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Abstract. Let Jί be a C°°-manifold and S^s and ̂ u be two Holder foliations,
transverse, and with uniformly C°° leaves. If a function / is uniformly C°° along
the leaves of the two foliations, then it is C°° on Jί. The proof is elementary.

It is well known that a function whose restrictions to lines parallel to the
coordinate axes are uniformly #°° is itself a ̂ °° -function. The problem amounts to
reconstructing mixed derivatives and can be very easily done using Fourier
transform.

In studying Anosov diffeomorphisms a similar sort of problem arises. In
[LMM] it was observed that, very frequently, one could prove existence of
derivatives along the stable and unstable manifolds which are smooth. However,
the corresponding foliations are only Holder, and it is not clear how to reduce to
the original case as when the foliations are °̂°. In [LMM] however, the authors
succeeded in giving a proof of the global smoothness of their functions by using
elliptic theory, as well as another regularity property of their foliations, which is
not easy to check [LMM]. We shall present an alternate approach to these sort
of results. It won't require the extra regularity condition on the foliations, and
therefore will lend itself to other kinds of applications.

We come to the statement of our theorem, which is conjectured in [LMM], at
least implicitly.

Let Jί be a °̂° -manifold. We shall denote by 2F a foliation of M and for each
M e Jί, <£M will be the leaf of 2F containing M. We assume that the leaves are
uniformly #°° and that TM, the tangent space at M of J*?M, is a Holder function of
M. We now suppose that we have two such foliations which are transverse.

Theorem. ///: ̂ ->R is Ή"'* along the leaves of 3FS and 3FU for some α > 0 uniformly,
then f is %n>β for some

Corollary. ///: JT->R is ̂ °° along the leaves of ^s ana ̂ u uniformly, then f is ̂ °°.
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The theorem will be proved by induction on n. The statement for n fixed will be
refered to as g?(n).

We should mention that another approach to this problem, involving Fourier
transform, and somewhat simpler than the one in [LMM] has been recently
found by Katok and Hurder. It also uses some extra regularity on the foliations.

It would be more satisfactory to prove this theorem without any regularity
whatsoever on the foliations because the most important assumption seems to be
that the foliations are transverse. This is still out of reach.

It is a real pleasure to thank Rafael de la Llave for bringing these problems to
my knowledge and for his encouragements and help.

In Sect. I we present some preliminaries. In Sect. II we prove ^(1) and the
induction procedure is detailed in Sect. III.

I. Preliminaries and Notations

For each point M e Jί, <£™ and <£f are the leaves of 2FU and 2FS respectively, which
contain M. For two points M and R in Jί we shall denote by P and Q the points
JίffnJSff and X*nJ^f.

Notice that because our problem is local we can assume that Jί is actually an
open set in Rd-+d«. For each point JRd*+d» decomposes as TS

M+TU

M. If we let
Πf + Π™ be the corresponding decomposition of the Identity, we can define
^°°-diffeomorphisms between the leaves of ^u and M+TM

M by setting
Ωy (R) = M + πy (MR), and similarly between the leaves of ̂ s and M + TS

M. If/ is
a function defined on J(, then fgu denotes the projection on M + ΓM

M of its
restriction to &l\ that is if R e ̂  f(R) = f^u(Π^(R)). Similarly for fgy

The gradient of a function defined on M + Tj* is denoted V™\ e.g.
y™f™u(Π™(R)) The gradient at P of a function defined on &l is simply denoted
Vu\ e.g. VJ(P). Similarly for Ff and Vs.

The geometric properties of the foliations which we shall need are very simple
and direct consequences of the fact that they are Holder and transverse. They are
summarized in the following lemma.

Lemma 1. Let M, P, Q, R be as before and suppose \\MR\\ small enough. Then
i) ||MR||c,||MP|| + ||MQ||.

ii) There exists ε>0andη>0suchthatif c\\MP\\1+η^\\MQ\\^C\\MP\\ί/1+\
then ||MQ-PR||H|MP-QR|| is 0(||MQ||1+ε) and 0(||MP||1+ε).

We omit the proof of this lemma, which is trivial. Let us mention that while α, /?,
y, ω, C, v, μ, ξ will denote small non-negative numbers changing from line to line, ε
and η will remain fixed.

A crucial ingredient in the proof of the theorem will be the characterization of
^"'α functions in IRd by Companato [C]. We shall state this characterization in the
setting of a ^°°-submanifold of IRA

Lemma 2. A function f defined on a Ή^-submanifold & of Rd is ̂ "'α on ̂  for some
n e N and α e ]0,1 [, if for each point M e &, there exists a #"'α function fM such that

f(N)-fM(N} = 0(\\MN\n uniformly.
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This lemma is, after a change of variable, an immediate consequence of
Theorem 61 in [C].

II. Proof o

The proof of ^(1) exhibits the main ingredient used to obtain global regularity
from partial regularity, namely Taylor's formula at M, P, and Q simultaneously,
via the projected functions. Since / is ^1>α along the leaves, we obtain

f(R)-f(M) = r?f£a(M) 77f (MP) + Pu

M/pM

u(77f(P)) - 77M

M(PR) + 0(||RM|| 1

= C/^M(M) - 1!? (MQ) + Ff fgs(Π™ (0) 77f (QR) + 0(||RM|| 1

Assume α ̂  ε. Since the partial gradients are bounded, Lemma 1 yields,

Uf/jSUM) - Ff /β

M

s(Πf (Q))] - Πf (MP)

= \yy /£β(M) - Ff /P

M

u(Πf (P))] . Πf (PQ) + 0(||RM|| 1 +«) .

If ||MP|| = ||QM||1+11, this implies

CFf /^B(M)- Pf /P

M

u(Πf (P))] Πf (MQ) = 0(||RM||<- ">+ !) .

If α < η, it follows

[Ff f£u(M)- ?u f¥u(n? (P))] /If (MQ) = 0(||QM||

so that

Ff /P

M

u(77f (P)) =

This clearly implies that Vuf is Holder along the leaves of 3FS. Since it is also
Holder along the leaves of ̂ u it is globally Holder. Similarly for Vsf. It follows
easily that / is V1. Moreover there exists a GLm(R)-valued Holder function
M-»*FM, such that Vf(M) = ΨM(VJ(M)+VJ(MΪ). Therefore / is «*'* for
some β>0 and (̂1) is proved.

III. Proof of 0>(n)-*0>(n + 1)

Suppose / is #"* α, and ̂ n + 1 α along the leaves of J ŝ and J^M, with bounds. Then we
want to show that its partial derivatives of order 1 are ^n'β along the leaves of J ŝ

and 2FU. By 0>(n) this will imply that they are globally # " y for some 7 > 0, so that /
will be Vn+ί>\

Let M be a point, Pn M be the Taylor polynomial of order n at M and

0 = /-Λ,,M

1 . Since / is #π + 1 along the leaves with bounded n + 1 — si derivatives, Taylor's
formula implies

Γ(ΠM(PH\\®J~l
V1* "*»

L J! J
g(R)-g(M)= Σ [Pf @ .̂(I7f(P))] * +0(||RM|r + 1)

+1). (4.1)
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Since g is ^"'α and all its derivatives up to order n vanish at M,

, (4.2)

. (4.3)

Also, by Lemma 1, if c\\MP\\1+n^\\MQ\\^C\\MP\\1/ί+n

j+ε), (4.4)
k+ε). (4.5)

From (4.1)-(4.5) we obtain

~Πff(MQ)f
Σ [r*

j=ι

+0(||RM|r 0, (4.6)

where y = 1 Λ α + ε.
In the following lemma, S^ denotes the space of symmetric j-linear forms on

]Rdw, and similarly for SMs.

Lemma 3. Let ^:Rd f f-»SΛ d t t,./G[l,n] and /fc:R
dM->Sksds, fee[l,n], be such that

g.(z) = 0(\z\n-j+«) and fk(zj = 0(|z|"~fc+a) for some a >θ'. If for yεNJ1*
and when

(4.7)

for some ]8e]a,l], then gj(z) = 0(\z\n-j+w) and fk(z) = 0(\z\n-k+w) for all w<β.

To prove this lemma, we let

co-sup jω,ωelR, |Bm ̂ ^ < +00

and we define ω'k similarly. We shall show by contradiction that inf{ω7 , ω'k,
j e [1 , n], k e [1 , n]} ̂  β. Notice that by definition of ωj9 or ω'k,

\ \y\n+ξj+v

χ\ = \y\l + ξ

Γ _η Ί

is zero if v<ω. and infinite if v>ω/, for all ξ e - - , η , and similarly for3 J [_l+η J
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Suppose that mϊ{ωj9ω'k}<β. Taking ξ = ΰ, we see that (4.7) cannot hold if
mϊ{ωpωk} is not attained for two different values of /s or fc's. Similarly for
inf {n + ξj+ ωj9 (l+ξ)(n — k + ω'k) + k} , for all ξ close enough to 0. Then this implies
that there exists one j0 and one k0 so that n + ξj0 + ωjo = (1 + ξ) (n — k0 + ωko) + fc0

for all ξ. This implies ωJQ = ωko = k0 +jQ — n. Since the ω/s are bigger than α, ω^
and ωko are bigger than 1. Moreover ωjo = mf{ωpωk}, which contradicts
mϊ{ωpωk} <β. This proves the lemma. Notice that the constants are uniform in
the conclusions of the lemma, given the constants of the assumptions.

From this lemma and (4.6) we see that, if (4.2) and (4.3) hold for some α < 1, then
it holds for all ω's less than 1 Λ oc + ε. Hence (4.2) and (4.3) hold for all α< 1.

2. The next step is to show that in (4.6) 0(||RM||" + y) can be replaced by
0(||RM||"+1 + ξ) for some ξ>0. To this effect we use Taylor's formula of order
(n+ 1). Since / is <j?π+1 α along the leaves we obtain, as for (4.1),

n+l

Σ
T^fPliyi®-7'!

™ J

[f77MlΊVϊPYlΘ n + 1Ί( ' (™ι\ — J

t

l !
(4.8)

If we set IIMQII - ||MP||1+μ for some μ<η, then we obtain, by (4.2) and (4.3)
which are valid for all α<l,

+l~\ Γ/7MfOPΪ®" + 1Ίs — J -c^MΘ"+1^s(^f(δ))] [ „*!, J
+ 0(||RM|Γ+ 1 + α+||RM||n

for all v < μ. Using (4.4) with k = n + 1 , we see that

- r? Θw+ i&n

This implies, for some ξ > 0,

A similar estimate holds in the w-direction. Together with (4.8) and (4.2)-(4.5) these
estimates imply that, in (4.6), 0(||RM||M + y) can be replaced by 0(||RM||"+1 + ̂ ) for
some £>0.

3. Now we set ||QM|| = ||PM|| *+ v for some v small. Then for; e [2, n], by (4.2),

-0(||RM||n+1+μ)
\~(πM(Mnvι®Π

(U" (W^>>I— J * I
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for all μ<2v, and also if fce[l,n-l], by (4.3),
M(MP\\
'

Then (4.6) with 0(||RM|Γ + 1 + ̂ ) instead of 0(\\RM\\n + y) becomes, if v^ |,

Γ/7M(ΊVfPYl®"Ί
\V» ̂ M(77f (P))] - [tff(MQ)] = [Ff%£s07f (β))] [ „! J

(4.9)

for all μ < 2v. We now suppose μ fixed bigger than v.
Observe that (4.9) remains true if ||QM|| ~ ||PM||1+V.
We fix a unit vector e in TU

M and we denote for all λ > 0 small enough by Qλ the
point of <e™ such that /7f(MQA)-/le. We let G:R+->Sn d be defined by

= [y™®ng^s(Π™(Qλ))-]. From (4.9) we obtain, for all ze[ί,2]
1+μ

Therefore - has a limit L when A-^0 and - -L=0λ^. We then can
Λ

rewrite (4.9) as

/ΓTM/Λ/rpYv(g>«

(4.10)

Since g is %>n+ 1>α on J5f ̂  and all its derivatives up to order n vanish at M, for all
unit vector f of ΓS

M,
M ® " α. (4.11).

n\

Notice that Vg(P) can be reconstructed from V^g^u(Π^
= X(M,P). More precisely if *FM P is the isomorphism of Rd"+ds such that

!PMfM = /, and \\ΨMtP-I\\=0(\\MP\\*) for some

From (4.10) and (4.11) we obtain

g Λ ^ , (4.12)

where L is a symmetric w-linear application valued in Rds+du. From (4.12) it follows
that Vf — Vg+VPn M satisfies the assumptions of Lemma 2. By Lemma 2 Vf is
^π'α along the leaves of ̂ s, and also of ̂ u, if a<.δ. By 0>(n), Vf is ί?"^ for some
β>0, so that / is ^π+1'^. This concludes the proof of the theorem.
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