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Arnol’d Tongues, Bistability and Rotation Intervals

Philip L. Boyland*
Department of Mathematics, Boston University, Boston, MA 02115, USA

Abstract. We study the bifurcations of two parameter families of circle maps
that are similar to f, ,(x)=x+4w+(b/2m)sin(27nx)(mod1). The bifurcation
diagram is constructed in terms of sets 7, where T, is the set of parameter values
(b, w) for which f, ,, has an orbit with rotation number r. We show that the
known structure when b<1 (for r rational, 7, is an Arnol’d tongue and for r
irrational, it is an arc) extends nicely into the region b>1, where f, ,, is no
longer injective and can have an interval of rotation numbers. Specifically, the
tongues overlap in a uniform, monotonic manner and for r irrational, 7, opens
into a tongue. Our other theorems give information about the dynamics of f; ,,
(e.g., bistability or aperiodicity) for (b, w) in various subsets of parameter space.

0. Introduction

In this paper we construct the bifurcation diagram of two parameter families of
circle maps which are similar to what has been termed the “canonical” family [16],
Jo.w(X)=x+w+(b/27) sin (27mx) (mod 1). These families are used to model various
periodically forced nonlinear oscillators (e.g. [8, 17, 23]) and in the renormaliza-
tion group analysis of the transition from quasiperiodicity to chaos [9, 22, 24]).
When b<1, f, , is a C® circle difftomorphism. The dynamics of such maps are
well understood from the classic work of Poincaré¢ and Denjoy. All orbits rotate at
the same asymptotic rate, so one may define the rotation number of the
diffeomorphism which essentially classifies the dynamics. When b>1 however,
Jb.w 18 DO longer injective and can display the dynamic complexity which is well
known for maps of the interval. Different orbits can rotate at different asymptotic
rates, and f; ,, can have an interval of rotation numbers [18].

Of particular interest in the bifurcation theory of dynamical systems is the
description of the transition from simple to complicated or “chaotic” dynamics. In
studying this transition in the canonical family it is natural to examine the
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bifurcation diagram in terms of the sets T,, where T, is the set of parameter values
(b,w) for which f, , has an orbit with rotation number r. The manner in which
these sets overlap and accumulate indicates how the rotational dynamics are
changing as b and w are varied.

The structure of the T, when b < 1 is given by Arnol’d [1] and Herman [15] who
use the canonical family as an example. When r is rational, T, is a tongue shaped
region with its narrow tip on the line b=0, while for r irrational, T, is an arc
connecting the line »=0 to the line b=1 (see Fig. 1). We prove that this structure
extends nicely into the region where b> 1. Specifically, the tongues overlap in a
uniform, monotonic manner and for r irrational, T, opens out into a tongue with its
tip on the line b=1 (see Fig. 1).

Our other main theorems describe finer structure of the bifurcation diagram
within T, for p/q an arbitrary rational. For (b,w) in these various subsets of
T,/4» /5, has such dynamical behavior as a superstable periodic orbit, a stable
periodic orbit, a saddle node or a homoclinic orbit, all with rotation number p/q.

Asa corollary, we delineate the ways in which f, ,, can make the transition from
having a single rotation number to having an interval of rotation numbers. It is
also shown that for each pair of rationals r,>r,, there is an open set U so that
(b,w)e U implies that f, ,, has exactly two stable periodic orbits z; and z, with
rotation numbers r, and r, respectively (i.e. “bistability”). Finally, we show that if
the set of rotation numbers of f, ,, is the interval [«, ] with o and f irrational, then
f5,w has no stable periodic orbits (i.e. is “aperiodic”).

We have been especially guided in our study by the numerical work and
description of the canonical family by Glass and his various coworkers (sum-
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Fig. 1. Sketch of the bifurcation diagram of the canonical family
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marized in [107). Our theorems give analytic proof to many of their descriptions
and conjectures. Our other source of motivation and guidance was the bifurcation
diagram proposed by Aronson, Chory, Hall, and McGehee in their computer
assisted study of bifurcations from an invariant circle in families of plane
diffeomorphisms [2]. We shall see many interesting similarities between the
bifurcation diagram of the canonical family and the diagram proposed by Aronson
et al. (A detailed description of the possible relationship of the bifurcation diagram
of the canonical family to the phenomenon of the breakup of a mode locked
invariant circle is contained in the appendix of [22].) We wish to emphasize,
however, that the bifurcation structure of a family of circle maps is certainly
inadequate to explain all the diverse phenomena that can accompany the loss of
an invariant circle in a family of plane diffeomorphisms (e.g. infinitely many sinks).
We also note that a bifurcation diagram similar to that proposed by Aronson et al.
occurs in a somewhat different context in Greenspan and Holmes’ study of a
periodically forced Duffing equation [11].

This paper is organized as follows. In the first section we present some
generalizations to noninjective circle maps of some well known results about circle
homeomorphisms. The second section is devoted to the study of a particularly
simple form of noninjective circle map. Each noninjective member of the two
parameter families we will study is of this type. With Sect. 3, we commence our
study of two parameter families of circle maps of the form f, ,(X)=x+w
+ bp(x) (mod 1), where p(x) satisfies hypotheses which make it qualitatively similar
to (1/27) sin (27x). It turns out that one only needs p(x) continuous to construct the
overall organization of the bifurcation diagram. In Sects. 3 and 4 we obtain more
information about the bifurcation diagram and the corresponding dynamics of
fv. by requiring p(x) to be increasing like (1/27) sin(27nx). In Sect. 4, p(x)is C*, and
in Sect. 5 we require f, ,, to have negative Schwarzian derivative for all b>1.

1. Rotation Intervals of Degree One Circle Maps

In this first section we introduce notation and collect together some lemmas
concerning the set of rotation numbers of degree one circle maps that will be useful
in our study of two parameter families. These results are straightforward
generalizations of known results concerning the rotation number of circle
homeomorphisms contained in Arnol’d [1], Brunovsky [6], and Herman [16].
We begin with some standard definitions. For a function f: S*—S?, define the
n' iterate of f, f"=fof" 1. The orbit of x under f is defined as o(x, f)
={x, f(x), f*(x),...}. The rotation number of x under f,o(x, f), measures the
asymptotic rate of rotation of an orbit. It was first defined by Poincaré for circle
homeomorphisms and was generalized to degree one circle maps by Newhouse,
Palis, and Takens as follows [21].
For f:S'—>S! a degree one map, fix a lift F:R—R, i.e. no F=F on, where
n:R—S" is n(t) =exp(2rit). Choose x’ with n(x")=x and define
o(x, f)=o(x', F)=lim supF(x%.

n—>oo
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Next, define the rotation set of f as o(f)={o(x, f):x e S'}. If we had chosen a
different lift F, the entire rotation set could be translated by an integer. Poincaré
showed that if f is a homeomorphism, go(x, f)is independent of the choice of x, and
so ¢(f) is a single number, called the rotation number of f. If f is a continuous
degree one circle map, Ito [18] (see also [21]) has shown that g(f) is a closed
interval which we denote [¢,(f), 0,(f)].

Any map F : R >R which satisfies F(x + 1) = F(x) + 1 may be treated as the lift
of a degree one circle map. In what follows, it will usually be more convenient to
work with lifts of circle maps rather than the circle maps themselves. We note for
future use that g(x, F%) = qo(x, F). The proof is straightforward. As above, we may
write, o(F) =[¢(F), ¢2(F)].

The first lemma introduces some simple relationships between the lift of a rigid
rotation R, (R,(x)=x+r), the lift of a degree one circle map F, and ¢,(F) and
0,(F). The proof is standard. We include it because of the importance of these
techniques in the sequel. As will be the case for many of our lemmas and theorems,
the statement will involve both ¢, and g,, but we will only prove the result for o,
the proof for g, being completely analogous.

Lemma 1.1. F is the lift of a degree one circle map, r is a real number and p and q are
integers with (p,q)=1. -

(@) If F=R, (respectively, F<R,), then 9,(F)=r (0,(F)<r).

(b) If F>R, (F<R,), then 9,(F)>r (0,(F)<r).

(c) F*>R, (F*<R,) if and only if ¢,(F)>p/q (¢,(F)<p/q).

Proof. We prove (b) first. Since F(x+1)=F(x)+1, F(x)—x is periodic and thus
has compact image. So we may find an ¢>0 with F(x)>x+r+¢ for all x in R.
Using induction this implies that F"(x)>x+n(r+¢) or

F'(x)—
———(x) x>r+£

for all n and all x in R.

The proof of (a) is similar. To prove (c), note that F> R, implies by (b) that
01(F9)>p. Thus ¢,(F)>p/q. For the converse, assume there exists a z with F(z)
<z+p. Then using continuity, either F?< R, in which case ¢,(F) < ¢,(F)<p/q, or
there is a point x with F4(x)=x+p so g9(x)=p/q, and so p/qeo(f). Thus ¢,(F)
=p/q. O

Throughout the remainder of this work, p and g will always be integers with
(p,q)=1. A point z belongs to a p/q-periodic orbit under f:S*—S" if o(z, /) =p/q
and z is periodic with least period q.

The next two lemmas are contained in Newhouse-Palis-Takens [217]. The
proofs are straightforward applications of Lemma 1.1.

Lemma 1.2. f:S'—>S' is degree one and continuous. F is its lift satisfying
F(0)e[0,1). The following are equivalent:

(@) p/gee(f),

(b) f has a p/q-periodic point z,

(c) There is a point z with Fi(z)=z+p.
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It has been known since Poincaré that the rotation number of a circle
homeomorphism depends continuously on the function. The first published proof
was apparently given by Arnol’d [1]. The next result generalizes this to the
rotation interval of degree one circle maps. Note, however, that simple examples
show that g(x, ) is not continuous in either x or f. Let End(S') denote the set of all
continuous, degree one circle maps with the C°-topology.

Lemma 1.3. 9 =(¢,,0,): End(S")—>IR? is continuous.

We remark that in Lemma 1.3 we must choose lifts that are C°-close when
computing the rotation intervals of circle maps that are C°-close. Now let

E,,={feEnd(S"):p/geo(f)}.
Note that
E =0 '({u,n)e R*:u=<p/g<v})

and is thus closed. The statement “F?= R, with equality attained” means that
F?zR, and there is a point z with F%(z)=z+p.

Lemma 1.4. If fe Bd(E,,), then either F*= R, or F* < R, with equality attained in
both cases. In the first case, ¢.(f)=p/q and in the second, ¢,(f)=p/q.

Proof. Since E,, is closed, fe Bd(E,,) implies that p/q € o(f). Thus F?> R, and
F?< R, are impossible by Lemma 1.2. So if the conclusion of the lemma does not
hold, there are points z, and z, with Fi(z,)>z, +p and F%(z,) <z, + p. But these
inequalities will also hold with G in place of F for any g C°-close to f. Thus there is
a point x (depending on g) with G%x)=x+p. Therefore, p/q e o(g) for any g
COclose to f so f¢ Bd(E,,).

To prove the second statement of the lemma, since p/qeo(f), 0.(f)Zp/q
<0,(f). Using Lemma 1.1(c), if F*=R,, 0,(f)=p/q, so ¢,(f)=f/q. Similarly,
F?< R, implies ¢,(f)<p/q, so ¢,(f)=p/q in this case also. []

One interpretation of Lemma 1.4 is that the bifurcation which occurs when p/q
is lost as a rotation number is always a p/g-saddle node (perhaps degenerate).

The next two lemmas generalize some well known results about circle
homeomorphisms to nondecreasing maps, [ f: S — S is called nondecreasing if its
lift F has the property that x<y implies F(x)<F(y)]. Their statements are
essentially contained in Hall [12]. The proofs are only slight modifications of the
proofs for homeomorphisms and Hall refers the reader to Herman [16]. The first
lemma states that nondecreasing, degree one circle maps have a single rotation
number.

Lemma 1.5. If h:S'—>S' is continuous, nondecreasing and degree one, then
. H'(x)—x
fim )=
n— oo n

exists and is independent of x.

Lemma 1.6. F, G, and H are lifts of continuous degree one circle maps with G and H
nondecreasing.
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(a) If GZH, then G*<H? for all positive integers q, and so o(G) =< o(H).

(b) If G<H, then G'< H" for all positive integers q, and if either 9(G) or o(H) is
irrational, 9(G) <o(H).

(c) If F=H, then F1=ZH? for all positive integers q, and so ¢9,(F)=o(H). If
F<H, FA<H for all positive integers q, and so ¢,(F)<o(H).

Simple examples show that conclusion (c) may be false if H is not
nondecreasing.

2. A Class of Circle Endomorphisms

In this section we study a class of noninjective circle maps denoted by 4. Each
member of the two parameter families we will eventually study will be in this class.
A circle map g isin A if g is continuous, degree one and its lift G is piecewise strictly
monotone with precisely two turning points in the interval (0, 1), a maximum m,
and a minimum m, with m; >m, (see Fig. 2). This class has been studied by
Bernhardt [3] from a point of view different from the one we shall pursue.

The following construction is due to Hall [13].} It will be very useful in
providing a geometric tool for working with the rotation interval. For a fixed g € 4
and pe[1,2], there are unique points z, ,€[my,1] and z, ,€[0, m,] with

G(z1,,)=G(z3,,) = G(my) + (u—1) (G(m;) — G(m,))

|
P N B

-
~N
3+ - — — — — —

N

Fig. 2. The graph of the lift of a map in the class 4

! Subsequent to the completion of this work I became aware of the paper of Kadanoff [20] in
which he uses this construction to justify statements similar to portions of this section
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T T 1
22,3, 21,3,

Fig. 3. The interpolated map H;,;, in Hall’s construction

(see Fig. 3). Note that z;; =m, and z,,=m,. For convenience of notation we shall
often let m; =z, ; and m, =z, , (see Fig. 2).
For each pe[1,2] define H,:[0,1]>R via

H (x)=G(my)+(u—1)(G(my) — G(m,)) for x in [z, ,, 2y ,]
=G(x) otherwise.

Now extend H, to the real line subject to H,(x +1) = H (x) + 1 and let h, denote its
projection onto a circle map. Note that £, is continuous and nondecreasing for all
uel1,2].

The next lemma examines maps that look like h,. In its statement and
throughout this work, o denotes an irrational number.

Lemma 2.1. Let h:S'—>S* be nondecreasing, continuous and have precisely one
interval [z,,2z,] with k'(x)=0 for xe(z,,2,).

@) If o(h)=0¢Q, then o(z,)N(z5,2z,)=0 for i=1,2.

(b) If o(h)=p/q, then there is a p/q-periodic point z with 0(z)N(z5,z,)=0.

Proof. To prove (a), note that if for some j, h/(z;) € [z,, z,], then K/ * 1(z;) = h(z,), and
0 ¢(z;) is rational, a contradiction.

To prove (b), first let I=(z,,z,) and y=~h(I). By Lemma 1.2, h has a p/q-
periodic point y,. If o(y,)nI =0, we are done, so assume that o(y,)nI +0, and so y
is p/q-periodic. Let y’=h?"(y)el and I_;=h"'(I).

We first show that the sets I,I_,,...,I_(_, are pairwise disjoint. Assume
there is an xeI_,nI_; with j>i. Then hi(x)el and hi(x)el, and so h'*"!(x)
=hi*Y(x)=y. Thus W i(y)=h"'(h"*'(x))=h"'(x)=y, and y is therefore
periodic with period j—i<gq, a contradiction.
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Now since the I _; are disjoint for 0<i<g—1, W(I _))nI =0 for allj<i, and so
k|l _; is a homeomorphism onto I, so for each i, I _; is an open interval. And note
that h%(I_)=h?"""Y(h(I))=h"(h*"(y))=h~'(y)el_;,and so hi(I _)) eI _,for all
05izq—1.

If we let I_;=(h"(z,), h~¥(z,)) be the next I _, to the right of I =(z,,z,) (see
Fig. 4) then using the fact that & is nondecreasing,

he([z1, h™(z,)1) 2245 h—j(zz)] .

We therefore have a p/g-periodic point ze[z,,h™%(z,)] and by construction,
0z)nI=0. O

The next lemma uses Hall’s construction to give a nice interpretation of the
rotation interval of a map g € A. Specifically, each number in the rotation interval
of g is the rotation number of one of the interpolated nondecreasing maps h,.

Lemma 2.2.gis amap in the class A and for each pe[1,2], h, is the interpolated map
given above.

(@) e(h)=eig) fori=1,2.

(b) For each reg(g), there is a pe[1,2] with r=o(h,).
Proof. H, is nondecreasing and G = H, so by Lemma 1.6(c), ¢,(G) = ¢(H ). On the
other hand, Lemma 2.1 yields a point z with o(z, G)=o0(z, H,), so ¢(H,)=0(z, H,)
=0(z, G) 2 ¢,(G) which proves (a). Now by Theorem 1.3, ¢o(H,) is a continuous
function of y, so part (a) with the intermediate value theorem proves (b). [

l
|
l
|
|
|
|
|
I
|
|
-

|
|
|
|
:
|
[
I
f
z

2 Zy

Fig. 4. The graph of H? in the proof of Lemma 2.1
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For g in A, define Z(g)={xe S*: o(x, g)n(m,, m,)=0}. Note that

@)=} g~ (Cmm;)),

and is thus compact and invariant.

Proposition 2.3. p/q and o are rational and irrational respectively, g is in A.

(@) p/qeo(g) if and only if there exists a p/q-periodic point z € 2(g).

(b) aeo(g) if and only if there exists a z € X(g) with o(z)=o.

(c) For i=1 or 2, ofg)=uo if and only if o(m)=ca and for i=1, o(m,)
N[my,m)=0and fori=2, o(m,)"(m,,m,]=0. In particular, 9(g) = o implies that
m; € 2(g).

Proof. We first note that the “if” portion of (a) is obvious. If p/qeo(g), use
Lemma 2.2 to find a x4 with g(h,)=p/q. Then by Lemma 2.1(b) there is a
p/g-periodic point z with o(z, h,)=0(z, g) so ze 2(g). The proof of (b) is similar.
Now assume that g,(g)=«. Then by Lemma 2.2(a), o(h;)=«, and so by
Lemma 2.1(a), o(m,)N[ri;, m;)=0, and so m; € Z(f). For the converse, if o(m,)
N[y, my) =Q)> then o(my,hy)=0(m,g), and so a= o(my, g)=o(m, hy)=o(hy)
=01(9). O

There are results of Bernhardt derived in [3] using kneading theory that can be
shown to be equivalent.to Proposition 2.3(a).

Fora given map gin A and an rin g(g), there are in general many, perhaps very
complicated orbits o(x) with o(x) =r. Proposition 2.3 says that we can always find
a particularly simple orbit o(z) with g(z) =r. In fact, by analyzing its proof one sees
that o(z) behaves like the orbit of a circle homeomorphism. Specifically, o(z) is
contained in the region where ¢ is increasing,

. G'(2)—z
lim $@ =2
n— oo n
exists and the order of the orbit of z around the circle is the same as that of the orbit
of a circle homeomorphism with rotation number r.

The next proposition will not be used in the sequel but we include it for its
intrinsic interest.

Proposition 2.4. Given a g€ A and r € 9(g), there exists a minimal set A, < X(g) with
e(x)=r for all xe A,.

Proof. Use Lemma 2.2(b) to find a u with g(h,)=r. Using Lemma 2.1,

St— 'go h;i((zzﬂ, Z1u))

is a nonempty, closed, h -invariant set which thus contains a minimal set A,. Since
A,E8" (25,5 21,), for all xe4,, o(x, h,) =0(x,g), and thus o(x,g)=o(x, h,)=r
and h, and g are identical when restricted to 4,. O

When r=p/q, the set 4,, can be just a p/g-periodic orbit. When r=a an
irrational, however, 4, is a minimal set similar to those in Denjoy counter-
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examples. It can be viewed as the one dimensional analog of an Aubry-Mather
invariant Cantor set.

We conclude this chapter by studying the behavior of the rotation interval in a
particularly simple type of one parameter family. Let g be a degree one circle map
and G its lift with G(0) € [0, 1). For each w € R define G,,= G +w, and let g,, be the
circle map which is the projection of G,

When g is a circle homeomorphism which satisfies G4 + R, whenever ¢(g,,)
=p/q, o(w)=0g(g,,) is a continuous and nondecreasing function of w with ¢ ~1(p/q)
a nontrivial closed interval and ¢ ~ () is a point [16].

The next lemma states that ¢, (w)=9,(G,,) and g,(w) =,(G,,) have these same
properties when g € A. The main element in the proofis that o(H;) = ¢,(G) where for
i=1,2 the H; are the extreme interpolated maps in Hall’s construction (see
Lemma 2.2). Thus g,(G,,) is controlled by the one parameter family of nondecreas-
ing maps H; ,=H;+w and we know that nondecreasing maps behave like
homeomorphisms with regard to their rotation numbers.

Lemma 2.5. Let g € A and G, and H; ,, be as defined above. Fori=1,2, 0;: R->Ris
continuous, nondecreasing and onto. For irrational o, o *(«) is a point while
0: (p/q) is a nontrivial closed interval. Fix p/q and let o; *(p/q)=[¥,, ®,] and
0; ' (p/)=[2,, ¥,].

(a) Hf, <R, with equality attained ff w=Y,,if i=1 and w=9, if i=2.

Lw=—

(b) H}, zR, with equality attained iff w=@,,if i=1i=1and w="¥, fori=2.

(c) There exist z; and z, with H} (z,)>z,+p and H} (z,)<z,+p iff
we(¥,,®,) fori=1and we(P,,¥,) fori=2.

Proof. Continuity of g, follows from Theorem 1.3. By Lemma 2.2(a), 9,(g,,)
=g(hy,,)-fw, >w,, then H, ,,,>H, ,,,andso by Lemma 1.6, o(h, ) Z0(hy .,),
so ¢, is nondecreasing. ¢, is onto since one may easily adjust w so that o(H, ,)=n
for any integer n. We can therefore conclude that for any real number r, p; !(r) is
either a point or a nontrivial closed interval.

As already noted, w,>w, implies H, ,,>H, ,, and so by Lemma 1.6,
o(H, ,)>0o(H,, ,,)ifeither of them is irrational. This shows that ¢; '(«)is a point.

Now choose f € Bd(e; '(p/q))- Since ¢,(g,)=0(h, ,,) it’s clear that h, j is in
Bd(E,;,). Thus by Lemma 1.4 either

(1) Hf ;= R, with equality attained or

(2) H% ;<R, with equality attained.

Nowif H] ;=R,, then h{ ;=1d,and so h, ;isinjective, a contradiction. Thusif
we assume (1) holds, we may find an £>0 so that there is a point z with Hf ;_.(z)
=z+p or p/q=0(H, s5_.)=0,(Gs—,). One handles the case where (2) holds
similarly showing that ¢; '(p/q) is a nontrivial closed interval. The rest of the
lemma follows easily from Lemmas 1.4 and 1.6. [J

We conclude this section by noting that Hf , =R, (respectively, H} ,<R,)
with equality attained if and only if G4 = R, (G, = R,) with equality attained. The
proof is easy. This gives an alternative characterization of ¢; and ®,. w=®, iff
G% =R, with equality attained and w=®, iff G, <R, with equality attained. We
also note that many of the results of this section may be generalized to degree one
circle maps with a finite number of turning points. The proofs utilize the obvious
generalization of Hall’s construction.
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3. Construction of the Bifurcation Diagram

We have now developed enough machinery to begin our study of two parameter
families. The families we shall study are of the form F, ,(x)=F(x,b,w)=x+w
+bp(x) for x,w in R and b in [0, o). In addition, p:IR—IR is continuous and
periodic, (p(x+ 1) = p(x)). This forces F}, ,(x+1)=F, ,(x)+1, so that F, , is the
lift of a continuous degree one circle map which we denote f, ... In constructing the
bifurcation diagram of the family it will usually be more convenient to work with
Fyoe

Since we want the family to look qualitatively like the socalled canonical
family, p(x)=sin(2nx)/2n, we also require that p is such that the following
hypotheses are satisfied.

Hypothesis 0. Max(p(x))=1/2n= —min(p(x)) and p(0)=0=p(1).
Hypothesis 1. For all b>1, f, , is in A.

Hypothesis 2. For b<1, f,, is a homeomorphism and when b=1, f, , is
nondecreasing.

Hypothesis 3. For 0<b<1, F{ ,,+ R, whenever o(F, ,,)=p/q.

It is fairly easy to find hypotheses on p which force Hypotheses 1 and 2 to be
satisfied. We shall give several in Sect. 4 which apply when p is C*. Herman [16]
has shown that Hypothesis 3 holds for a generic function in the space C"(S*, R)
and is satisfied when p is the restriction of a complex entire function to the real line.
In particular, it is true for the canonical family.

Another example to keep in mind for p is the piecewise linear map shown in
Fig. 5. We note that our hypotheses do not require p to display the symmetry these
two examples have. Specifically, it is not necessary that p(x) = — p(1 —x). Also, the
requirement in Hypothesis 0 that max(p(x))= —min(p(x)) could be dispensed
with but it would unnecessarily complicate the exposition. Finally, the choice of
1/2n for the maximum of p(x) is arbitrary and was chosen simply so that our results
would apply to the canonical family directly.

1/21-5_

Slope=-1

_1/27-5_

Fig. 5. A piecewise linear example for p(x)
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Now fix a p(x) that satisfies all the hypotheses above. To investigate how
o(fy,w) varies, we will examine the (b, w)-bifurcation diagram in terms of sets
T,={(b.w):reo(F,,)} and for i=1,2, S; = {(b,w):r=0(F, ,.)}.

For a fixed b>1, f, , is in the class 4, and so applying Lemma 2.5 to the one
parameter family F, ,+w=F, ,,, we have for each rational, p/q, numbers ¥, ,,
and @, ,, with ¢,(F, ,)=p/qifand only if we [¥, ,/,, Py, ] Thus including the
dependence of @, ,, and ¥, ,, on b, we have functions @, .., ¥y ,,:(1,0)>R

’ 1,p/a
with
(1) Sl,p/qz{(bn W): Wl,p/q(b)_§w§®1,p/q(b)}'
Similarly, there are functions &, ,, and ¥, ,, with
(2) S2,p1a= {(b,w): ‘pz,p/q(b) Sws qu,p/q(b)} .

Now if a is irrational, again using Lemma 2.5, let @, , be the unique value of w
with ¢,(F,,,)=0o. Then

(3) Sl,az{(b’w):w:¢1,a(b)}'
Similarly, there is a function @, ,:(1, c0)—=R with
(4) SZ,az{(bow):w=¢2,a(b)}'

The main theorem of this section states that all the functions just defined are
Lipschitz with constant K=1/2n. Also,

L={(b,w): 0, (b)=w= D, ,(b)},

which means that the boundaries of the T, are graphs of continuous functions.

As mentioned in the introduction, the structure of the T, when b <1 is given in
Herman [15]. Using a lemma of Herman (which requires Hypothesis 3) one may
define functions on [0, 1] which make statements (1)-(4) above true in the region
b <1 (see remarks before Lemma 2.5, the case b=1 requires a trivial extension of
Herman’s lemma). However, since f; ,, is a homeomorphism when b<1, ¢,(f,...)
=0,(fs,w) and so for all r, S; ,=S, ,. Thus for rational p/q, ¥, ,,=P;,,, and
Y1, pa= P2, /e While for irrational o, @, , =9, ,.

The prototype for T,, for a rational p/q is T, where n is an integer. One may
easily compute, using results from Sect. 2, that @, ,(b)=n+b/2n, ®, (b)=n
—b/2m, and

T,={(b,w):n—b2n=w=<n+b/2n}.
We also note that a more detailed study of the structure of the T, near b=0 and its
dependence on properties of the function p is given in Hall [14].

We now state the main theorem of this section which gives the structure of the

T, (see Fig. 6).

Theorem 3.1. r is an arbitrary real number, o is irrational and p/q is rational.

(a) Fori=1 or2, the functions ®;, and '¥; ,,, defined above are Lipschitz with
constant K=1/2x.

(b) 3,21, Py g =Vi,pip A V3 g S Py p1ge When b>0, ¥y i <Py pyyr

and D3 0 <V e
© L={(b,w): P, ()=w= P, ,(b)}.
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Fig. 6. Idealized picture of the T,

Before proving the main theorem, we state a simple lemma which describes the
convergence of the functions defined above. It is an easy consequence of
Lemma 2.5. The notation f,\ f means that the f, converge to f and for r, >r,,
fr,> 1, Lemma 3.2 is illustrated in Fig. 7.

Lemma 3.2. p/q, o, and r are rational, irrational and arbitrary real numbers
respectively.

(@) Forr>p/q, @, ,N®y 0 and @y NV, 0

(b) For r<p/q, ®,,, 7" ¥y, pg and @, , 7 D, /0

(c) Forr>oandi=1,2, ®; NP, ,.

(d) Forr<oand i=1,2, ®, ./ ®,; .

Given the map F, , with b>1, the maps H, , ,, and H, , ,, are the extreme
interpolated maps from the construction in Sect. 2. In the proof of Theorem 3.1, it
will be convenient to have these maps defined whenb<1asH, , ,=H, ;, ,=F, .

Proof of Theorem 3.1. (a) Fix a p/q. We shall prove the result for @, ,, (which we
shall denote as @).
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Fig. 7. llustration of the convergence in Lemma 3.2

If we assume there is a b, where @ is not Lipschitz with constant K =1/2x, then
there is a b, so that the points (b,, @(b,)) and (b, P(b,)) lie on a line with slope
m>1/2n. [We may assume without loss of generality that &(b,)> &(b,).] Thus,
there is a ¢ with mby,+c=®(b,) and mb;+c=®(b,). Letting m=1/m and
c¢= —¢/m, we have m®@(b,)+c=>b, and m®(b,)+c=>b,. Now since |[m| <2z and
|p(x)| £1/2x, certainly mp(x)> —1, and so

mp(x)>(P(b,) — D(b,))/(P(bo) — P(by)) .
We therefore have that
X+ D(by) + (mP(by) + c)p(x) < x+ D(by) + (mP(b,) + c)p(x)

which says that Fy o4 <Fb, 00, and so Hy y o) <H; s, o6, W therefore
have Hi ;o (bo)<H% 5, 00, by Lemma 1.6(b). But by definition, H] ,, op,) <R,
and so HY, o4,<R, Recalling that &(by)=9, ,,(b,), we have p/q
=0(H 4, 00, <P/q, a contradiction.

The proof for @, ,, and the ¥,
Lemma 3.2.

(b) We first show that ¥, ,,<®, ,,. To simplify notation, drop the de-
pendence on p/q and let o(F, ,,) =0(b, w). Assume to the contrary that &, <¥,.
Since @,(b) is the maximum value of w with o, (b, w) = p/q, using the monotonicity

of 9, we have
p/q=01(b, P,(b)) <g,(b, V(b)) S0,(b, ¥,(b))=p/q,

a contradiction.

.p/q are similar. If r is irrational, one uses
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The proof of &, ,,<¥, ,, is similar. The proof that &, ,<®, , is also
essentially the same as above. The last two inequalities in part (b) are direct
consequences of Lemma 2.5. Finally, @, ,, <% ,,<®;, ,, completing the proof
of (b).

(c) Fori=1,2,let ®; ,=®, Choose a (b, w) with ®,(b)=w=®,(b). P,(b)=w
implies that a=g,(b, ®,(b))=0,(b,w). Similarly, &,(b)<w implies that
a=0,(b,w), so aeg(fy ), ie. (b,w)e T,

Now since @,(b) is the maximum w (if r is irrational, it is the unique w) with
01(b,w)=a, we have w>®,(b) implies that g,(b,w)>w, so that a¢o(f, ,) or
(b,w) ¢ T,. Similarly, w< @,(b) also implies (b,w)¢ T,. [

If we let @, denote @, ,,, then recall that (b, @,(b)) [respectively, (b, @,(b))] is
characterized by F{ 4,4)= R, (F{ ¢,y < R,) With equality attained. Theorem 3.1
thus says that when (b, w) is on the boundary of T,,, f; . has a p/q-saddle node.

We also note that since all the functions in Lemma 3.2 are continuous, Dini’s
Theorem says that the convergence in Lemma 3.2 is uniform on compact sets. This
gives us another way of looking at the contents of Lemma 3.2. Consider the
collection B of all the @, , and ¥, ,,, for r and p/q in some closed interval, as a
subset of the function space C ([0, o0), IR). If we put the compact open topology on
the function space, then B is a Cantor set. Similar comments hold for the union of
the @, , and ¥, .

The next proposition states that everything one expects to cross actually does
so. The various cases are illustrated in Fig. 8.

Fig. 8. Illustration of the various cases in Proposition 3.3.
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Proposition 3.3. r and s are arbitrary real numbers and p/q and m/n are rational with
r>p/q>s>m/n. In each of the following cases there exists a b>1 such that the
stated equality holds.

(a) P,,(b)=2, 4(b),
(b) ¥, pia(0) =Py (),
© ¥y pg(0)=2,,,(b),
(d) lPl,m/n(b) = Tz, p/q(b) s
(e) Y, p/q(b) =Y, p/q(b) .

Proof. We prove (a), the rest are similar. First note that since r > s, @, (0)> @, (0).
Now choose integers k and [ with k>r>s>Il. Using the remark above the
statement of Theorem 3.1 and Lemma 3.2, we have for b>n(k—1), ¢, ;> P, ,
>®, >, ., which using continuity, gives us the point needed for (a). O

The results of this chapter thus far show that, to a large extent, the actual
bifurcation diagram looks (topologically at least) like the idealized drawings we
have presented in Figs. 6, 7 and 8. They do not, however, rule out the possibility of
multiple intersections of the various curves. Proposition 3.3(¢) implies the
existence of the shaded region shown in Fig. 6 where b>1, but ¢o(f, ,,) =p/q. The
dynamics of such f, ,, could be quite complex, but all orbits are rotating at the
same asymptotic speed.

Using an argument as in the proof of Proposition 3.3, it is easy to see that for
b>m, @y ,y>¥sppand @, >, . Since for b <1, both of these inequalities are
equalities, one would like to know where the curves branch apart. The next
proposition states that under additional differentiability assumptions, this branch-
ing takes place as shown in Fig. 6, i.e. @, ,, splits from ¥, ,, in the region b>1
and @, ,and @, , split on theline b=1. The proof of the second assertion (which is
equivalent to saying that T, opens out into a tongue at the line b =1) is essentially
contained in the following lemma due to Block and Franke [5].

Lemma 3.4 (Block and Franke). Let f:S'—S* be C* with f’ of bounded variation.
If {x:f'(x)=0} is nonempty and finite and f’ changes sign at each critical point,
then f has a periodic point.

Proposition 3.5. « is irrational, p/q is rational.

(a) If p(x) is C?, then for b>1, &, ,> P, ,.

(b) If p(x)is C*, then given a p/q, there exists by > 1 so that ¥y ,,,(b) =P, ,,(b)
and @, ,,(b)=Y; ,(b) for 0=b=b,.

Proof. (a) If for some b, >1, &, (b,)=P, ,(b;)=w,, then g(f, ,,) = and thus
Jo.,w, has no periodic points. We shall show that the maximum and minimum (m,
and m,) are the only points where f; ,, vanishes in a C? family of the type we are
considering. This will complete the proof using Lemma 3.4.

Denote f,, ,, by f. Assume there exists a third point z with 0=f"(z) =1+ bp'(2),
then p'(z)=p’(m,)=p’(m,)= —1/b. Let us assume that z is in (m,, m,). Since f is
decreasing on (m,, m;) (by Hypothesis 1), p’(x) < —1/b for all x in (m,, m,). Now



Bifurcations of Circle Maps 369

p'(x)= —1/b for x e (m,, m,) is impossible, so there must exist x, € (m,, z) and
X, € (z, m,) with p’(x;) < — 1/b. Using the continuity of p’, one may choose a b, with
1<b,<b,sothat f;, , isdecreasingin neighborhoods of x, and x, and increasing
in neighborhoods of m,, z and m,. This implies that f,, , is not in the class 4, a
contradiction. The case z € (m, m,) is treated similarly.

(b) Since p/q is fixed, we do not include dependence on it in our notation. We
shall show that @,(b)=¥,(b), the other equality is similar.

By Lemma 2.5 and the comments after it, @,(b) [respectively ¥,(b)] is the
unique w with F{ .= R, (H , ,,= R,) with equality attained. Now since HY ;, ¢,
= F{ ¢,0yZ R, if there is a by >1 such that for all b<b,, the point y(b) which
satisfies Ff 4,4 (y(b)) = y(b)+ p also satisfies

o(y(b), H2,b,<1>1(b)) =o(y(b), Fy0,0))>

then HY ; o,1)(3(b))=y(b)+p, and so ¥,(b)=®,(b), and we are done.
To get a contradiction, assume that such a b, does not exist. We may then find a
sequence b,—1 so that for all n,

o(y(b,), Hz,b,.,dil(bn)) +0(y(b,), Fb,.,dh(b")) .

For this to happen, some element of the orbit of y(b,) under Fy, 4, ¢, must land in
(my(b,), m,(b,)). Call this element of the orbit y,. But as n— o0, b,—1 and so m,(b,)
—my(1), thus y,—-m,(1) and therefore

DFZ",q,‘(b")(y,,)—>DF’{’¢1(1)(m2(1)) =0

(note: Df’ “.means 0F%/0x). But y, was chosen so that DF{_ 4, ,,(y,)=1foralln, a
contradiction. [

The smoothness assumption is necessary in part (b) as one may show that
¥, e Splits off from @, , . at the line b=1 for the piecewise linear example shown
in Fig. 5. We also note that Block and Franke [5] alter a C! circle diffeomorphism
which is a Denjoy counterexample and obtain a C! map in the class A with no
periodic points. It appears likely, however, that such maps do not occur in families
of the type we are considering, and thus Proposition 3.5(a) would hold without a
smoothness assumption.

A final remark: If we let by(p/q) denote the b, found for p/q in (b) above and we
choose a sequence of rationals p,/q,—, an irrational, then Lemma 3.2 with
Proposition 3.5 implies that by(p,/q,)—0.

4. Stable Periodic Orbits

In this section we describe some additional structure of the bifurcation diagram
relating to the existence of stable periodic orbits. We shall assume that our family

F(x,b,w)=F, ,(x)=x+w+bp(x)

is C" with r= 1. Under this assumption we can give some simple hypotheses which
imply Hypothesis 1 and 2 of Sect. 3.
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Hypothesis 4. p’'(0)>0 and there exists mye(0,1) with p'(mg)=—1. If p is C!
(respectively, C?), p’ is strictly decreasing (p” <0) on (0, m,) and strictly increasing
(p”>0) on (mg, 1).

Throughout the remainder of this paper we shall assume that p(x) satisfies
Hypotheses 0 to 4. We note that this implies that m, and m, are continuous
functions of b which we denote m,(b) and m,(b) and that m;(1)=m,(1)=m,.

We recall some standard definitions. A point z is a stable fixed point for a map
f:8'—>8'if f(z) =z and there is an interval N containing z with f"(x)—z as n— oo
for all x in N. The condition |Df (z)| < 1 is sufficient to make z a stable fixed point. z
is a member of a stable p/q-periodic orbit if z is p/q-periodic and is a stable fixed
point for f4. Ifin addition, the orbit of z contains a critical point of f, then z belongs
to a superstable p/q-periodic orbit.

As we mentioned in the previous section, the set Ty is the prototype for T, and
much of its structure can be computed explicitly. For example, we showed that its
boundaries are the graphs of the functions @, 4(b)=b/2n and @, ,(b) = —b/2n. If
we restrict ourselves to the canonical family, F,, (x)=x+w+(b/2n) sin(27x), one
can also compute that a critical point of F, ,,is a fixed point precisely when (b, w) is
on the hyperbola b*> —4n?w?=1. For (b, w) in the region between the hyperbola
and the boundary of T, F, ,, has a stable fixed point. The situation is illustrated in
Fig. 9. The theorem we prove in this section says that this same basic structure
holds in T,,.

The following fact is essentially contained in Collet and Eckmann [7] and will
be used in the proof: If f: [x, y]—[x, y] is continuous and orientation preserving,

Fig. 9. Finer structure within T
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f(x)>xand f(y)<y, then f has a stable fixed point in [x, y]. In the proof of the
theorem we shall use the notation

OF1 0*F1
DFg’w(X)=E(X,b,W), and DZFg,w(x)ZW(xnb,w)'

Figure 10 shows the various regions described by Theorem 4.1.

Theorem 4.1. p is C" (r=1) and is such that Hypotheses 0 to 4 are satisfied.

(a) Foreach fixed rational p/q, bin[1, 00) and i=1 or 2, there exists a unique w
such that m; is p/q-periodic under f, ,, and o(my, f, N[, m)=0 (respectively,
o(my, fy, )N (M, ] =0). We shall denote this w by 6, (or by o; ,,(b) if we need to
record its dependence on p/q and b).

(b) If we treat o; as a function of b, o;:[1,0)—>IR, then ¥, <a,<®, and
D,<0,<¥,.

(c) If we(ay(b), (b)) (respectively, we (D,(b), a,(b)) then f, ,, has a stable
p/q-periodic point x,(x,) with o(X,, fy )Ny, my)=0(0(x,, fy. ) O(My, i) =0).

(d) 0;:(1,00)>R is C"~* and further,

I'={(b,0,(b)):b21}0{(b,0,(b):b21}
is a C"~ ! curve which when r=2 is tangent to the line b=1 at the point (1,5,(1)).

Proof. Since p/q is fixed throughout and b is usually fixed, we shall often suppress
the dependence of various quantities on them, thus H, ,,=H, ;. ,, m; =m,(b), etc.
(a) Firstnote that w, >w, implies that H; ,, >H, ,, , and so when treated as a
function of w, H% (m,)—m, is strictly increasing, continuous and onto. There thus
exists a unique w (which we denote as o,) with H{ ,(m;)=m, +p.?
Next, to show that o(m,, hy, o,)N[ri,, m;)=0, we note that f2(m,)=m,, so
proceeding by contradiction, assume thereis ani<g with b} , (m,) € [1i;, m,). But

then i1 _
hi s (m)=hy , ([, m;))=h(m,),

and so h, , (m,) is i-periodic, a contradiction. We therefore have o(m;, f,,)
=o(my, h; ,,) completing part (a).

(b) Since h, ,, is nondecreasing, it has a unique rotation number which must
be p/q by (a). Thus (b, g,(b)) is contained in S; ,,, so by the comments above
Theorem 3.1, ¥, <0, = 9,.

Now since H, ,, is C' except at ri; and by part (a),

o(my, hy 5 )N {r,} =0,

we have that h{ , is C' is a neighborhood of m, and by the chain rule,
Dh{ , (my)=0. By definition of o, H{ , (m;)=m, +p. If we assume that ¢, =P,
then HY ,, = R, an impossibility. The assumption that ¢, = ¥, leads to a similar
contradiction.

(c) Since o(H; 4,)=p/q, by Lemma 2.1 we may find a point y with Hf 4 ()
=y+pand o(y)n(mi;, m;)=0. Of all such y, let y, denote the y which is closest to
m, and to the right of m,. Note that this implies that o(y,)N(##,, y;)=0.

2 Asimilar continuity argument was used in [10] to show that given a p/q, for each b, > 1 there is at
least one w, such that f, . has a superstable p/g-periodic orbit
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Fig. 10. Regions within T, described by Theorem 4.1

Now if 0, <w< ®,, then _
my+p=H1% , (m)<H{ , m)<H]{, )<Hf o, (y)=y:+p.

Thus since h, ,, is nondecreasing, h{ ,[m,, y,1S[m,, y,;] and by the fact above the
theorem, h, , has a stable p/g-periodic orbit x,, in [m,, y,].

Next, we claim that for all x in [m,y,] and all w in (¢, ®,), o(x,h, ,,)
N(my, m;)=0. This will imply that o(x, h, ,,) =o(x, f,,), and so x,, is also a stable
p/q-periodic orbit for f,, finishing the proof.

We first prove the claim for w=@,. Since go(h,, ®,) = p/q, one can use the same
argument used in (a) to show that fori <g, h 4 (m,) ¢ [m,, m,]. By the choice of y,,
for i<gq, we have h' 4 (y,)¢ (i, y,]. Now if there was a i <q with

hi1,<p,(m1)<"-"1 <my <)y <hi1,@;(y1) ,

then h, 5, would have an i-periodic point in [##1,, y, ], an impossibility. We are thus
left with m; <h{ q,(m,)<h{ o(y,)<m, fori<q.

Now treated as functions of w, h} ,(m,), and h ,(y,) are continuous and
strictly decreasing. Since for w in (o, ®,), ¢(h,, w)=p/q we must have h}_,(m,)
+m, fori<q. We therefore have fori<gand win (o, @), m; <h’ ,(m;)<h{ ,(y;)
<. Since hy ,, is nondecreasing and we previously showed that

he,W([my, y: D Emy, ¥4,

we have proved the claim.

(d) First, assume that p is C'. An elementary argument shows that any
function R—R which is bounded above and below by continuous functions and
has a closed graph is continuous. If n is the integer with n<p/g<n+1, then ¢, is
bounded above and below by the continuous functions @, ,,; and @, ,,
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respectively. From the proof of part (a), we have that ¢ (b) is the unique value of w
with HY , ,,(m;)=m, +p. Using this, it is easy to show that ¢, has a closed graph
and is therefore continuous. Since ¢,(1)=0,(1), we have that I" is a C°-curve. To
investigate its smoothness when r>2, define L:IR®*—-R? via

Ly(x,b,w)=F%x,b,w)—(x+p), Ly(x,b,w)=DF(x,b,w).
Note that L is C"~ ! and L(m(b), b, 64(b)) =0 for i=1 or 2 and b=1. We shall let

Ll DL= I:L11L12L13:|’
e L21L22L23
0x
Now fix by=1 and i=1 or 2, and let x,=mby) and wy=0,(by). It is
straightforward to compute the L;, evaluated at (x,, bg, wo) using the fact that
0(xg, fpp» Wo) is contained in the region where DF, . is positive. Where

convenient, we shall suppress the dependence of F on b, and w,,
L;1(xo, bo, wo) =DF(x¢, bo, wo) —1=—1,

soL,; = , etc.

O0F1
Ly5(xg, bo, wo) = b (X0, bo» W),
q—14-1 .
Ly3(X0, bo, wo) =1+ '21 [1 DF(Fi(xo)>1,
=1 i=j

L1 (%0, bo, wo) = DZF(xo) =bop"(xo) -

Since p satisfies Hypothesis 4, L, (xq, by, Wo) is zero if by = 1 and nonzero if by > 1.

0*F ,
Ly5(x0, bo, wo) = 2x0b (x0)=p'(x0) *0,
0*F (
owox

Now if by>1, evaluated at (xg, by, Wg), Li1L,3—Lq3L,;%+0. Thus by the
implicit function theorem, in the appropriate small neighborhoods, we have C" ™!
functions #, and 5, with (x, b, w) in L™ *(0) if and only if x =#,(b) and w=n,(b). It
is clear that #,=0;.

On the other hand, evaluated at b,=1, wo=0,(1) and x,=m;(1), L,;{L,,
—L,,L,, #0. We therefore have (in small neighborhoods) C"~ ! functions y, and
v, with (x, b, w)in L™1(0)if and only if x =y,(w) and b =y,(w). Evaluated at by =1,

dy, _ LyyLy3—Ly3Ly,

272 =0,
dw Ly Ly, —Li,L,,

and so I' is tangent to the line b=1. O

We note that I is only one branch of L™*(0). Other branches of L™*(0) which
correspond to superstable p/g-periodic orbits with nonstandard order around the
circle will be discussed elsewhere.

Because of the convergence of the edges of the T, given in Lemma 3.2 and the
position of the splitting of ¥, ,, and &, ,, in the region b>1 given in

L23(x09 bOa W0)= X0)=0.
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P/q

Fig. 11. An illustration of when o, ,, is not monotonic

Proposition 3.5, one can see that o; ,, is not, in general, monotonic in x. For
example, for p/q close enough to 1, one can show that ¢ ,, must vanish at least
twice (see Fig. 11).

Given a pair of rationals p/q and m/n, this next corollary locates an open set
which is characterized by f, ,, having a “bistable response” of rotation number p/q
and m/n.

Corollary 4.2. p satisfies Hypothesis 4. Given rationals p/q>m/n, there exists an
open set U so that (b, w) € U implies that f, ,, has both a stable p/q-periodic orbit and
a stable m/n-periodic orbit and o(f,,,,)=[m/n, p/q].

Proof. Let
roof U= {(bw): 61 m(B) <W< By nalB)}

(b, w): D, (b)) <w<o, ,,(b)}.

Using an argument as in Proposition 3.3, it is clear that U is nonempty. For
(b,w)eU, f, ,, has the appropriate properties by Theorem 4.1(b) and (c). [

5. Homoclinic Orbits and Aperiodicity

In Sect. 3, we constructed the outline of the bifurcation diagram of our two
parameter families in terms of the set S; , and T,. The boundary of S; ,, consists of
the graphs of the functions @, ,, and ¥, ,,. The graphs of &, ,, and &, ,, form
the boundary of T,, and the graph of ¥, ,, (¥, ,,) is the limit of the converg-
ing upper (lower) edges of the other T, for r<p/q (r>p/q). We showed that
Jo,04 /a0 DS @ p/g-saddle node. In this chapter, under stronger hypotheses, we
show that for (b, w) on the graph of ¥, ,, (¥3, ,,), the minimum (maximum) is a
homoclinic orbit under f; ,,.
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Fig. 12. Possible behavior of f, v, .

As in previous sections, we examine T;, as the prototype for T, ,. We recall that
¥,,01s characterized by H, ;, y, .= Ro With equality attained (see Fig. 12a). Note
that m, is an unstable fixed point and F(m,,b, ¥, o(b))=m,. Also, m, has
preimages arbitrarily close to #i,. Thus m,’s “past” and “future” converge to #i,. A
point such as m, is called a homoclinic orbit (definition given below).

We wish to show that the analogous behavior happens in T,,. The main
difficulty is illustrated in Fig. 12b. Here we still have H, ¢, &)= R, with equality
attained but m, is no longer the unstable fixed point. Such behavior is of course
impossible if f, ,, satisfies Hypothesis 4 which implies that F, , has only one
inflection point in (0, 1). Hypothesis 4 alone, however, does not seem to eliminate
behavior analogous to Fig. 12b happening for the g™ iterate of F, ,,. This behavior
is ruled out by requiring the function to have negative Schwarzian derivative
(defined below). It is well known that if a function G has negative Schwarzian, G?
has a very nicely behaved second derivative for all integers q.

As has been mentioned, Fig. 12b differs from Fig. 12a in that i, is not a fixed
point. Using the hypothesis of negative Schwarzian, we show in Lemma 5.1 that if
1, is not a p/q-periodic point for f, w,s), then we are in the situation given by
Proposition 3.5, ie. @,(b)=¥,(b) (see Fig. 12¢).

Using this, we know that when @, >¥,, m, is a p/g-periodic point under
Jo, v, We also know that H% ; y,, =R, with equality attained (at m,). In
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Theorem 5.2, again using the hypothesis of negative Schwarzian, we show that this
implies the homoclinic behavior.

We now define the Schwarzian derivative and state some results concerning it
that are contained in Singer [25]. For a C® map, G:R—IR, the Schwarzian
derivative of G at x, SG(x), is defined as

D3G(x) i(DZG(x))Z
DG(x) 2\ DG(x)) -

(1) If SG<O0, then SG" <0 for all integers n.

(2) If SG <0, then G’ has no negative local maximum and no positive local
minimum.

(3) If G(x)=x in some neighborhood of x4, G(xy)=x,, and SG<O0, then
D%G(x,)>0. To prove this, note that DG(x,)=1 and if D*G(x,)=0, then since
SG <0, D3G(x,) <0, which using Taylor’s Theorem contradicts G(x)= x.

(4) We will also utilize the following slight extension of Singer’s theorem [25].

SG(x)=

Theorem. f: S' - S is C3 and F : R—R is a lift of f.If SF >0, then for every stable
p/q-periodic orbit x of f, there is an i<q and a critical point c of f so that f™(c)
—fi(x) as n—o0.

We note as a corollary that any map g is our class 4 with Sg <0 has at most two
stable periodic orbits. One can easily compute that the canonical family F, ,,
satisfies SF, ,, <0 for all b>1.

The statements of Lemma 5.1 and Theorem 5.2 will only involve ¥, and @,.
Analogous results are of course true for ¥, and @,. Also, in the statement and
proof of the next lemma, we suppress dependence on p/q and, in its proof,
dependence on b. For a function G: R—R, D, G(x) denotes the derivative of G at
x from the right.

Lemma 5.1. If F, y,4) has negative Schwarzian derivative and either
(@) HS pw,0)(12) + ”:12 +p, or )
(b) HY pw,m)(2)=my+p and D HY , g,4(12) =1, then ®,(b)=¥,(b).

Proof. Since ¢(H, y,)=p/q, using Lemma 2.1(b) we may find a point y with
HY w,(»)=y+p and o(y, H, y,)"\(m,, ;) =0. If we assume (a), i, ¢ o(y). Now
since ¥, is characterized by H% 4,2 R, and H, y, is C' except at #i1,, we have
DH} y (y)=1. We therefore must have m, ¢ o(y) and so o(y, H, )N\ [m,, #i,]=0.

We may therefore find an open interval U containing y, so x in U implies F'(x)
= H%(x) for i < q (we are omitting the subscript ¥,). Thus for x in U, F4(x)=x+p
and DF%(x)= DHj%(x).

Now let y denote the element of o(y) which is closest to #i, and y >m,. Choose
m'’ so that (m’, y] is the maximal interval with {x, f(x), ..., 9~ (x)}"[my, m;]1=0
for all x e (m’, y]. Since f is orientation preserving on S* —[m,, m,], it is clear that
for some i<gq, fi(m)=m,, and so DF%m’)=0 (we will eventually show that
m'=m,).

Next, we claim that 0<DF%(x)<1 for all x e (m’, y). The fact that 0 < DF(x)
follows from DF%(y) =1, continuity of DF4 and the fact that we choose m’ so that no
x e (m’, y] has DF(x)=0.
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To see that DF%(x) <1, first note that we must have D?F4(y) > 0 by (3) before the
lemma. Now, if there was a point x in (m’,y) with DF(x)>1, then since
DF4(m")=0, DF? must have a minimum at some z € (x, y). However, we have just
shown that DF4(z) >0, which contradicts the negative Schwarzian hypothesis [see
(2) above the lemmal].

We have proved the claim, and so for x € [m’, y).

y+p—Fi(x)= Fi(y)— F(x) = | DF¥(t)dt < y—x,

and so F%(x)> x+p. Similarly, using DF4(t)>0, we get F4(x)<y+p. Thus
SUm', yDEm', y].

But since {x, f(x), ..., f1"(x)}n[m,,m;]=0 for all x in (m’,y], we have o(x)
N[m,, m;1=0, and so f* restricted to [m’,y] is a homeomorphism for all i.

Next, we show that in fact, m’=m,. If m"+m,, then since y is the minimum on
its orbit and f(m)=m,, we have m’ interior to fi((m’,y)), and so m” =f ~{(m’) is
interior to (m’,y) and f%(m”)=m;,, a contradiction to the choice of m’".

Summarizing what we have so far, x € [m,, y) implies that F(x) > x + p. Now
for x"e[m,,m,], let x be the point in [m,,m,]<[m,, y] with F(x)=F(x"). Then
since x>x’, Fi(x)=F%x)>x+p>x"+p. Thus xe[m,,y) implies that Fi(x)
>Xx+p.

Finally, say therg isaz in R with F4(z) <z+ p. Then, since H% > R, there must
be some i < q with F'(z) + H5(z). If we choose the least such i, then f(z) € (m,, 1i1,).
Now since H, is order preserving and F < H,, Fi(z)<z+ p implies that

Fi(F'(2) = F'(FU(2)) S Hy(FY(2)) SH3(z + p)=H'(z) + p=F'(2) +p.

This contradicts the result we summarized above. Thus F§, =R, with equality
attained so by the comment after Lemma 2.5, ¥,=®,. If one assumes (b), the
proof is similar. [

We shall again suppress the dependence on p/q.

Theorem 5.2. Fix b>1. If ®,(b)>Y¥,(b) and F, y,s has negative Schwarzian
derivative, then m, is an unstable p/q-periodic point under f, y @), fo'w,m)(M2) =1,
and for each open interval U containing t,, there is an i with m, € f*(U).

Proof. Theorem 3.1(b) says that &,(b)=¥,(b). Using Lemma 5.1, ®,(b) > ¥,(b)
implies that HY% y (m,)=m,+p and D, HY ¢ (m,)+1 (we are omitting the
dependence on b). Now since HY y, =R, it is clear that D, H% y (m,)>1 and
o(tiy, Hy y,) = o(ih,, Fy,),and so DFY (ri,) > 1 and m, is an unstable periodic orbit
under fy,. Since fy,(m,) = fy,(i;), we have i, = f¢ (m,) = £ (m,).

To prove the rest of the theorem we examine H, y, more closely (we omit the
subscript ¥,). Since o(H,) = p/q, if we let I =[m,,m,] and I _,= H, '(I), then using
an argument as in Lemma 2.1(b) we have that the sets I, 1_,...,I__, are pair-
wise disjoint closed intervals and f* restricted to I_; is a homeomorphism onto
I for 0<i<1. Moreover, if a—1

X ¢ U I—i s
i=0

then Hy(x)=F'(x) for iZq.
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Now choosejsothat]_; isthenextI_;to theright of I. Let I _ ;=[mj}, m}], and
so fI(m3) =m,. We now show that for x in (,, m3), F4(x) > x + p. Since (11,, m3) is
in the complement of the I_’s, we know that x € (,, m}) implies that H%(x)
= F(x). Since by definition, H3 = R, we have Fi(x) = x+ p for all x in (#i,, m}).

Now, if there was a point z in (#i1,, m") with F4(z) =z + p, then DF%(z) =1, and so
by (3) above Lemma 5.1, we have D*F%(z) > 0. Since DF%(#,) > 1, DF¥ must have a
local minimum at some point x in (#,, z). But every point x in (#i,, m}) satisfies
{x, f(X), ..., f171(x)}[m,, m,]=0, and so DF%x)>0. This contradicts the
negative Schwarzian hypothesis. We therefore have Fi(x)>x+p for all x in
("-129 m/Z)

Now let U be an open interval containing i,. Since Fé(m,)=r,+p and we
have just shown that F¥(x) > x + p for all x in (11,, m5), it is clear that we can find a k
with mj € f*4(U). But f(m})=m, and so m, e f**¥(U), completing the proof of
the theorem. [

Loosely speaking, a homoclinic orbit is one whose past and future converge to
the same point or periodic orbit. They result in rich dynamical behavior and have
been a central object of study in dynamical systems since they were first introduced
by Poincaré. Homoclinic points for maps of the interval f: [0, 1]—[0, 1], were first
defined by L. Block [4]. A point x is called homoclinic to the g-periodic point z if
x#z, f™(x) =z for some m, and given an open interval U containing z, there must
exist an n with x € f"(U). In other words, one requires that preimages and iterates
of x under f? come arbitrarily close to z.

In Theorem 5.2 we proved that preimages of m5 under f“come arbitrarily close
to 7,. This means that preimages of m, under f4 come arbitrarily close to fi(r#i,)
and of course, f4(m,) =m,. Thus under f, the past and future of m, go to different
points on the orbit of ri,, and so m, is not homoclinic to #i, in Block’s sense. One
could interpret Theorem 5.2 as saying that m, is a homoclinic point for the
periodic orbit that contains #,. One could also borrow terminology from the
theory of invertible dynamical systems and say that under f, m, is heteroclinic
between two different iterates of ,.

Itisinteresting to note that similar considerations occur in [2] in the discussion
of the curve in the resonance horn that is analogous to the graph of ¥, .. The fact
that the maximum m, is the homoclinic point takes the analogy a step further as it
seems to correspond to a homoclinic tangency.

The results of Sect. 3 and Theorem 5.2 allow us to give a nice characterization
of the dynamics of f, ,, as it makes the transition from having a single rotation
number to having an interval of rotation numbers. The various cases are
illustrated in Fig. 13. I suspect that the small island that occurs in T,, cannot
actually occur, but none of my results prove this.

Corollary 5.3. f, , has negative Schwarzian derivative for all b>1 and
(b,w)e Bd({(b,w): o(f,) is a single number}).

(@) If o(fy,w) is an irrational o, then b=1 and w=®, ,(1)=, ,(1).

(b) If o(fy,)=p/q and

(i) (b,w)e Bd(T,,), then f, ,, has a p/q-saddle node, or

(ii) if (b, w)¢ Bd(T,;,), then either m, or m, is homoclinic to an unstable p/q-
periodic orbit.
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Fig. 13. The boundary of the region where f, ,, has a unique rotation number

The next corollary locates an uncountable set of parameter values (b, w) for
which f, , is “aperiodic.”

Corollary 5.4. o and p are irrational numbers with o>p/q>f>m/n and F, ,, has
negative Schwarzian derivative for b> 1. If b and w are such that they satisfy any of
the following equalities, then f, ,, has no stable periodic orbits.

(@) w= ‘pz,a(b) = 451,/;(5),

(b) w= Tl,p/q(b) = ¢1,p(b),

(C) w= YIl ,p/q(b) = ¢2,a(b)>

(d) w= 'Pl ,m/n(b) = .PZ, p/q(b)a

(C) w= lIll,p/q(b) = 'PZ,p/q(b)'

Proof. Note that all these cases do occur by Proposition 3.3. We prove the
conclusion for case (b), the others are similar. By Theorem 5.2, f},(m,) is an
unstable periodic orbit and by Proposition 2.3, g(m,) =«, an irrational number.
Thus neither of the critical points is attracted to a stable periodic orbit, and so by
Singer’s Theorem, f, ,, has none. O

We note that if g is a map in the class A4 discussed in Sect. 2 and G has negative
Schwarzian derivative, then g(g) = [«, f] implies by Proposition 2.3 that g(m,) =«
and ¢(m,) =, and so g has no stable periodic orbits.

In the last proposition we examine the smoothness of the @; when f; ,, has
negative Schwarzian.

Proposition 5.5. If f, ., is C" withr =23 and F, ,, has negative Schwarzian for allb>1,
then @;:(1,00)-»R is C" ! for i=1,2.
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Proof. The proof is quite similar to that of Theorem 4.1(d), so we just give a sketch.
Fix p/q and b,> 1. Recall that @,(b,) is characterized by F§, =R, with equality
attained at some y, with DF¥(y,) > 0 for all k [see the proof of Theorem 4.1(c)]. We
also have that DF(y,)=1, and so by (3) above Lemma 5.1, D*F4(y,)>0.

Now define M : R®>—R? via

M, (x,b,w)=F4x,b,w)—(x+p), M,(x,b,w)=DFi(x,b,w)—1.

Note that M is C" ™!, and if we let wo=®@,(b,), then M(yq, by, wo) =0.

One computes that, evaluated at (yo,bg,wy), M;;=0, M;3>1, and
M,,=D*Fi(y,)#0. Thus M, M,;—M, M, ;+0, and we are done by the
Implicit Function Theorem. 0O
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