1.4 is that the bifurcation which occurs when p/q
is lost as a rotation number is always a p/q-saddle node (perhaps degenerate).

The next two lemmas generalize some well known results about circle
homeomorphisms to nondecreasing maps, [/: S 1 - ^ 1 is called nondecreasing if its
lift F has the property that x<y implies F(x)^F(jήi]. Their statements are
essentially contained in Hall [12]. The proofs are only slight modifications of the
proofs for homeomorphisms and Hall refers the reader to Herman [16]. The first
lemma states that nondecreasing, degree one circle maps have a single rotation
number.

Lemma 1.5. // h:Sί^Sί is continuous, nondecreasing and degree one, then

v H\x)-x
lim — ^

exists and is independent of x.

Lemma 1.6. F, G, and H are lifts of continuous degree one circle maps with G and H

nondecreasing.
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(a) If GSH, then Gq^Hq for all positive integers q, and so ρ(G)^ρ(H).
(b) If G<H, then Gq < Hq for all positive integers q, and if either ρ(G) or ρ(H) is

irrational, ρ(G) < ρ(H).
(c) If F^H, then Fq^Hq for all positive integers q, and so ρ^F^ρiH). If

F^H, Fq^Hq for all positive integers q, and so ρ2(F)^ρ(H).

Simple examples show that conclusion (c) may be false if H is not
nondecreasing.

2. A Class of Circle Endomorphisms

In this section we study a class of noninjective circle maps denoted by A. Each
member of the two parameter families we will eventually study will be in this class.
A circle map g is in A if g is continuous, degree one and its lift G is piecewise strictly
monotone with precisely two turning points in the interval (0,1), a maximum m2

and a minimum mγ with mί>m2 (see Fig. 2). This class has been studied by
Bernhardt [3] from a point of view different from the one we shall pursue.

The following construction is due to Hall [13].1 It will be very useful in
providing a geometric tool for working with the rotation interval. For a fixed g e A
and μs[1,2], there are unique points zίtμe[mu 1] and z2φe[0,m2] with

Fig. 2. The graph of the lift of a map in the class A

1 Subsequent to the completion of this work I became aware of the paper of KadanofF [20] in
which he uses this construction to justify statements similar to portions of this section
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\ /

Z 2 J 3 / 2

Fig. 3. The interpolated map H3/2 in Hall's construction

(see Fig. 3). Note that zli=m1 and z 2 2 = m2. For convenience of notation we shall
often let m{ = z2Λ and frϊ2' = z12 (see Fig. 2).

For each μe [1,2] define Hμ: [0,1]->R via

) for x in [ z 2 μ , z l μ ]

= G(x) otherwise.

Now extend i/^ to the real line subject to Hμ(x +1) = i/μ(x) +1 and let /zμ denote its
projection onto a circle map. Note that hμ is continuous and nondecreasing for all
μe[l,2].

The next lemma examines maps that look like hμ. In its statement and
throughout this work, α denotes an irrational number.

Lemma 2.1. Let /r. S 1 - ^ 1 be nondecreasing, continuous and have precisely one
interval [z2>

zι\ wiίft h'(x) = 0 for xe(z29z1).
(a) // ρ(Λ) = α£Q, then oizdn^z^φ for i = l,2.
(b) // ρ(h) = p/q, then there is a p/q-periodic point z with o(z)n(z2, z1) = 0.

Proof To prove (a), note that if for some;, ti{zj) e [z2, z j , then hj+ ί(zi) = h{z^), and
so ρ(zf) is rational, a contradiction.

To prove (b), first let I = (z29z1) and y = h(Γ). By Lemma 1.2, h has a p/q-
periodic point yv If o(y1)n7 = 0, we are done, so assume that o(y1)n/Φ0, and so y
is p/q-periodic. Let y/ = hq'1(y)el and I_i = h~i(I).

We first show that the sets I,I-ί9 ...,/_ ( ί_1 ) are pairwise disjoint. Assume
there is an xG/_;n/_j with7>i. Then hι(x)el and hj(x)el, and so /zί+1(x)
= ^ + 1 ( x ) = 3;. Thus h*-i(y) = hJ-χti+1(x)) = hi+1(x) = y9 and y is therefore
periodic with period j — i<q, a contradiction.
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Now since the I_ t are disjoint for 0 ̂  ί ̂  q — 1, h\I_f)n/ = 0 for all) < /, and so
hι\I-i is a homeomorphism onto /, so for each i, J_f is an open interval. And note

If we let I_j = (h~i(z2), h~\z^)) be the next /_f to the right of J = (z2,Zi) (see
Fig. 4) then using the fact that h is nondecreasing,

We therefore have a p/g-periodic point ze[z1,/z~J(z2)] and by construction,
O(z)n/ = 0. D

The next lemma uses Hall's construction to give a nice interpretation of the
rotation interval of a map g e A. Specifically, each number in the rotation interval
of g is the rotation number of one of the interpolated nondecreasing maps hμ.

Lemma 2.2. g is a map in the class A and for each μ e [1,2], hμ is the interpolated map
given above.

(a) e(hd = Qt(g)fori = i92.
(b) For each reρ(g), there is a μe [1,2] with r = ρ(hμ).

Proof, Hί is nondecreasing and G^// 1 ? so by Lemma 1.6(c), ρί(G)^ρ(H1). On the
other hand, Lemma 2.1 yields a point z with o(z, G) = o(z, H^, so ρiHJ = ρ(z, Hγ)
= ρ(z, G)^ρ1(G) which proves (a). Now by Theorem 1.3, ρ{Hμ) is a continuous
function of μ, so part (a) with the intermediate value theorem proves (b). D

z 2 z., z h J ( z 2 ) h J ( z - , )

Fig. 4. The graph of Hq in the proof of Lemma 2.1
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For g in A, define Σ(g) = {xeSί: o(x, g)n(m2, mx) = 0}. Note that

CO

Σ(g)=C]g-i([_m1,m2]),
i = 0

and is thus compact and invariant.

Proposition 2.3. p/q and a are rational and irrational respectively, g is in A.
(a) p/qeρ(g) if and only if there exists a p/q-periodic point zeΣ(g).
(b) α G ρ(g) if and only if there exists a ze Σ{g) with ρ{z) = α.
(c) For i = l or 2, ρi{g) = a if and only if ρ(mf) = α and for i = ί, oim^

n[mi, mγ) = 0 and for i = 2, o(m2)n(m2, m2~\ = 0. In particular, ρt(g) = α implies that

Proof. We first note that the "if portion of (a) is obvious. If p/q e ρ(g), use
Lemma 2.2 to find a μ with ρ(hμ)=p/q. Then by Lemma2.1(b) there is a
p/g-periodic point z with o(z,hμ) = o(z,g) so zeΣ(g). The proof of (b) is similar.
Now assume that ργ{g) = tt. Then by Lemma 2.2(a), ρQi^^oc, and so by
Lemma 2.1(a), o(mί)n[fnί,m1) = φ, and so m1eΣ(f). For the converse, if o(mx)
nlm^m^)^ then o(muh1) = o(mug)9 and so Gc = ρ(mug) = ρ(muhί) = ρ(hί)

=Qi(g). α

There are results of Bernhardt derived in [3] using kneading theory that can be
shown to be equivalent to Proposition 2.3(a).

For a given map g in A and an r in ρ(g), there are in general many, perhaps very
complicated orbits o(x) with ρ(x) = r. Proposition 2.3 says that we can always find
a particularly simple orbit o(z) with ρ(z) = r. In fact, by analyzing its proof one sees
that o(z) behaves like the orbit of a circle homeomorphism. Specifically, o{z) is
contained in the region where g is increasing,

exists and the order of the orbit of z around the circle is the same as that of the orbit
of a circle homeomorphism with rotation number r.

The next proposition will not be used in the sequel but we include it for its
intrinsic interest.

Proposition 2.4. Given age A and r e ρ(g), there exists a minimal set Ar Q Σ(g) with
ρ(x) = r for all x e Ar.

Proof Use Lemma 2.2(b) to find a μ with ρ(hμ) = r. Using Lemma 2.1,

S 1 - U K\{z2μ,zlμ))
1=0

is a nonempty, closed, /^-invariant set which thus contains a minimal set Ar Since
ArΩS1 — (z2μ9zlμ), for all xeAn o(x9hμ)' = o(x9g)9 and thus ρ(xig) = ρ(x,hμ) = r
and hμ and g are identical when restricted to Ar. Π

When r = p/q, the set Λpfq can be just a p/q-peήodic orbit. When r = α an
irrational, however, Λα is a minimal set similar to those in Denjoy counter-
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examples. It can be viewed as the one dimensional analog of an Aubry-Mather
invariant Cantor set.

We conclude this chapter by studying the behavior of the rotation interval in a
particularly simple type of one parameter family. Let g be a degree one circle map
and G its lift with G(0) e [0,1). For each welR define Gw = G + w, and let gw be the
circle map which is the projection of Gw.

When g is a circle homeomorphism which satisfies G%^Rp whenever g(gw)
= P/<li Q(W) = Q{9W) is a continuous and nondecreasing function of w with ρ ~ 1(p/q)
a nontrivial closed interval and ρ - 1 (α) is a point [16].

The next lemma states that ρ^w) = Qι(Gw) and ρ2(w)= Qi(Gw) have these same
properties when g e A. The main element in the proof is that ρ(Hι) — Qi(G) where for
i = l ,2 the Ht are the extreme interpolated maps in Hall's construction (see
Lemma 2.2). Thus Qi(Gw) is controlled by the one parameter family of nondecreas-
ing maps Hiw = Hi-\-w and we know that nondecreasing maps behave like
homeomorphisms with regard to their rotation numbers.

Lemma 2.5. Let geΛ and Gw and Hu w be as defined above. For i = 1,2, ρt: IR->]R is
continuous, nondecreasing and onto. For irrational α, ρ Γ 1 ^ ) ί 5 a point while

is a nontrivial closed interval. Fix p/q and let ρ

(a) Hq

iw^Rp with equality attained iff w= Ψl9 if i = \ and w = Φ2 if i = 2.
(b) HftW^Rpwith equality attained iϊϊw = Φ1Jf i = l i = \ andw=Ψ2fori = 2.
(c) There exist z1 and z2 with Hfw(z1)>zί+p and Hfw(z2)<z2 + p iff

weiψ^ΦJ for i=\ andwe{Φ2, Ψ2) for i = 2.

Proof. Continuity of ρx follows from Theorem 1.3. By Lemma 2.2(a),

so ργ is nondecreasing. ρx is onto since one may easily adjust w so that ρ(Hίw) = n
for any integer n. We can therefore conclude that for any real number r, pϊ 1(r) is
either a point or a nontrivial closed interval.

As already noted, wγ>w2 implies H 1 > W l > ί ί 1 > W 2 and so by Lemma 1.6,
ρ(H1 Wί) > ρ(H1W2) if either of them is irrational. This shows that ρ[~ 1(oc) is a point.

Now choose βeBdiρ^ip/q)). Since Qι(gw) = Q(hltW) it's clear that hltβ is in
Bd(Ep/q). Thus by Lemma 1.4 either

(1) H\ β^Rp with equality attained or
(2) Hq

2 β^Rp with equality attained.
Now if H\fβ = Rp, then h\tβ = Id, and so h1>βis injective, a contradiction. Thus if

we assume (1) holds, we may find an ε > 0 so that there is a point z with H\β_ε(z)
= z + p or p/q = ρ(Hlβ-ε) = ρ1(Gβ-ε). One handles the case where (2) holds
similarly showing that ρ^ip/q) is a nontrivial closed interval. The rest of the
lemma follows easily from Lemmas 1.4 and 1.6. D

We conclude this section by noting that H\ w^Rp (respectively, H\ w^Rp)
with equality attained if and only if GJ, ̂  Rp (G% ^ Rp) with equality attained. The
proof is easy. This gives an alternative characterization of Φx and Φ2. w = Φγ iff
G% ̂  Rp with equality attained and w = Φ2 iff G% ^ Rp with equality attained. We
also note that many of the results of this section may be generalized to degree one
circle maps with a finite number of turning points. The proofs utilize the obvious
generalization of Hall's construction.
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3. Construction of the Bifurcation Diagram

We have now developed enough machinery to begin our study of two parameter
families. The families we shall study are of the form Fb w(x) = F(x, b, w) = x + w
+ bp(x) for x, w in R and b in [0, oo). In addition, p:R->R is continuous and
periodic, (p(x + l) = p(x)). This forces FbtW(x + l) = FbtW(x) + l, so that Fb>w is the
lift of a continuous degree one circle map which we denote fbt w. In constructing the
bifurcation diagram of the family it will usually be more convenient to work with

Fb,w
Since we want the family to look qualitatively like the socalled canonical

family, p(x) = sin(2πx)/2π, we also require that p is such that the following
hypotheses are satisfied.

Hypothesis 0. Max(p(x)) = l/2π= -min(p(x)) and p(Q) = 0 = p(l).

Hypothesis 1. For all b> 1, fbtW is in A.

Hypothesis 2. For b<ί, fbtW is a homeomorphism and when b = ί, fb>w is
nondecreasing.

Hypothesis 3. For 0<b<ί, FliWφRp whenever g(FbtW) = p/q.

It is fairly easy to find hypotheses on p which force Hypotheses 1 and 2 to be
satisfied. We shall give several in Sect. 4 which apply when pis C1. Herman [16]
has shown that Hypothesis 3 holds for a generic function in the space C^S^R)
and is satisfied when p is the restriction of a complex entire function to the real line.
In particular, it is true for the canonical family.

Another example to keep in mind for p is the piecewise linear map shown in
Fig. 5. We note that our hypotheses do not require p to display the symmetry these
two examples have. Specifically, it is not necessary that p(x) = —p(l —x). Also, the
requirement in Hypothesis 0 that max(p(x))= — min(p(x)) could be dispensed
with but it would unnecessarily complicate the exposition. Finally, the choice of
l/2π for the maximum of p(x) is arbitrary and was chosen simply so that our results
would apply to the canonical family directly.

-V2π-\

Fig. 5. A piecewise linear example for p(x)

Slope = -1
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Now fix a p(x) that satisfies all the hypotheses above. To investigate how
d(fb w) varies, we will examine the (ft, w)-bifurcation diagram in terms of sets

i

For a fixed b> 1, f b ? 0 is in the class A, and so applying Lemma 2.5 to the one
parameter family Fb>o + w = Fb>w, we have for each rational, p/q, numbers ΨχtP/q

and ΦUp/q with Q1(FbtW) = p/q if and only if we \_ψ1 tP/β9 ΦUp/q]. Thus including the
dependence of ΦltP/q and ΨlfP/q on b, we have functions ΦltP/q, Ψi,p/q (1> oo)->R
with

(1) S1,p / g = {(b,w): ί ' 1 > p / ί , p / ϊ

Similarly, there are functions Φ2,p/q and Ψ2,P/2 w ^ h

(2) S2,p / g = {(6, w): Φ2> ,„(*>)^ w£ Ψ2,plq(b)}.

Now if α is irrational, again using Lemma 2.5, let Φ 1 > α be the unique value of w
with Qi(FbtW) = OL. Then

(3) S l f β = {(&,w)

Similarly, there is a function Φ 2 > α : (1, oo)->R with

(4) S2,« = { ( 6 , W )

The main theorem of this section states that all the functions just defined are
Lipschitz with constant K = l/2π. Also,

which means that the boundaries of the Tr are graphs of continuous functions.
As mentioned in the introduction, the structure of the Tr when b < 1 is given in

Herman [15]. Using a lemma of Herman (which requires Hypothesis 3) one may
define functions on [0,1] which make statements (l)-(4) above true in the region
b < 1 (see remarks before Lemma 2.5, the case b = ί requires a trivial extension of
Herman's lemma). However, since fbw is a homeomorphism when b^ί, Qι(fb,w)
= Qi(fb,w) and so for all r, S^r = S2tΓ. Thus for rational p/q, Ψ2pjq = Φ1 pjq and
Ψi,P/q = φ2tP/q> W^Q f o r irrational α, Φ l f α = Φ 2 , α

The prototype for Tplq for a rational p/q is ΓM, where n is an integer. One may
easily compute, using results from Sect. 2, that Φίtn(b) = n + b/2π, &2,n(b) = n

-b/2π, and
T {(b)

We also note that a more detailed study of the structure of the Tr near b = 0 and its
dependence on properties of the function p is given in Hall [14].

We now state the main theorem of this section which gives the structure of the
Tr (see Fig. 6).

Theorem 3.1. r is an arbitrary real number, a is irrational and p/q is rational
(a) For i = ί or 2, the functions Φir and ΨίfP/q defined above are Lipschitz with

constant K=l/2π.

(b) Φ2tr^ΦUn Φ2tpiaVupfV and Ψ2.p,qύΦi,p/q. When fo>0, ΨltP/q<ΦltP/q9

andΦ2,p/q<Ψ2,p/q.

(c) Tr = {(b9w):Φ
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Fig. 6. Idealized picture of the Tr

Before proving the main theorem, we state a simple lemma which describes the
convergence of the functions defined above. It is an easy consequence of
Lemma 2.5. The notation fr\f means that the fr converge to / and for r1>r2,
fri >fr2- Lemma 3.2 is illustrated in Fig. 7.

Lemma 3.2. p/q, α, and r are rational, irrational and arbitrary real numbers
respectively.

(a) For r>p/q, ΦUr\Φlpjq, and Φ2tf\Ψ2tP/q.
(b) For r<p/q, ΦUrsΨUp/q, and Φ2,rSΦ2,p/q.
(c) For rxx and i = l,2, Φir\Φi>0[.
(d) For r<oc and ί = 1,2, Φ i r / Φ i α .

Given the map FbtW with Z?>1, the maps Hί b w and H 2 , & , w are the extreme
interpolated maps from the construction in Sect. 2. In the proof of Theorem 3.1, it
will be convenient to have these maps defined when b ̂  1 as Hx biw = H2 b w = Fb}W.

Proof of Theorem 3.1. (a) Fix a p/q. We shall prove the result for ΦltP/q (which we
shall denote as Φ).
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Fig. 7. Illustration of the convergence in Lemma 3.2

If we assume there is a b0 where Φ is not Lipschitz with constant K = l/2π, then
there is a /^ so that the points (b0, Φ(b0)) and (bu ΦφJ) lie on a line with slope
m>l/2π. [We may assume without loss of generality that Φ(b1)>Φ(b0).] Thus,
there is a c with mbo-{-c = Φ(bo) and mbi-l-e^ΦCb!). Letting m = l/m and
c= —c/m, we have mφ{bo) + c = bo and mΦ(fe1) + c = fc1. Now since |m|<2π and
|p(x)|^l/2π, certainly mp(x)> — 1, and so

We therefore have that

x + φ(fro) + (roΦ(6<>) + c )^( x ) < x + φ ( f o i ) + ( m φ ( f o i ) + Φ W

which says that i7

& o,Φ(b o)<i7

f e l,φ ( 6 l )) and so HltbθtΦφo)<HlibuΦib& We therefore
have HlbθtΦΛbo)<HlbuΦφί) by Lemma 1.6(b). But by definition, Hq

ubuΦφί)^Rp,
and so Hq

UbθtΦφo)<Rp. Recalling that Φφo) = ΦltP,q(bo), we have p/q
= Q(Hubo,φφJ)<p/q, a contradiction.

The proof for Φ2,P/q and the ΨiiP/q are similar. If r is irrational, one uses
Lemma 3.2.

(b) We first show that Ψ2fP/qt^Φi,piq> To simplify notation, drop the de-
pendence on p/q and let Q(FbtJ) = ρ(b, w). Assume to the contrary that Φx < Ψ2.
Since Φγ{b) is the maximum value of w with ρ^b, w) = p/q, using the monotonicity
of ρ1 we have

/

a contradiction.
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The proof of Φ2 pjq^Ψ1 pjq is similar. The proof that Φ 2 α 5 ^ Φ l α is also
essentially the same as above. The last two inequalities in part (b) are direct
consequences of Lemma 2.5. Finally, Φ 2 Pιq^Ψί p/q<Φι p/q completing the proof
of(b).

(c) For i = 1,2, let ΦUr = Φt. Choose a (b, w) with Φ2(b) <. w <; Φ^fo). Φ^b) ^ w
implies that oc = ρ1(b,Φί(b))^ρί(b,w). Similarly, Φ2(b)^w implies that
α ̂  ^2(b, w), so α e ρ(/6, J , ie. (ft, w)eTα.

Now since Φi(fc) is the maximum w (if r is irrational, it is the unique w) with
ρ1φ9w) = oc9 we have w>Φ1(b) implies that ρ^b,w)>α, so that oίφρ(fbw) or
(ft, w) ^ Tα. Similarly, w < Φ2(b) also implies (b, w) ^ Γα. D

If we let Φί denote ΦltP/q9 then recall that (ί>, Φ^b)) [respectively, (fc, Φ2(&))] is
characterized by Fl>Φί(b)^Rp (FltΦ2φ)^Rp) with equality attained. Theorem 3.1
thus says that when (ft, w) is on the boundary of Tp/q, fbtW has a p/^f-saddle node.

We also note that since all the functions in Lemma 3.2 are continuous, Dini's
Theorem says that the convergence in Lemma 3.2 is uniform on compact sets. This
gives us another way of looking at the contents of Lemma 3.2. Consider the
collection B of all the Φx r and Ψi,p/q, for r and p/q in some closed interval, as a
subset of the function space C ([0, oo), R). If we put the compact open topology on
the function space, then B is a Cantor set. Similar comments hold for the union of
the Φ 2 , r and Ψ2>p/q.

The next proposition states that everything one expects to cross actually does
so. The various cases are illustrated in Fig. 8.

Fig. 8. Illustration of the various cases in Proposition 3.3.
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Proposition 3.3. r and s are arbitrary real numbers and p/q and m/n are rational with
r>p/q>s>m/n. In each of the following cases there exists a b>\ such that the
stated equality holds.

(a) Φ2Ab) = ΦUsφ),

(b) Ψ2.PlJb) = ΦUb),

(c) Ψi.PιJb) = Φ2.M,

(e) Ψi.piJίb) = Ψ2tPl<J[b).

Proof We prove (a), the rest are similar. First note that since r>s, Φ2,r(β) > Φi,sΦ)
Now choose integers k and / with k>r>s>L Using the remark above the
statement of Theorem 3.1 and Lemma 3.2, we have for b>π(k — ΐ)9 Φi > s >Φi,ι
>Φ2,k

>^>2,n which using continuity, gives us the point needed for (a). D

The results of this chapter thus far show that, to a large extent, the actual
bifurcation diagram looks (topologically at least) like the idealized drawings we
have presented in Figs. 6, 7 and 8. They do not, however, rule out the possibility of
multiple intersections of the various curves. Proposition 3.3(e) implies the
existence of the shaded region shown in Fig. 6 where b>ί, but Q(fb,w) = p/q The
dynamics of such fbw could be quite complex, but all orbits are rotating at the
same asymptotic speed.

Using an argument as in the proof of Proposition 3.3, it is easy to see that for
b>π, Φi,p/q>Ψ2;p/q> a n d Φi , α

> ^2,α Since for b< 1, both of these inequalities are
equalities, one would like to know where the curves branch apart. The next
proposition states that under additional differentiability assumptions, this branch-
ing takes place as shown in Fig. 6, i.e. ΦltPjq splits from Ψ2 pjq in the region b>\
and Φ 1 > α and Φ 2 > α

 s Pl^ o n the line b = 1. The proof of the second assertion (which is
equivalent to saying that Tα opens out into a tongue at the line b = 1) is essentially
contained in the following lemma due to Block and Franke [5].

Lemma 3.4 (Block and Franke). Let f: S1 -+S1 be C1 with f of bounded variation.
If {x :/'(χ) = 0} is nonempty and finite and ff changes sign at each critical point,
then f has a periodic point.

Proposition 3.5. α is irrational, p/q is rational.

(a) If p{x) is C 2, then for b>l, Φ l f β >Φ 2 ,«-
(b) // p(x) is C 1, then given a p/q, there exists b0 > 1 so that Ψί p/q(b) = Φ2 p/q(b)

and ΦUp/q(b)=Ψ2,p/q(b) for 0SbSbo-

Proof (a) If for some bi>l, Φι,a(b1) = Φ2,0l(b1) = wί, then ρ(fbuWl) = oί and thus
fbuWί has no periodic points. We shall show that the maximum and minimum (m2

and mx) are the only points where fh\w vanishes in a C 2 family of the type we are
considering. This will complete the proof using Lemma 3.4.

Denote fhu w by /. Assume there exists a third point z with 0 =f\z) = 1 + bp'(z),
then p'(z) = p'(mί)=p'(m2)= —ί/b. Let us assume that z is in (m^m^). Since / is
decreasing on (ra2, mx) (by Hypothesis 1), p\x)S ~ 1/b for all x in (ra2, mx). Now



Bifurcations of Circle Maps 369

p\x)= — ί/b for xe(m2,mί) is impossible, so there must exist xίe(mί9z) and
x2 e (z, m2) with p'(Xi) < — 1/b. Using the continuity of //, one may choose a b2 with
1 <b2<b1 so that fb2tWί is decreasing in neighborhoods of xί and x 2

 a n d increasing
in neighborhoods of mΐ,z and m2. This implies that fb2tW is not in the class A, a
contradiction. The case ze(mum2) is treated similarly.

(b) Since p/q is fixed, we do not include dependence on it in our notation. We
shall show that Φί(b)=Ψ2(b)9 the other equality is similar.

By Lemma 2.5 and the comments after it, Φ^b) [respectively Ψ2(b)~] is the
unique w with Fl w ^ Rp (ifl.t, w = Rp) with equality attained. Now since Hq

2b0lib)

^Fl90i{b)^Rp, if there is a bo>l such that for all b<b0, the point y(b) which
satisfies FltΦlφ)(y(b)) = y(b) + p also satisfies

o(y(b), H2thtΦίφ)) = o(y{b)9 FbίΦι{b)),

then Hq

2b>Φί{b)(y(b)) = y(b) + p, and so Ψ2(b) = Φι(b), and we are done.
To get a contradiction, assume that such a b0 does not exist. We may then find a

sequence bn->l so that for all n,

), H
2tbntΦίibJ

For this to happen, some element of the orbit of y(bn) under FbnjΦl{bn) must land in
(mi(Pr)> WiΦr))' Call this element of the orbit y'n. But as n^oo, ftπ^l and so m2(bn)
->m2(l), thus yί,-^m2(l) and therefore

(note: Di7^ means dFq/dx). But j ^ was chosen so that βi^φ^&^OO = 1 for all n9 a
contradiction. D

The smoothness assumption is necessary in part (b) as one may show that
Ψί9p/q splits off from Φ2tP/q at the line b = 1 for the piece wise linear example shown
in Fig. 5. We also note that Block and Franke [5] alter a C 1 circle diffeomorphism
which is a Denjoy counterexample and obtain a C 1 map in the class A with no
periodic points. It appears likely, however, that such maps do not occur in families
of the type we are considering, and thus Proposition 3.5(a) would hold without a
smoothness assumption.

A final remark: If we let bo(p/q) denote the b0 found for p/q in (b) above and we
choose a sequence of rationals pjqn-*oc, an irrational, then Lemma 3.2 with
Proposition 3.5 implies that bo(pn/qn)^0.

4. Stable Periodic Orbits

In this section we describe some additional structure of the bifurcation diagram
relating to the existence of stable periodic orbits. We shall assume that our family

F(x, b9 w) = Fκ w(x) = x + w + bp{x)

is C with r ^ 1. Under this assumption we can give some simple hypotheses which
imply Hypothesis 1 and 2 of Sect. 3.
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Hypothesis 4. p'(0)>0 and there exists m o e(0,1) with p'(mo)= — 1. If p is C 1

(respectively, C2), p' is strictly decreasing (/?" < 0) on (0, m0) and strictly increasing
0? / / >0)on(m 0 , l ) .

Throughout the remainder of this paper we shall assume that p(x) satisfies
Hypotheses 0 to 4. We note that this implies that mί and m2 are continuous
functions of b which we denote m^b) and m2(b) and that m1(l) = m2(l) = m0.

We recall some standard definitions. A point z is a stable fixed point for a map
/ : S1 -+S1 if f(z) = z and there is an interval N containing z with fn(x)->z as n-^oo
for all x in AT. The condition \Df(z)\ < 1 is sufficient to make z a stable fixed point, z
is a member of a sίαfrfe p/q-periodic orbit if z is p/g-periodic and is a stable fixed
point for fq. If in addition, the orbit of z contains a critical point of/, then z belongs
to a superstable p/q-periodic orbit.

As we mentioned in the previous section, the set To is the prototype for Tp/q and
much of its structure can be computed explicitly. For example, we showed that its
boundaries are the graphs of the functions Φ10(b) = b/2π and Φ2,oΦ)= —b/2π. If
we restrict ourselves to the canonical family, F 6 w(x) = x + w + φ/2π) sin (2πx), one
can also compute that a critical point of Fb}W is a fixed point precisely when (fe, w) is
on the hyperbola b2 — 4π2w2 = 1. For (/?, w) in the region between the hyperbola
and the boundary of To, Fbs w has a stable fixed point. The situation is illustrated in
Fig. 9. The theorem we prove in this section says that this same basic structure
holds in TPlr

The following fact is essentially contained in Collet and Eckmann [7] and will
be used in the proof: If/: [x, y]-»[x, y] is continuous and orientation preserving,

Fig. 9. Finer structure within To
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f(x) > x and f(y) < y, then / has a stable fixed point in [x, y]. In the proof of the
theorem we shall use the notation

dFq d2Fq

DFlw(x)=—(x,b,w), and D2Flw{x)= ~^{x,b,w).

Figure 10 shows the various regions described by Theorem 4.1.

Theorem 4.1. p is Cr ( r ^ 1) and is such that Hypotheses 0 to 4 are satisfied.
(a) For each fixed rational p/q, bin\_\,co) and i = 1 or 2, there exists a unique w

such that m{ is p/q-periodic under fbw and o(m l J/ ί,> w)n[m1,m1) = 0 (respectively,
°(m2>Λ,w)n(m2> τw2] =0Λ We shall denote this w fry σf (or by σip/q(b) if we need to
record its dependence on p/q and b).

(b) // we treat σt as a function of b, σt: [1, oo)-»]R, then Ψ1<σ1<Φ1 and
Φ2<σ2<Ψ2.

(c) // we(σx(b), Φγ{b)) (respectively, we{Φ2(b),σ2{b)) then fhw has a stable
p/q-periodic point xw(x'w) with o(xw, fb>w)n(m1,m1) = 0(o(x/

w, fbfJn(m2,m2) = 0).
(d) σt: ( 1 , o o ) - > ] R is C r l and f u r t h e r ,

is a C r ί curve which when r ^ 2 is tangent to the line b = 1 at the point (1,

Proof Since p/q is fixed throughout and b is usually fixed, we shall often suppress
the dependence of various quantities on them, thus H1 w = Hlb w, m1=m1(b), etc.

(a) First note that w1>w2 implies that H1 Wί>Hί W2, and so when treated as a
function of w, Hl^im^ — mγ is strictly increasing, continuous and onto. There thus
exists a unique w (which we denote as σx) with H\ w(mί) = m1 +p.2

Next, to show that o(m1,h1,σί)n[mί,m1) = 0, we note that /σ

ίf

1(m1) = m1, so
proceeding by contradiction, assume there is an i < q with hi

lσί(mί) e [mί, mx). But

and so hlσί(mί) is /-periodic, a contradiction. We therefore have o(m1 ?/σ i)
= o(muhltσi) completing part (a).

(b) Since hlσί is nondecreasing, it has a unique rotation number which must
be p/q by (a). Thus (b, σ^b)) is contained in SUp/q9 so by the comments above
Theorem 3.1, Ψx^σ^Φv

Now since H1 σ i is C1 except at mί and by part (a),

we have that h\σγ is C1 is a neighborhood of mγ and by the chain rule,
Dhq

lσι(m1) = 0. By definition of σ1? Hq

ίtσι(mί) = mί+p. If we assume that σί = Φ1

then H\ σi^Rp, an impossibility. The assumption that oγ — Ψγ leads to a similar
contradiction.

(c) Since Q(HίΦί) = p/q, by Lemma 2.1 we may find a point y with H\ Φί(y)
= y + p and o(y)n(mι, m1) = φ. Of all such y, let yx denote the y which is closest to
m1 and to the right of m1. Note that this implies that o(y1)n(m1,y1) = φ.

2 A similar continuity argument was used in [10] to show that given a p/q, for each b0 > 1 there is at
least one w0 such that fbθίWo has a superstable p/g-periodic orbit
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Fig. 10. Regions within Tpjq described by Theorem 4.1

Now if σ1<w<Φί9 then

Thus since hlw is nondecreasing, hq

ίw[m1,yί]Q[m1,y1] and by the fact above the
theorem, hltW has a stable p/g-periodic orbit xw in [m l 5 j ^ ] .

Next, we claim that for all x in [m^yi] and all w in (σ^ΦJ, o(x,hlw)
n(fhί9rn1) = φ. This will imply that o(x,hίtW) = o(x,fw), and so xw is also a stable
p/g-periodic orbit for fw finishing the proof.

We first prove the claim for w = Φί. Since ρ(hί, Φi) = p/q, one can use the same
argument used in (a) to show that for i < q, ^^^m^ φ [m l 5 m x ] . By the choice of yί9

for ί<q, we have hi

lφ)(y1)φ{muy{\. Now if there was a i<q with

then / ί 1 Φ l would have an i-periodic point in [m1 ? y j , an impossibility. We are thus
left with m 1</ι ί

1φ 1(m 1)</ι ι

1 > φ.(>y 1)<m 1 for i<q.
Now treated as functions of w, ^^(wij), and /ii>w()^i) are continuous and

strictly decreasing. Since for w in (σ^ΦJ, Q(huw) = p/q we must have h^^im^
Φ mx for z < g. We therefore have for i < q and w in (σ l 5 ΦJ, m t < h\iW{m^) < h\t w(y1)

Since /z l w is nondecreasing and we previously showed that

we have proved the claim.
(d) First, assume that p is C 1 . An elementary argument shows that any

function IR-+IR which is bounded above and below by continuous functions and
has a closed graph is continuous. If n is the integer with n < p/q ^ n + 1 , then σγ is
bounded above and below by the continuous functions Φί>n+1 and Φ1 „,
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respectively. From the proof of part (a), we have that σγ{b) is the unique value of w
with H\bw(m1) = m1 +p. Using this, it is easy to show that σx has a closed graph
and is therefore continuous. Since σ1(l) = σ2(l), we have that Γ is a C°-curve. To
investigate its smoothness when r ^ 2 , define L:IR3—>IR2 via

L2(x9b9w) = DF(x9b9w).

Note that L is C~1 and L(mf(&), ft, σf(fe)) = 0 for i = 1 or 2 and ft ̂  1. We shall let

Now fix fco = l a n d ϊ< = l o r 2, and let XQ = mi{b0) and wo = σί(fto). It is
straightforward to compute the Ljk evaluated at (x0,ft0,vv0) using the fact that
o(x0,fbo, w0) is contained in the region where DFbθtWό is positive. Where
convenient, we shall suppress the dependence of F on ft0 and w0,

^ i i(xo> fco? vv0) = DFq(x0, ft0, w0) - 1 = - 1 ,

L 1 2 (x 0 , ft0, w0) - — (x0, ft0, w 0),

L 1 3 (^ o ? fco? w0) = 1 + V Γl
7 = 1 i=J

Since p satisfies Hypothesis 4, L2 1(x0? b0, w0) is zero if ft0 = 1 and nonzero if ft0 > 1.

d2F

Now if bo>l, evaluated at (x0,ft0,w0), L 1 1 L 2 3 — L 1 3 L 2 1 + 0. Thus by the
implicit function theorem, in the appropriate small neighborhoods, we have C ~ 1

functions ηί and η2 with (x, ft, w) in L~ x(0) if and only iϊx = η1(b) and w = η2(b). It
is clear that η2 = σt.

On the other hand, evaluated at fto = l> wo = σ 1(l) and x o = m 1(l), L11L22

— L 1 2 L 2 1 φ θ . We therefore have (in small neighborhoods) C r ί functions yx and
γ2 with (x, ft, w) in L~ x(0) if and only iϊx = γ1(xv) and ft = y2(w). Evaluated at ft0 = 1,

and so Γ is tangent to the line ft = 1. D

We note that Γ is only one branch of L~ 1(0). Other branches of L" x(0) which
correspond to superstable p/g-periodic orbits with nonstandard order around the
circle will be discussed elsewhere.

Because of the convergence of the edges of the Tr given in Lemma 3.2 and the
position of the splitting of ΨίtP/q and Φ2iP/q in the region ft>l given in
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2,0

Fig. 11. An illustration of when σίiP/q is not monotonic

Proposition 3.5, one can see that σUp/q is not, in general, monotonic in x. For
example, for p/q close enough to 1, one can show that o\vlq must vanish at least
twice (see Fig. 11).

Given a pair of rationals p/q and m/n, this next corollary locates an open set
which is characterized by fhw having a "bistable response" of rotation number p/q
and m/n.

Corollary 4.2. p satisfies Hypothesis 4. Given rationals p/q > m/n, there exists an
open set U so that (b, w) e U implies that fbtW has both a stable p/q-periodic orbit and
a stable m/n-periodic orbit and Q(fbtW) = [jn/n9p/q].

Proof. Let
( f c ) < w < φ i

n{(b, w):

Using an argument as in Proposition 3.3, it is clear that U is nonempty. For
(fc, w) e U, fb)W has the appropriate properties by Theorem 4.1(b) and (c). D

5. Homoclinic Orbits and Aperiodicity

In Sect. 3, we constructed the outline of the bifurcation diagram of our two
parameter families in terms of the set Sί>r and Tr. The boundary oϊSUp/q consists of
the graphs of the functions ΦUpjq and ΨitPιr The graphs of Φ\iPjq and Φ2,P/q form
the boundary of Tp/q and the graph of ΨlιP/q (^2,^) is the limit of the converg-
ing upper (lower) edges of the other Tr for r<p/q (r>p/q). We showed that
fb,Φi p/qφ) has a p/q-saddle node. In this chapter, under stronger hypotheses, we
show that for (b, w) on the graph of Ψι,p/q (̂ 2,/>/<?)> the minimum (maximum) is a
homoclinic orbit under fbw.
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(α) m 2

(c) m2 m2

Fig. 12. Possible behavior of fbtΨ2 φ)

As in previous sections, we examine To as the prototype for Tp/q. We recall that
Ψ2 o is characterized by H2 b Ψl o(i)) ̂  Ro with equality attained (see Fig. 12a). Note
that m2 is an unstable fixed point and F(m2,b, Ψ20(b)) = rh2. Also, m2 has
preimages arbitrarily close to m2. Thus m2's "past" and "future" converge to m2. A
point such as m2 is called a homoclinic orbit (definition given below).

We wish to show that the analogous behavior happens in Tp/q. The main
difficulty is illustrated in Fig. 12b. Here we still have H2 bΨl o{b) ^ Ro with equality
attained but rh2 is no longer the unstable fixed point. Such behavior is of course
impossible if fbw satisfies Hypothesis 4 which implies that Fbw has only one
inflection point in (0,1). Hypothesis 4 alone, however, does not seem to eliminate
behavior analogous to Fig. 12b happening for the qth iterate of Fb w. This behavior
is ruled out by requiring the function to have negative Schwarzian derivative
(defined below). It is well known that if a function G has negative Schwarzian, Gq

has a very nicely behaved second derivative for all integers q.
As has been mentioned, Fig. 12b differs from Fig. 12a in that m2 is not a fixed

point. Using the hypothesis of negative Schwarzian, we show in Lemma 5.1 that if
rh2 is not a p/g-periodic point for /&,«F2(6), then we are in the situation given by
Proposition 3.5, i.e. Φ1(b) = Ψ2(b) (see Fig. 12c).

Using this, we know that when Φλ > Ψ2, m2 is a p/g-periodic point under
fb,ψ2(by We also know that Hq

2fbfΨ2φ)^Rp with equality attained (at m2). In
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Theorem 5.2, again using the hypothesis of negative Schwarzian, we show that this
implies the homoclinic behavior.

We now define the Schwarzian derivative and state some results concerning it
that are contained in Singer [25]. For a C 3 map, G:R->]R, the Schwarzian
derivative of G at x, SG(x), is defined as

(1) If SG<0, then SGn<0 for all integers n.
(2) If SG < 0, then Gf has no negative local maximum and no positive local

minimum.
(3) If G(x)^x in some neighborhood of x0, G(xo) = xo, and SG<0, then

D 2G(x 0)>0. To prove this, note that DG(xo) = l and if D2G(x0) = 0, then since
SG<0, D3G(xo)<0, which using Taylor's Theorem contradicts G(x)^x.

(4) We will also utilize the following slight extension of Singer's theorem [25].

Theorem. f:S1^S1 isC3 andF :ΈL^ΈLisalift of f If SF > 0, then for every stable
p/q-periodic orbit x of f there is ani<q and a critical point c of f so that fnq(c)
-+fι{x) as w-κx).

We note as a corollary that any map g is our class A with Sg < 0 has at most two
stable periodic orbits. One can easily compute that the canonical family FbtW

satisfies SFb w<0 for all b>\.
The statements of Lemma 5.1 and Theorem 5.2 will only involve Ψ2 and Φί.

Analogous results are of course true for Ψx and Φ2. Also, in the statement and
proof of the next lemma, we suppress dependence on p/q and, in its proof,
dependence on b. For a function G: R->]R, D + G(x) denotes the derivative of G at
x from the right.

Lemma 5.1. // Fbψ2ib) has negative Schwarzian derivative and either
(a) Hq

29b>Ψ2ib)(m2) + ?ή2 + p, or

(b) Hq

2tbtΨ2{b)(m2) = m2+p and D+H*2tbtΨ2{b)(m2) = ί, then Φί(b) = Ψ2(b).

Proof Since ρ(H2ψ2) = p/q, using Lemma 2.1(b) we may find a point y with
Hq

2Ψ2(y) = y + p and o(y, H2ψ2)n(m2,m2) = φ. If we assume (α), m2φo(y). Now
since Ψ2 is characterized by Hq

2ψ2^Rp and H2Ψ2 is C1 except at m2, we have
DH%tψ2(y) = 1. We therefore must have m2 φ o(y) and so o(y9 H2Ψo)n[m2, m2~\ = 0.

We may therefore find an open interval U containing y, so x in U implies Ff(x)
= H2(x) for i ̂  q (we are omitting the subscript Ψ2). Thus for x in U, Fq(x) ^ x + p
and DFq(x) = DHq

2(x).
Now let y denote the element of o(y) which is closest to m2 and y>m2. Choose

m'so that (m\y\ is the maximal interval with (x,/(x), ...,/^~1(x)}n[m2, m j = 0
for all x G (m\ y]. Since / is orientation preserving on S1 - [m2, m x], it is clear that
for some i<q, fi(mλ) = mu and so DFq(rn') = 0 (we will eventually show that

Next, we claim that 0 < DF\x) < 1 for all x 6 (m\ y). The fact that 0 < DFq(x)
follows from DFq(y) = 1, continuity oϊDFq and the fact that we choose m' so that no
xe(m',y] has DFq(x) = 0.
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To see that DFq{x) < 1, first note that we must have D2Fq(y) > 0 by (3) before the
lemma. Now, if there was a point x in (m\y) with ZλP(x)^l, then since
DF^mϊ) = 0, DFq must have a minimum at some z e (x, y). However, we have just
shown that DFq(z) > 0, which contradicts the negative Schwarzian hypothesis [see
(2) above the lemma].

We have proved the claim, and so for x e [m\ y).

y + p- Fq(x) = Fq(y) - Fq(x) = { DFq(t)dt <y-x,
X

and so Fq(x)>x+p. Similarly, using DFq(t)>0, we get F9(x)<y+p. Thus

f\ίnι',y-])g\m',y\.

But since {x,/(x), ...,/^~1(x)}n[m2,m1] = 0 for all x in (m',y], we have o(x)
n[w2, w1] = 0, and so / ' restricted to [m',y] is a homeomorphism for all i.

Next, we show that in fact, m' = mί. If m/ + m1, then since 3/ is the minimum on
its orbit and fi(m/) = mί, we have m' interior to f\{m\y)), and so m//=f~ί(m/) is
interior to (m\y) and f2i(m") = mu a contradiction to the choice of m'.

Summarizing what we have so far, x e [ml5 y) implies that Fβ(x) > x+p. Now
for x*elfh^m^ let x be the point in \mum2~\Q[muy~] with F(x) = F(x). Then
since x>x', Fί(x/) = F ί(x)>x + p>x / + p. Thus xe[muy) implies that F*(x)

Finally, say there is a z in IR with Fq(z) <z + p. Then, since i ϊ | ^Kp, there must
be some i^q with Ff(z) + Hι

2(z). If we choose the least such i, then /f(z) e (m2, m2).
Now since i ί 2 is order preserving and F^H2, Fq(z)<z + p implies that

Fq(F\z)) = F\Fq{z)) ^ H^F^z)) ^H2{z + p) = H\z) +p = F\z) + p.

This contradicts the result we summarized above. Thus Fίv^Rp with equality
attained so by the comment after Lemma 2.5, Ψ2 = ΦV If one assumes (£?), the
proof is similar. D

We shall again suppress the dependence on p/q.

Theorem 5.2. Fix b>\. If Φ1(b)>Ψ2(b) and Fhψ2{b) has negative Schwarzian
derivative, then m2 is an unstable p/q-perίodic point under fbfΨ2φ), fb,ψ2Φ)(m2) = n^2
and for each open interval U containing m2, there is an i with m2 ef\U).

Proof Theorem 3.1(b) says that Φ1(b)^Ψ2(b). Using Lemma 5.1, Φ1(b)>Ψ2(b)
implies that Hl^2(m2) = m2-\-p and D+Hq

2iΨ2(m2) + l (we are omitting the
dependence on b). Now since Hq

2ψ2^Rp, it is clear that D+Hq

2ψ2(m2)>ί and
o(m2, H2 ψ2) = o(m2, FΨl\ and so DF^2(m2) > 1 and m2 is an unstable periodic orbit
under fΨl. Since fΨ2(m2)=fψ2(m2), we have m2=β2(m2)=f$2(m2).

To prove the rest of the theorem we examine H2 ψ2 more closely (we omit the
subscript ϊ^). Since ρ(H2) = p/q, if we let / = [ra2, m2] and / . — iί^^/), then using
an argument as in Lemma 2.1(b) we have that the sets /, /_ l 5 . . . , I_iq _ υ are pair-
wise disjoint closed intervals and / ' restricted to /_; is a homeomorphism onto
/ for O^i^ l . Moreover, if q-χ

Ό
then H2(x) = F(x) for ί^q. ι~°
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Now choose) so that 7_7 is the nextI_ t to the right of I. Let J_ 7 = [m2, m2], and
so fj(m2) = W22 We now show that for x in (m2, m2), ̂ (x) >x + p. Since (m2, m2) is
in the complement of the I_j's, we know that %e(m2,m2) implies that Hq

2(x)
= Fq(x). Since by definition, Hq

2^Rp, we have Fq(x)^x + p for all x in (m29tn'2).
Now, if there was a point z in (m2, m') with F\z) = z + p, then DFq{z) = 1, and so

by (3) above Lemma 5.1, we have D2Fq(z) > 0. Since DFq(m2) > 1, DF* must have a
local minimum at some point x in (m2, z). But every point x in (m2, m2) satisfies
{x,f(x),...,fq~1(x)}n[m2,m2'] = Φ> a n d s o J5ί'β(x)>0. This contradicts the
negative Schwarzian hypothesis. We therefore have Fq{x)>x-\-p for all x in
(m2, m2).

Now let U be an open interval containing ra2. Since Fq(m2) = m2-\-p and we
have just shown that Fq(x) >x + pfor all x in (m2, m2), it is clear that we can find a k
with m2 efkq(U). But fj(m2) = m2 and so m2 efkq+j(U), completing the proof of
the theorem. D

Loosely speaking, a homoclinic orbit is one whose past and future converge to
the same point or periodic orbit. They result in rich dynamical behavior and have
been a central object of study in dynamical systems since they were first introduced
by Poincare. Homoclinic points for maps of the interval/: [0, l]-*[0,1], were first
defined by L. Block [4]. A point x is called homoclinic to the ^-periodic point z if
x + z, fmq(x) = z for some m, and given an open interval U containing z, there must
exist an n with x efnq(U). In other words, one requires that preimages and iterates
of x under fq come arbitrarily close to z.

In Theorem 5.2 we proved that preimages of m2 under fq come arbitrarily close
to m2. This means that preimages of m2 under fq come arbitrarily close to fj(rh2)
and of course, fq(m2) = m2. Thus under fq, the past and future of m2 go to different
points on the orbit of m2, and so m2 is not homoclinic to m2 in Block's sense. One
could interpret Theorem 5.2 as saying that m2 is a homoclinic point for the
periodic orbit that contains m2. One could also borrow terminology from the
theory of invertible dynamical systems and say that under fq, m2 is heteroclinic
between two different iterates of m2.

It is interesting to note that similar considerations occur in [2] in the discussion
of the curve in the resonance horn that is analogous to the graph of Ψ2tPfq. The fact
that the maximum m2 is the homoclinic point takes the analogy a step further as it
seems to correspond to a homoclinic tangency.

The results of Sect. 3 and Theorem 5.2 allow us to give a nice characterization
of the dynamics of fbtW as it makes the transition from having a single rotation
number to having an interval of rotation numbers. The various cases are
illustrated in Fig. 13. I suspect that the small island that occurs in Tp/q cannot
actually occur, but none of my results prove this.

Corollary5.3. fbw has negative Schwarzian derivative for all b>\ and
(b,w)GBd({(b,w): ρ(fbjW) is a single number}).

(a) If ρ(fb w) is an irrational α, then b = l and w = Φx α(l) = Φ 2 α(l).

(i) (fc, w)GBd(Tplq), then fbtW has a p/q-saddle node, or
(ii) if (b,w)φBd(Tp!q), then either mγ or m2 is homoclinic to an unstable p/q-

perίodic orbit.
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b ( i )

- — ί :

Fig. 13. The boundary of the region where fbtW has a unique rotation number

The next corollary locates an uncountable set of parameter values (b, w) for
which fbw is "aperiodic."

Corollary 5.4. α and β are irrational numbers with oc>p/q>β>m/n and Fbw has
negative Schwarzian derivative for b>\. If b and w are such that they satisfy any of
the following equalities, then fb w has no stable periodic orbits.

(a) w = Φ2>.(i>) = Φ1><((6),
(b) w=Ψ2,Plq(b) = Φuβ(b),
(c) w = ΨUp/q(b) = Φ2,x(b),
(d) W=ΨUmln(b) = Ψ2tPlq(b),
(e) w = ΨUplq(b) = Ψ2,plq(b).

Proof Note that all these cases do occur by Proposition 3.3. We prove the
conclusion for case (b), the others are similar. By Theorem 5.2, fb

q

fW(m2) is an
unstable periodic orbit and by Proposition 2.3, ρ(m1) = <x, an irrational number.
Thus neither of the critical points is attracted to a stable periodic orbit, and so by
Singer's Theorem, fbw has none. D

We note that if g is a map in the class A discussed in Sect. 2 and G has negative
Schwarzian derivative, then ρ(g) = [α, β~\ implies by Proposition 2.3 that ρ(mx) = α
and ρ(m2) = β, and so g has no stable periodic orbits.

In the last proposition we examine the smoothness of the Φt when fbw has
negative Schwarzian.

Proposition 5.5. Iffb w is Cr with r ^ 3 and Fb w has negative Schwarzian for allb>l,

then Φ,:(l, oo)->R is C " 1 for i = l,2.
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Proof. The proof is quite similar to that of Theorem 4.1(d), so we just give a sketch.
Fix p/q and bo>l. Recall that Φιφ0) is characterized by F%^Rp with equality
attained at some y0 with DFk(y0) > 0 for all k [see the proof of Theorem 4.1(c)]. We
also have that DFq(y0) = l, and so by (3) above Lemma 5.1, D2Fq(y0)>0.

Now define M: R3^R2 via

Note that M is C ~ \ and if we let wo = Φ1(feo)5 then M(yθ9 b0, wo) = 0.
One computes that, evaluated at Cyo>&o>wo)> Aί 1 1 =0, M 1 3 > 1 , and

M 2 1 =D 2 F ? ( j o )φ0. Thus M 1 1 M 2 3 - M 2 1 M 1 3 φ 0 , and we are done by the
Implicit Function Theorem. D
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