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Abstract. The effective action which generates I/TV expansion of the CPN_t

model in two dimensions is studied here by inverse-problem methods. The
action contains a functional determinant, in which auxiliary scalar and vector
fields are assumed to have a spherical symmetry. This leads to the introduction,
as an associated linear problem, of a radial Schrόdinger equation with two
potentials v and 0, and a potential-dependent centrifugal term
{(/ — rθ)2/r2 — l/4r2}. The full inverse scattering formalism is developed here
for this diffusion problem. It is formulated in terms of two-component lost
solutions, and leads to a matricial Gel'fand-Levitan-Marchenko equation. The
scattering data associated to the potentials by this 1ST are then used to obtain a
closed local form for the whole effective action. This is indeed possible for the
CPN^1 model, owing to the classical integrability. Moreover it is found that no
spherically symmetric instanton exists in this case. However the absence of
supplementary informations on the I/TV series, due to the non-integrability at
quantum level, does not allow safe quantitative conclusions on the general
behaviour of the I/TV series at large orders.

Introduction

The inverse problem methods have undergone important developments in the past
years. They have been used to solve, first of all classically, then quantum-
mechanically, a quantity of models in field theory and statistical mechanics. The
central idea of those methods is the existence of a link (one-to-one correspondence)
between a potential v(x) and a set of scattering data, conveniently defined [1]. One
can in this way solve non-linear equations that admit a Lax pair, i.e. a set of linear
partial differential equations, the compatibility condition of which is the non-
linear equation [2]. One of the linear differential equations is a diffusion problem,
with the field(s) as potential; the other one indicates the time evolution of the
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scattering data, thereby allowing a complete solution of the non-linear equation by
inverse scattering transform. The quantum version of this procedure has been
developed later [3] and was applied to a variety of models, known as "integrable
models." Another use of the inverse scattering method was developed in the past
few years. The one-to-one link between a potential v(x) and a set of S.D. makes it
possible to study non-local actions of the form:

(0.1)

where Θ(v) is a differential operator, and 3P(v) is a local, polynomial function of the
fields. Such objects often occur in quantum field theory, in particular as effective
actions arising after integrating over some field variables in the functional integral
formalism; for instance 1/JV-expansion-inducing actions always have this shape
[4] also effective bosonic actions obtained by integration over anticommuting
fermionic variables [5]. It is a very interesting problem to study non-constant
saddle-points of these actions, either to get information about the behaviour of the
perturbative expansion, [6], or to study the possible instanton-induced unstability
of the models [7]. The inverse scattering method provides us with a powerful tool to
investigate these questions for non-local actions (0.1). Instead of dealing with non-
local expressions in the fields (In det (d2 -f m2 + v), for instance), one can show that,
at least when the fields depend on one single variable, the non-local part of Seff has
a local form as a function of the scattering data, associated to these fields by the
diffusion problem [8].

(9(v)-Ψ = 0. (0.2)

Recently, the I.S.T. has been developed for the radial Schrόdinger equation [9],
and was subsequently applied to the problem of solving the instanton-equation of
ί/N — Φ4 model in 2,3, and 4 dimensions [10]. It was also developed for the radial
Dirac equation [11] and applied to the problem of 1/AΓ-expansion for quartic-
coupled fermions in two dimensions [11] and (Yukawa + Φ4) coupled fermions in
four dimensions [5c]. As a continuation of this program, we develop here the
study, by inverse problem methods, of the effective action that generates the ί/N
expansion for the CP#_ ί model [12]. The associated linear problem is given by a
generalized form of the radial Schrόdinger equation. It reads:

d2 f'-rtV 1 ' K- 0, (0.3)

where θ and v are potentials depending on r; f is the angular momentum (spectral
variable). In Sect. I, we introduce the model, and recall the formulation of its 1/JV
expansion [13]. The effective action reads:

Seff= -N lndet(-iy>μ-α) + —^, (0.4)
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where Dμ = dμ + iAμ; Aμ and α are the auxiliary fields of the CPN-1 model. After
dimensional regularization of the theory, one gets:

a vn ""'"" I <i"*'»W (0-5)
V+7ΓJ - oo

In Sect. II we give the expression of the effective action for a spherically
symmetric 2-dimensional configuration of the fields. This means here

v = v(xί9 x2) = v(r) , (0.6a)

Aμ = β (̂r) = βμ,yθ(r), (0.6b)
where

r =

In this way one resets Seff as a partial- wave expansion with generic term:

-rθ2

In det I - ,,, - I (0-7)
_

and the linear problem (0.3) now appears. The whole scheme of I.S.T. for this
problem is given in Sect. III. There are two main differences with respect to the
standard problem associated to radial Schrόdinger equation [9]. First of all, the
Jost function Έ(f\ defined as:

(0.8)

where Φ is the regular solution at +00, (Φ(r) = e~r(\ + 0(l/r))) does not go to
F0(f, v = 0) when \f\ goes to infinity, but rather behaves like:

+ 00

(Re^O)iX/,M) ,= F0(ΛO,0)exp 1 +θdr. (0.9)
(K|-* + oo) 0

This is due to the (ίθ/r) term in (0.3). The second and most important difference is
that, owing to this coupling between the potential and spectral parameter, one has
to use the following object:

(o ιo)

to formulate the orthogonality, closure, and I.S.T. relations; the kernel of the
associated GeΓfand-Levitan equation is a 2 x 2 matrix. Once these qualitative
changes have been done, the procedure follows as usual. Note that a similar I.S.T.
has been defined for the s- wave Klein-Gordon equation [14, 15] with the same
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characteristics. It was used for computing functional determinants with back-
ground electric fields in [16].

Section IV is devoted to the computation of the effective action as a function of
the scattering data. One finds:

1 +°°,lnD(τ)ln£>(τQ . , , . D(ΰ)

π - c

x (sgn Re/L)ln(/x-Λ) + 2 Σ ln(4/| sin(π/x sgn Re/*) - c*1). (0.11)

The effective action is separable in terms of the scattering data (lnD(τ), /x, cκ,
K = l...NB}. This feature was already found in two-dimensional integrable
models: 0(JV) non-linear sigma model [17, 27], Gross-Neveu and Chiral Gross-
Neveu [11,28]. Here the CPN^ί model is classically integrable [12] but not
quantum-mechanically [18]. The link between classical integrability and separa-
bility of the effective action for two-dimensional models appears again here, at
least at leading order in (1/JV). Quantum non-integrability cannot indeed be seen
at this order. The second conclusion is that no instanton (at least spherically
symmetric) exists in this model. However the 1/JV expansion is not known for the
5-matrix (owing to non-integrability); hence no certain quantitative conclusion on
the 1/JV series can be obtained. One can however conjecture that it has a more
convergent behaviour than the usual Borel-summable series; but this remains an
hypothesis.

I. The CPN-i Model and its 1/JV Expansion

We shall briefly introduce the two-dimensional model which is studied here, and
derive the effective action which generates the 1/JV expansion for it [4,13]. The
fundamental fields are complex vectors Z — (z x... zN), where two vectors Z and Z'
are identified if Z = αZ', αeC. Hence Ze(CPN_ί. This is equivalent to consider-
ing fields of fixed norm (for instance |Z|2 = 1) with an arbitrary phase ZelA(x\ A(x)
being a real field. In fact we shall consider rescaled fields with a norm \Z\2 = N/2f
so as to generate the 1/JV expansion, JV being the number of components; / is a
coupling constant. The action of the model reads [12]

+ 00 / f -«* \

d2x I dμZdμZ + -— (Zd^Z) (ZdμZ)) (in euclidean space), (1.1)

where Z is defined up to a phase Λ(x). This invariance reflects itself into a gauge
invariance of the action S, when one introduces the composite vector field Aμ as:

S is invariant under

»exp(M(x)) Z

2JV Λ
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This will be useful later on, when we define the "spherically symmetric vector
potential" Aμ. The factor / is the coupling constant of the model, which will later
on undergo dimensional transmutation.

It is important to note that a topological invariant can be added to S,
describing the winding number of the configuration Aμ as:

1 + 00
Λ /•)

Π— /7 2 vp ft A (v\ /Ί ΊΛ
\L— /-> J α Λ tμv t7μ/1v\Λ/ V 1 *- 5 /

Zπ -oo

Hence the possibility of defining a θ- vacuum theory described by the action S + ΘQ
[19]. We shall not study here θ-vacuum models and restrict ourselves to the pure
action given in (1.1). In fact, we shall restrict to configurations where the
supplementary term induced by ΘQ would be zero. This is necessary for the
consistency of Inverse Scattering (Aμ must decrease fast enough). We also recall
that classical instantons (for the field Z, Z) exist in this model, owing to particular
topological properties of the space CPN_ 1 (see [19, 20]). Let us now formulate the
ί/N expansion of the model [13]. The generating functional reads:

&(J,JίKμ)=)@Z@Z Γίδ\ZZ-^7

x exp (— s(Z, Z)) exp J

(1.4)
Kμ being the source coupled to the composite vector field Aμ. We shall now
introduce Lagrange multipliers to implement the conditions

_ N

One uses the following identities

+ 00 / _ \7\ / _ Λ7

J d2xa(
-co

The constant «2Γ0 is reabsorbed in the normalization of the path integral. Hence the
new generating functional reads:

r+oo /
-< f d2x- (dμZ-dμZ

(-00 \

(1.6)

We can now integrate over Z and Z in (1.6), after having replaced AμA
μ by

ry r l<j f

ZAμA
μZ —, and rescaled Aμ as Aμ-A — Aμ. This leads to the following model,
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described by the generating functional:

μ exp - N (In det (- DμDμ - α)

+ 00

i f (Λ //"")/Λl/2 v Λβ \ fl^\ΪV W\Al<^ fΛ Ί\
-f- J \\./\Δj) iVμ/L -γ JILL\ J\.μJ\. )(l X , ^ l . / J

— oo

where the operator Dμ is the "covariant derivative":

The gauge invariance of this model is reflected here by the invariance of

Seff = - N jln det ( - DμDμ - α) + f ̂  d2x\

under the transformation:

α->α; Aμ-+Aμ + dμΛ(x) .

There is no anomaly here, so the determinant is invariant under a gauge
transformation. We have now in (1.7) a manifestly 1/N-expandable theory; 1/JV
has the role of a coupling constant, or of h in semi-classical expansions.
The purpose of the whole paper is now to put the effective action

/ +00 v \

Seff = — N ( In det( — DμDμ + v)— J d2x — 1 under a tractable form so as to study
V - oo 2 J J

its characteristics, and especially its (possible) saddle-points. First of all we must
find the perturbative vacuum around which the 1/N expansion is to be done. The
saddle-point equations read:

δA μ

0.8b)

It is clear that Aμ = Q is the correct solution for (1.8b): indeed, we are looking for
constant background fields, and any constant Aμ is gauge-equivalent to Aμ = 0.
Moreover, co variance properties show that Aμ = 0 indeed solves (1.8b). If we put
this value back into (1.8a), we see that this equation contains a divergent term

lχ) is not defined in exactly two dimensions). We shall now2(d
regularize the theory, and Eq. (1.8a) will give us the relation (at leading order in
l/N) between bare (infinite) and renormalized (finite) parameters. We shall use
dimensional regularization, where (until precised), the fields Aμ9 (μ = 1 . . . v) and v,
will depend on v variables (x1...xv). Here we need not worry about the
"dimensional extension" of Aμ since in any dimension v, rotational invariance of
the theory defined by Seff holds (Seff clearly contains only scalar s), and therefore all
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components of Aμ will be zero in the vacuum. This regularization will moreover be
easy to deal with when one expands in partial waves the In det (see next part). Now
Eq. (1.8a) reads:

7 2f (4π)v/2 υ 2/'

Equation (1.9) provides us with a renormalization of the coupling constant / as a
function of the "mass parameter" v0 (vacuum). One finds here the same features as
for NL σ model or Gross and Neveu [21 ], namely a dimensional transmutation. As
we shall see later, there is also a mass generation at this level ("classical" with
respect to 1/JV), since v will appear as the (mass)2 for the Z-particles (see also [23]
for dynamical mass generation in the 0(N) σ-model). We end up with the following
effective action:

+ source terms (- J(DμDμ + α)"1J and - KμA
μ). (1.10)

As we have indicated before, this effective action is finite now that the coupling
constant has been dimensionally transmuted according to (1.9) and mass
generation has occurred. This can be checked directly by expanding the In det in
inverse powers of ( — dμd

μ + m2). This expansion reads:

_
5 - -N in det

(1.11)
ys+Hj — oo

We shall use here the gauge invariance in v dimensions of the theory and impose
Lorentz-gauge condition to the configurations in (1.11): 9μA

μ = 0. Hence Seff reads,
at one-loop level:

(1.12)

The divergence of v cancels exactly between the two terms in (1.12) (this is
equivalent to the saddle-point Eq. (1.8a)). The (^^-divergence will be cancelled
by the two-loops contribution, the divergent part of which is given by:

'dvk. (1.13)

It can be checked that (1.13) cancels the divergence of (1.12), leaving only a finite
term, quadratic in Aμ. This allows us to obtain the propagators of the ί/N
expansion. The Z-propagator at leading order directly follows from (1.10):
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(the ~ denotes Fourier-transform). The Z-particles are N ordinary massive
charged bosons in the fundamental representation of SU(JV) (at leading order in
1/AO

The v and Aμ propagators were computed in [13] using a Pauli-Villars
regularization to make the cancellation of (AμA^ divergence explicit: Since the
model has one single independent parameter at (1/JV)° level, (that is, the mass of the
partons) (plus of course the number N itself) and since our Z — Z propagator is the
same at leading order as the one in [13], provided one identifies the masses, one
will get the same propagators at leading order in 1/JV, in the limit v = 2 which is
unambiguous since Seff is finite. Namely we have: (v = 2)

/2 + (Ό2Ϋ/2

±|μ. (1.15)

The inverse i -propagator contains no zero at any p2; therefore there is no
associated physical particle. It induces a short-range force between the Z-particles.
(v = 2) (no Lorentz-gauge condition)

+ 4m2M(P)- (1.16)

The exchange of ̂ -field yields a long-range (Coulombian) interaction between the
particles Z. It indicates a confinement of the partons Z, owing to the pole at p2 = 0
of Dμv(p) in (1.16). No physical particle is associated to this field, either. All these
features are discussed and derived in [13]. See also [4, 19].

We shall now concentrate on our problem, which is to treat the non-local
effective action (1.10) so as to give it a local form, and get information about saddle-
points, and more generally about the properties of Seff. As we shall see, this leads to
a non-trivial inverse scattering problem with very specific and interesting features.

We shall restrict ourselves, first of all, to configurations of Aμ with zero
"supplementary components"; since we finally want to get saddle-points in exactly
two dimensions, it is not necessary to worry about Aμ, μ>2. Moreover, having in
mind the procedure used in the previously studied cases of two-dimensional
fermionic models, we shall restrict ourselves to configurations depending only on
X j and x2 This is in fact natural, since we shall work in the end with exactly two-
dimensional euclidean space. Note that, owing to covariance properties, the solu-
tion Aμ = Q, μ>2, is then compatible with the general saddle-point condition
in v dimensions:

This restriction on the space of configuration will be useful when we derive the
expression of the renormalized effective action; the reduction of the eigenvalue
problem, associated to the In det, from v to 2 dimensions, will be very simple. In
fact, we are simply doing a trivial extension of any two-dimensional configuration
(f(x1 ?x2)j Aμ(xι,x2y9 μ = l j2) to v-dimensional action, and going back to two
dimensions. This will give us the two-dimensional action, since after renormali-
zation according to (1.9), Seff is a continuous function of (v, v, Aμ) without poles: the
procedure is consistent. (We shall again impose Lorentz-gauge condition to the
configurations: dμAμ = 0.)



Inverse Scattering Transformation in Angular Momentum 297

II. The Functional Determinant and Partial Wave Expansion

Since no potential (Aμ, v) depends on xv, v > 2, the momentum K1 ( Ξ Kμ, μ > 2) is a
good quantum number for the operator ( — dμd

μ + m2 + 2iAμd
μ + AμA

μ + v). Actu-
ally the functional determinant is a "product" of the eigenvalues of the linear
problem:

εφ. (2.1)

Extracting K± as φ = φ(x1,x2)exp(ί'K1 x1) leads to a purely two-dimensional
eigenvalue problem with a parameter kL\

(-d1d
ί-d2d

2 + (m2 + k2

L) + 2ίAμd
μ-AμA

μ + v)φ = εφ(xί,x2). (2.2)

Now we recall that we are interested, in the end, in the search of saddle-points for
the effective action containing the In det of operator (2.1). It is a natural assumption
to say that dominant saddle-points, in two dimensions, should have the largest
possible symmetry; that is, the 2-dimensional rotational symmetry described by
the angular momentum 5£\

^ = ί(xΐd2-x2dί). (2.3)

Note that the procedure was different for scalar fields (φ4 in 2, 3, and 4 dimensions
[10]). There we had assumed a v-dimensional rotational in variance and taken the
limit v->2 of the effective action. However, in the case of spinor fields ([5c, 11]) and
here vector fields, we assume a cylindrical-like symmetry (2-dimensional spher-
ical symmetry, times a trivial behaviour in the v — 2 other dimensions): this leads
to easier computations.

We shall then assume that the fields have a spherical symmetry. This means
that:

v(xl9x2) = υ(r), r = (x2 + x2Y'2. (2.4)

It is less clear to see what Aμ must be. In fact, we must have:

]=0, (2.5)

so as to get a spherically symmetric hamiltonian. & is the angular momentum in
I "V — v Γ*O^ Ύ

two dimensions. Introducing polar coordinates < 1 , the operator &
reads: Ix2 = rsin*

JS? = i/ (2-6)
dχ

Now the "spherical symmetry equation" (2.5) reads:

=0. (2.7)
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A necessary condition is that the coefficients of dr and dχm the development of (2.7)
cancel. One gets:

AI = cosχ f ( r ) + sinχ - θ(r), (2.8a)

A2 = sinχ -/(r)-cosχ - θ(r), (2.8b)

which are also sufficient conditions for (2.7) to be true. The gauge choice dμA
μ — 0

gives:
f(f)

/'(r)+^=0, (2.9)

which has no regular solution other than / = 0. One could alternatively note that
the "/(r)" part in Aμ (2.8) is a pure gauge, and that the "0(r)" part can be reset as:

Aμ(μ=\,2)=-ε^θ(r), (2.10)
^ r

where 0(r) = J θ ( r ) d r , ε12 = l. It is in fact a well-known result that any 2-dimen-
sional gauge field Aμ can be written as

Putting back (2.4) and (2.10) in (2.2) leads to the following eigenvalue problem:

< = εφ. (2.11)

Introducing now Ψ(r) = ]/r φ(r), so as to eliminate the "(l/r)dr" in (2.11), and using
the commutation of the hamiltonian in (2.11) with the angular momentum idχ, we
rewrite (2.11) with an explicit eigenvector of idχ as Ψ:

Ψ(xl9x2) = Ψ(r)exp(-ίtχ). (2.12)

The eigenvalue {is here a positive or negative integer. This is necessary to get the
consistency condition Ψ(χ + 2π) = Ψ(χ). The degeneracy associated to the angular
momentum J5f in two dimensions is 1, therefore the full degeneracy of any
eigenvalue f in (2.10) is given by the degeneracy associated to k±, times an
"intrinsic degeneracy" of the purely radial spectral problem. We shall only have to
integrate over k± when computing the v-dimensional determinant. Afterwards the
remaining degeneracy will be taken into account by the radial determinant.
Equation (2.10) now has a manifest spectral parameter: (

2 I \" " I vj_y i ~ j ^ v y ^ ~ y. j . \^' * ^)

Now we can reexpress the In det in the effective action in the way indicated above.
Replacing In det by tr log, using the form φ = eiκ^XLφ(x1, x2), and taking the trace
on the supplementary dimensions gives:

Indetf-WΛ

ι Λ - m v
lndet ^ 5—Γ2 (2.14)2



Inverse Scattering Transformation in Angular Momentum 299

L is the length associated to the supplementary components. In fact, one has
simply done a partial Fourier transform on the supplementary components, using
the fact that the (A, v) configuration does not depend on xμ, μ>2.

Now it is possible to expand in partial waves the two-dimensional functional
determinant in (2.14). One gets the final result:

Indet -5 5—,; , ' ί/Λ.., . (2.15)JZ i Z i 7_ Z i / /"Z Ί /Λ\ /-.Z / v '

It is clear on (2.15) that one must now express the radial determinant as a function
of the spectral parameter (^ keeping (fej + m2) as a mass parameter. This shall be
done in the same way as for the radial Schrόdinger equation, [9] or radial Dirac
equation [11].

Note that the expression under the integral in (2.15) is formally divergent. We
shall comment later on the exact meaning of Eq. (2.15). For the moment, we shall
concentrate on the individual determinant on the right-hand side, and we shall try
to reexpress:

*-rθ\2 1
( r _L \

Indet

in a local form. The full scheme of inverse scattering transform, already given in
[22], will also work here. However, quantitative and even qualitative differences
with respect to the standard Schrόdinger equation occur now, owing to the
coupling of the angular momentum (spectral parameter) to the potential θ(r)
through the term £θ(r)/r (coming from the term 2iAμd

μ in the effective action). We
shall see these modifications in the next section.

III. The Inverse Scattering Transform of "Coupled" Schrόdinger Equation

This "coupled" Schrόdinger equation reads:

. (3.1)

To begin with, we define the Jost solutions and regular solutions of Eq. (3.1). The
Jost solution is regular at r-»0:

Re/>0, (3.2a)

Re/<0, (3.2b)
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All through this paper, we admit that θ and v obey the necessary requirements for
"standard" 1ST, namely:

lim τ2v(r) = lim r0(r) - 0 , lim r2υ(r) = lim rθ(r) = 0 ,
r-*Ό r— »0 r-*ao r-*co

so that the centrifugal barrier dominates at r-»0 and r-> 4- oo, enabling us to do
"perturbative" expansions around free solutions. This is less evident here, as we
shall see later, than in the standard Schrόdinger equation. The regular solution is
defined for both signs of t in the same way:

φ(r) = l έΓ'ιr(r-»oo). (3.3)

Here we use the mass-scale μ2 = (m2 + fc2). We shall now omit this mass scale, but
one should remember that there is a dependence of this scale μ2 on the transverse
momentum k1? which is integrated over in the full determinant. We shall come
back to it later. We must here give some precisions about (3.1). The spectral
variable / is complex, while the potentials v and θ are normally real. We shall (in
this section) consider generally v and θ as complex, and indicate the properties of
Scattering Data that arise if they are real. The whole 1ST holds for complex
potentials (see [2]), but the SD then lose many of their properties; moreover the
physical interpretation of complex saddle-points is not obvious.

Let us now define the lost function. From (3.2) and (3.3), we know that φ is a
linear combination of the regular solution r/+1/2(Re/>0) and the irregular
solution r~/+1/2(r-»0). We define the lost function as:

lim/ φ(r,zf) /-1/2, Re/>0, (3.4a)
r- >0

=lim -<f <p(r,<0 r~'~1 / 2, Re/<0. (3.4b)
r~>0

It is equivalent to set:

F+ί7Ί F~(A
ψM^—jr-ΓM -- ~Γ(r,^), (3.5)

where

/-(Γ) =

and

(3.6a)

Re/<0. (3.6b)

It is clear on these two definitions that F is analytic in (Re/>0) and (Re/<0). It
can be shown that an analytic continuation exists for F+ and F~ on each side of
the imaginary axis (Re?f = 0). This is necessary to get a consistent meaning of (3.5) in
a band containing the axis. This property, and the linked property of analyticity of
φ-solutions in the plane (1), will be used implicitly each time we shall speak of

F+(ίτ)= lim F+(iτ + ε), F"(iτ)= lim F~(iτ + ε).
ε-»0+ ε-*0~

However, the lost function itself will alway be defined as F+(£) when Re*?>0,
F~(f) when Re*f < 0. In fact, we shall never have to use F(iτ), but always F(zτ ± ε) in
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the following, so the definition of the Jost function remains unambiguous. The
identity (3.5) will be used as a limit when |Re/| goes to zero.

Another useful definition of the Jost function is given by the Wronskian of two
solutions (φ,/). Defining W as:

g - f 9 (3.7)

one can prove that

±). (3.8)

This follows from the property that — W(f(r, /), g(r, /)) = 0 for two solutions /
dr

and g with same spectral parameter /, a consequence of which is that
W(f\f-) = 2t (from (3.2)).

We shall briefly recall that in the free case (θ — 0, v = 0), the φ- and /-solutions
are modified Bessel functions:

(3 9)

(3.10)

>0 (3.11)

Let us now define the scattering data. In this more general case (compared to
the standard Schrόdinger equation), the Jost function is no more even. Moreover,
a particular feature of F/F0 is that the limit when \f\ goes to infinity is no more 1,
owing to the coupling (Qjr in the Schrόdinger equation. One can obtain this
behaviour by solving in powers of I// the associated Ricatti equation; this gives
the following behaviour for / and φ, which will be very useful in the following:
Starting from

> = 0, (3.12)
V r r /

and setting

φ = φ0QXp } Ψ(r)dr9
+ 00

so as to keep the boundary conditions on φ as (φe~r, r-> oo), we get the following
Ricatti equation:

r

and a similar one for /, parametrized as / = /0exp J Ψ*dr, so as to get correct
o

normalizations at r->0 (one should replace φo/Φo by /oV/o) This equation can be
solved by expanding in series of I// Ψ and φ'o/φo (respectively Ψ*, fό/fo): this was
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the standard way to obtain trace-identities in the previous studies [5c, 10, 11].
Here one gets the following solutions: (Re/>0)

r γ Q r γy

φ = φ0 exp ί θ(r)dr -exp — -exp- J -dr (ί + 0(1 A?2)), (3.14)
+ 00 £' + oo Δt

r γQ r vy

/ = /o expJ -θ(r)dr exp — -expί— -(l + 0(iy2)). (3.15)
0 Δύ Q It

Similar expressions hold for Re/<0, except that (A-> — /, θ<-> — θ). These
expansions will be very useful in the next computations. Here we can see that:

Jίm ¥+7^ =exP f +θ(rϊdr> ± : [depending on (sign Re/)] (3.16)
|̂ | -" + 00 Fo(O 0

which is a qualitative difference with respect to the standard case where limF/F0

is 1 when |/|-» + oo. Hence the analyticity studies have to be done with
p± + 00

-^exp + J θ-dr so as to get a convenient large \(\ behaviour (0(1//)) for
FQ 0

the functions involved in dispersion relations. The scattering data can now be de-
fined. They consist of:

a) a discrete spectrum {/^} such that F(^K) = Q. They are the only values for
which φκ(r) (or fκ(r) which is then proportional to φκ(r)} is square-integrable. The
corresponding normalization coefficients {cκ} will be given later, since we shall see
that one has to modify the definition of scalar product.

b) a continuum spectrum {/ = zτ, τ e &}. The corresponding SD will be seen to

be D(τ)=—^~-^~. The non-unit limit (K|->oo) of F/F0 does not modify this
Ϊ0(ιτ)ϊ0(ιτ)

definition, since the sign of the exponential depends on whether one considers F +

or F", in (3.16); therefore lnD(τ) has a convenient behaviour (0(1 /τ2)) when
|τ|-> -f oo. The properties of the scattering data are not so clear as in the case of
the "pure" Schrodinger equation. When the potentials are real, the general prop-
erty holds that

= F*(t), (3.17)

by complex-conjugating the equation. Hence the zeroes are either real or coupled
by pairs (fκ, /|), and D( + τ) is equal to D*( — τ). One cannot however say in this
general case that the zeroes are real It is only possible to prove that, given a zero
j) />K i '/>K.
t V — ύ Ώ ~Γ t' T

^n^κ^κ,pκ\ A n 1 δϊ^j(2α ΪR + P ) = 0, (J.lδj
where

α^T^dr, βκ=+f(^dr. (3.19)
o r o r

Hence, if θ = 0, βκ = 0, and since aκ Φ 0, /f Φ 0 (imaginary zeroes are forbidden since
+ °° φ φ*

the integral J ^ dr would become divergent as Inε), one gets the "standard"
ε T

result for Schrodinger equation:

0. (3.20)
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Moreover if 0 = 0, and v real, the equation is invariant under /-> — ̂ f, and F+(/)
= F~( —^) for Re/>0 (the lost function is even). Here

Φ all zeroes are real, and (̂ χ<-> — £κ).

+ (X) sry •£ (γ\

Φ normalization constants are real: c^= f —^—^r

τsinhπτ

More generally 0 = 0 and v complex lead to

Let us now go back to the general case, 0 and v generically complex. We shall see
later on that this is a consistent set of S.D. That is, one can reconstruct v and 0 from
these S.D. only. Let us introduce now the scalar product between two solutions.
We reach here the most capital difference between the standard radial Schrόdinger
equation and this "coupled" radial Schrόdinger equation. In this case, it is
necessary to introduce the following two-components object:

for all solutions φ of the Schrόdinger equation with spectral parameter f and
potential (0, ι;). In the whole scheme of the inverse scattering transform which now
follows, we shall deal with such objects, and not with the "one-dimensional"
solutions φ.

In particular we must define the scalar product as

+ 00 ftγ

<<Pι>φ2> = ί -2ΦΪσιΦ2 (3.21)
0 T ~ ~

This definition only has a meaning if φί and φ2 are solutions of the equation with
equal (or different) spectral parameters, while the usual definition of the scalar
product could be extended to any couple of functions. Moreover, this product is
not positive-definite in the general case. However, it has the property that:

— φΐσlφ2=^Σ(φi(t1+t2-2rθ)φ2), (3.22)
/ "" "" T

or using the equation of φ1 and φ2:

A A

2) . (3.23)
r "" "" ύ i — ύ 2 ar

Therefore the expression (3.21) will be easy to compute once one knows the
asymptotic and (r->0) behaviour of the functions involved in it. In particular, one
proves the following "pseudo-orthogonality" relations:
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a) The "scalar product" of two discrete solutions is given by: (For Re^ >0)

> = δeι<<2

 F (/l)F+/(/l) = c- 1 , (3.24)

and ( + )<->(-) for Re/! <0).
b) The scalar product of two φ-functions (regular at r-> + oo) belonging to the

continuous spectrum is given by

(φ(h),φ(ίτ')y=-F + (h)F-(ίτ)δ(τ-τ'). (3.25)
"•* "" ZT

This formula can easily be obtained from the formula in the case of the "standard
Schrόdinger equation," which reads

<φ(ΐτ),φ(iτO>-^F+(iτ)F-(iτ)((5(τ + τO + 5(τ-τO). (3.26)

The difference is that one obtains (3.25) by using a definition of the scalar product
<φ, φ> which, when 9 = 0, differs from the definition in (3.16) by a factor (£ + (*}.
Hence the disappearance of δ(τ + τ7) and the (2τ) factor. Apart from these details,
the formulae giving W(φl9 φ2) lead to identical expressions in terms of F + , F~, r
and τ in the two cases, iΓence the similar results for the scalar products defined by
(3.21).

We shall see now that a general closure relation, dual of the orthogonality
relations, holds for the φ objects. This follows from introducing the Green function
of the differential operator, defined as usual:

This Green function is given, for a spectral parameter /, by:

\ (3.27)

where / is the lost solution for Re/>0 or Re/<0.
Now we proceed as usual, and compute not one, but three integrals of

G(r,r7,/). Let Γ = Γ+vΓ~ be the integration contour given by Γ± =]-ioo±e,
+ ioo ±ε[u(right (left) semi-circle of radius -> + oo). We integrate now (1)G, (2}£G
and (3)/2G over this contour. The poles tκ such that F(/κ) = 0 will lead to residues
contributing as:

Ψκφκ'

- + ' ψκψκί

/3

(3) -—£
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• The straight lines —zoo to +/oo contribute as

+ 00

(1) f ρ(τ)φ(iτ)φ(h)dτ,
— oo

+ 00

(2) J iτ Q(iτ)φ(iτ)φ(iτ)dτ,
— oo

+ 00

(3) J τ2Q(iτ)φ(iτ)φ(iτ)dτ,2

— oo

IT
where ρ(iτ) = , is the non-normalized continuous scattering data,

F (ιτ)F (ιτ)

• The two semi-circles contribute as:

(1) 0,

(2) r2δ(r-rO,

(3) 2rθδ(r-r') r2.

This follows from using the asymptotic formulae (3.14) and (3.15). One can now
rewrite this whole integral, with its different contributions, as a closure relation on
the φ objects; namely

ί dλρ(λ)φ(r, λ)φτ(r', λ) = σίr
2δ(r-r') , (3.28)

where j dλρ(λ)F(λ) is to be understood here and in all the following computations
as

^). (3.29)

This relation generalizes the closure relation of the solutions of the standard
Schrόdinger equation (Θ = Q). This already shows that the S.D. F+F~ and { x̂, cκ}
are convenient objects to describe a set of potentials {0, ι?}, in that their associated
φ form a complete set of functions. Proceeding as usual, we now derive a dispersion
relation for the lost function. Owing to its behaviour at |/|-> + oo, we define:

for Re/>0 (and a similar expression for V~9 Re/<0). Hence the following
dispersion relations hold for F+ and F~, as a direct consequence of dispersion

relations on the function lnV±(^) ( for Re/ 1

+ 0 0 τ ,^^
. (3-30)

In the case of the standard Schrόdinger equation with real potential:
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and one gets back the standard dispersion relation:

It is now time to derive the fundamental trace identity, i.e. to obtain the relation
between the lost function (3.31) and the functional determinant. This follows from
taking the derivative of the determinant with respect to /, that is:

d , .
— In det

r2

+ 00 /9/ 2Θ\ 2/
= f dr(-t- — )G(r9r,S)-^GQ(r9r9S). (3.32)

o \r r j r

Using the definition of G (3.27), the wronskian property (3.23), and the asymptotic
behaviours (3.4), (3.5), enables one to compute (3.32), and to get:

Moreover it is possible to compute In det (0) as a series in I// for \{\ going to ± oo
one gets in this way, using the expression of G(r, r, f) (3.27),

/ D \ + °° /1\
In det — =T ί θ(r)dr + 0(7). (3.34)

\L>Q/ o V7

Since we know that such is the behaviour of F/F0 when /-> + oo (see (3.16)), we can
identify:

lndet|-=ln^. (3.35)
^o ^o(0

From expanding both sides of (3.35) in series of I//, or from the resolution of the
Ricatti Eq. (3.13) in powers of (I//), we get the trace identities associated to this
linear problem.

XRO* +o° +o°
J θ(r)dr= J θ(r)dr
o o

trivially. This trace identity will be obtained as a non-standard tr-id. in the end.

TR1:
+ 00 +00 λ>τ

ί r»(r)dr = 2Σ(-sgnRe/J tχJ E+ J lnD(τ) —,
o κ - o o π

TR2:

T (r̂ (r)o

Note that in the case of standard Schrόdinger equation [9], (TR 2) reduces to 0 = 0.
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All trace identities are obtained by a recurrent construction:

n θ n n

where β(n) are the coefficients of the expansion in (\/f) of φΌ/φ0, and trace identities
are:

+ 00 (_/ V +00 I

f «P<">(r)A =Σ(sgnRe^I)
L-£ίL + f (iτr'

Now the final procedure is to show that the scattering data defined above are in
one-to-one correspondence with a set of potentials (v, θ) and to formulate the
inverse problem. Let us introduce the kernel K (2x2 matrix) defined as:

K(r, rO = T βo(iτ) (jj?(r, iτ) - Λ(r) φ00% iτ)) g> J(r', iτ) dτ σ t , (3.38)
— 00 ~

where $(r) compensates the asymptotic behaviour of φ compared to φ0 when the
spectral parameter f goes to infinity. We shall see that the only consistent
definition of K is with:

^(r)-cosh } θ(f)dr. (3.39)
+ 00

It is possible to show that

(r9t) (3.40)

for any /(Re/>0 or <0). This follows essentially from the wronskian property,
+ °° dr

that converts J -^ ΦoOτ)φo(^) into a "δ(/ — iτ)" whenever applied to a regular
o if ~ ~

function of iτ. The mechanism is exactly the same as in the standard (0 = 0) case,
once the wronskian property is used. Hence this kernel interpolates between free
(ψQ) and interacting (φ) solutions. It is possible to define general kernels K that
interpolate between solutions φ(v\ θ') and φ(v, θ). They look exactly like (3.38),
once one replaces φ0 by φ(v',θf), ρ0 By ρ (interpreted as in (3.29) as
continuum + discrete measurejand θ by θ — θ' in (3.39).

A general property of these kernels is that:

JC(r,rO = 0, r'<r. (3.41)

This is obtained by deforming the integration contour in (3.38) as a reunion of two
semi-circles C1 and C2 (left and right of the complex plane) with radius going to

iτ F+ _ F~
infinity, using the fact that ρ(zτ) = . . „_.. . and φτ = —— f~τ — — f + τ. This

jr (J-t) -Γ \ιτ ) ~ υ "* ϋ ^

leads to an integral <j> (φ' — &φ)fτdλ, where / is always the Jost solution for
CiuC 2 ~

( r/\(sgnRe<f) <f

— 1 d£,
r )
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which is zero when r' < r, and must be defined more precisely when r' ̂  r. We shall
see this later, for r' = r.

This triangularity property holds for all kernels K. Now let us compute in two
ways the quantity

T ρ(iτ)φ0(r)φV)^EE^(r,rO. (3.42)
- oo ~ ~

Using the kernel K: <p->φ0>
 we get:

4(r,rO= ί ρ(λ)φ(r)$(r)φτ(r')dλ+ T dr"\dλQ(K)K(r^φ(r"}φΎ(rf}dr\

(3.43)

where K is the (v, #)->((),0) kernel and $ is the "asymptotic compensation" that is
equal to ?̂, since

+ 00 4- oo

cosh j 0(r)dr = cosh j -θ(r)dr.
0 0

Inversely, using the transformation φ0^>φ,

+ J dr" ί dAρWφoWφJCOKVX)^. (3.44)
0 -oo ~ ^

Closure relations lead to

r2 - <5(r-rO - ̂ (r) -

x ^(rr)σ1 + σi Kτ(r\ r) + 3lΩ(r, rx) + f°° Ω(r,
o

where

Ω(r,rO= ί (ρμ)-ρoα))g>oWg>o(O^ (3.45)

When r'<r, K(r, rx) = 0; hence the kernel K obeys the following equations
(generalized GeΓfand-Levitan-Marchenko equations):

+ 00 Aγ»

K(r\ r)σ, + @(r)Ωτ(r, r') + j K(r', r*)Ωτ(r, r") -^ = 0 , (3.46)
r' r

or

7 +0° ^ x x/ /^r/x

'r)^=0 (3 47)
Since Ω is completely given in terms of the scattering data, we see on Eq. (3.47) that
the kernel K/3% is completely determined in a unique way once the scattering data
are given and provided they have a regular behaviour [l.c]. We now have to
obtain the potentials (v, θ) from the solution Kfdt of (3.47).
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( K l& K I <3$\
1 ), and expressing (3.38) when (r'->r) by

Kz/yβ K4/yv/
means of the wronskian property and /-asymptotic behaviour of/ and φ gives the
following results:

r/ = r J rv(r)dr + r - θ(r) tanh θ - dr . (3.49)
9&(r) o o

Hence

, (330)

<3 5 >
These relations also hold when both φ and φ0 are interacting solutions, and K

interpolates between them. The generalization of (3.48) is straightforward;
however (3.49) requires a non-trivial cancellation between the contribution

of <j> (φ — &φ0) rθQ — -̂ - dλ and the part of the contribution of
r F(λ)

^λ'(φ — ̂ φo)'—~-'dλ induced by the asymptotic behaviour of φ0fo/F(λ) as

/ r0 \
(φ*f*/F*) l l + -γM, where the (*) index denotes free solutions. A careful

\ Λ /
computation shows that this is so. Hence one can generalize (3.48) and (3.49),
replacing θ by (θ — 00) and v by (v — t>0). Note that this scheme only holds when the

+ 00

"compensating asymptotic term" ̂  is chosen to be cosh J Θ(r)dr9 i.e. the mean
o

value of the two asymptotic behaviours of φ/φ0 . In this sole case the infinite
(|̂ |-* + 00)

contributions to K^r, r) coming from integration over the circle at infinity in (3.38)
cancel between the two semi-circles. Otherwise one gets a divergence for K^r, r) as
K^r, r)cc(&' — $). jR, where $' is any "wrong" compensating term, and R the
radius of the circle. This is also the case for s-wave Klein-Gordon equation
( = energy-dependent-potential Schrόdinger equation), see [14, 15].

The relations (3.30), (3.51) are exactly similar to the one obtained in [15] for
s-wave Klein-Gordon equation. Moreover, when Θ = Q, one sees directly from
(3.38) that K x is equal to the kernel interpolating between free and interacting
solutions of the radial Schrόdinger equation [9] and that it obeys in (3.47) the
usual GLM equation with integral kernel Ω2 (we define:

, Ω

and when 0 = 0, the SD are such that Ω^ = Ω4 = 0, and K2 = K^ = 0). Finally when
the SD have the properties of real-potentials-scattering data, namely (/κ<-*/|,
cκ*~*cκ> D*(τ) — D( — τ)), one clearly gets a real kernel Ω(r, r7); therefore, (using the
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hypothesis that the SD are regular enough to guarantee the unicity of the solution
of the GLM equation), K is real, and so are v and θ; this shows that the whole
scheme is self-consistent. Finally it is possible to obtain a differential expression of
the GeΓfand-Levitan equation; by infinitesimal change of the SD, and using (3.50),
(3.51), one ends with the following equations:

r dr \ r

• sinhπτ <5D(τ) φ(r, ίτ)φ(r, z'τ) dτ J ,

(3.52)

, (ϊ'τ — r#)sinhπτ .. . . . . . .„ „.dτ' 2 - <5ί»(τ)φ(r,iτ)φ(r,iτ) . (3.53)
-oo

This will be used now to obtain two non-standard trace identities. First of all:
+ 00

Q1 = J θ(r)dr can be evaluated by differentiating with respect to cκ, fκ and
o

Z)(τ), computing the resulting integral, thanks to the asymptotic behaviour (3.2), in
terms of the SD, and integrating back to obtain a closed expression in terms of the
scattering data,

+ 00 + oo |n Γ)(r\

ί θ(r)dr = 2Σ (sgn Re*fκ)ln(/κ) + $ — dτ. (3.54)
o κ - o o τ

+ 00

It was to be expected that the "asymptotic behaviour" J θ(r)dr was not an
o

independent SD, since it did not appear in the closure relation, nor in the inverse
scattering kernel Q. Note that the continuum term in TR 0, TR 1, TR 2 ... goes in
increasing powers: 1/τ, 1, τ,... in fact, TR(0) is almost a standard trace identity in
this respect.

A second identity can be obtained in the same way:

+ 00

62 = ί rv(r)lnrdr
o

will appear in the next section as a result of the renormalization of the functional
determinant. This trace identity was already derived in the case of the Schrδdinger
equation. One has to use the wronskian identities (3.22), (3.23) to compute the
resulting integrals which have the form:

+ 00 1

ί —2(f — rθ)φ(#,r)φ(£9r)dr(£ = £κ or f = iτ). (3.55)
o r

[For the previous trace identity (TR 0), the differentiation with respect to the SD
lead to an exact integral directly.] In particular, when differentiating with respect
to cκ, we obtain, after part integration, the above expression, which is exactly
— l/cκ. Hence Q2 = Σ — lncκ+/(^κ?£)(τ)) Differentiation with respect to the
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scattering data fκ leads, after part-integration, to the following expression:

δQ γ i (ίκ + δίκ - rθ) φ\(κ + δfκ) - (£κ - rθ)φ2(/κ)

wκ

= ί ^Cκ - ̂ - dr' (3 56)

which by wronskian properties, can be recast as:

δO +0° i

w~κ= 5 '*
(3.57)

and finally, at leading order in ε and δ, as:

δQ + 00

= ί

- W(φ«t

,*>('*)! ^+ 4- dr.

(3.58)

The first two terms are formally identical to the two terms one gets when
computing this trace identity for the standard Schrόdinger equation (see [lOb, c]);
hence the result will be the same, written in terms of the Jost functions at fκ = *?.

1
The third term finally gives —, which adds a factor In fκ to the expression of Q: this

'K
merely compensates the normalization of the factor cκ here, when one compares it
to the normalization chosen in the standard case [9,10].

Similar features appear for the continuum contribution. One finally ends with a
similar expression for Q, in terms of the scattering data, as in the standard case,
with the important differences that: the zeroes are no more real and do not go by
pairs ( — ̂ κ^κ)l similarly lnD(τ) is no more real, nor even. This generalized
expression reads:

r j , , n τ n τ t ^ ,= dτdτ £ V + « -I lnD(τ),lnI)(τ)lnD(τO

£ V
- iτ) + In2)dτ - - +f dτ ( Σ SgΐίR<fκ \nD(τ)}

π - o o \ x ίτ — ύκ /

+ Σ (sgnRe^(sgnRe/L)ln(/κ-/L)-Σlncl. (3.59)
X Φ L K

Note that the Fκ here is equal to (tκ x c^) to make the link with the standard case
clearer. Now that we have developed the whole scheme of inverse scattering for
Eq. (3.1), we can come back to our problem and express the CPN effective action as
a local function of the SD. We shall see that this is possible for all terms.
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IV. The Effective Action of CPn

We recall that the effective action reads as a "renormalized series" plus a
counterterm:

+ °o /7V 2b~ +00
f _? ί̂ L v
J /o^Λv-2 2^

-oo (2π) ^=-00

,2 2 V-rθ)2-l/4 \
-d2+μ2+- - -2 - '—+ 1

j rv(r)dr. (4.1)

We shall now replace the radial functional determinant by its expression in terms
of the scattering data:

(i.rn^.-wM;-2"Ίi^ ί ™w*'(4'2)

being any positive or negative integer.
Let us now use the "partial wave expansion" of the renormalization coefficient

jj,. +00 /7 v~^/c +00

where ^ is any positive or negative integer. This follows from the Gegenbauer sum
rule: [24]

£ /,X,(w)cos/φ? w^p/2-r - (1 -cosφ)1/2, (4.4)

and from the limit behaviour of K0(
w) when w-^0 as:

(4.5)

once one assumes the following rules of dimensionally regularized integration
[25]:

+ 00

ί dvk^(k) = 0 for any polynomial P, v e R+/N , (4.6)
— 00

+ 00

J dv/c f ( k ) = f(Q) + 0(v), v->0, when / is a test function, decreasing fast enough
- oo

for |/c|-> + oo, and well-defined when |fc|->0. (4.7)

The identity (4.3) can be obtained in another, more formal, way. Using the
identity between the functional determinant expressed as a sum of partial waves,
and the original expression, which reads

-ΛoW2 ,=^
'•-l/4)/r5
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(when Θ = Q), one can write in two ways the linear part in υ\ the left-hand side
yields a

and the right-hand side yields a

+ OO fjV~^]ζ +00 +OO

L'-2 ί ——i- Σ ί I(Ke(μr) rv(r)dr.
- oo \2ll) t=-ao 0

Since this equality is true for any function u(r), one obtains (4.3) as an immediate
consequence. This "partial wave expansion" was already used in [5c] and [11],
together with its four-dimensional analogue, to obtain the renormalized effective
action for fermionic models in two and four dimensions. Using now the expression
(4.3), we can rewrite the complete effective action as an integral over dv~2k±:

+ °° dv~2k + °° Έ(f. lr Λ +-°°

(4.8)
We shall now recall another useful sum rule. Using the Gegenbauer sum rule,

together with the following equality

_ COS/φ ,
Σ —τ^-=lnφ, (4.9)

< f > 0 &

we get

Ίκ—!-\
(4.10)

by taking the limit φ-»0. Going back to (4.8), we can take directly the limit v->2 of
this expression, since all functions of fc± in (4.8), are test-functions.

We shall make some comments about this regularization scheme now: As we
have just mentioned, both lnF(/, fej_)/F0(^, k+) and I^(μr)K^(μr) are test-functions,
since they behave as 1/l/cJ when |fcjj goes to + oo. This is evident for l^K€ using its
asymptotic expansion (/-finite, m2 + /ci-» + oo), and also for the Indet, which is
formally obtained as a loop expansion containing powers of (I^K^) multiplied by
potentials (θ2, θ/r, v). However one cannot apply this scheme to the separated

p
terms of the series. Indeed, neither Σ 'n ̂ ~ nor fΣ ^^^1 are defined when fcj_->0.

They can be considered as defined under the integration sign, and when v Φ 2. Let us
explain this more precisely: We have mentioned in Sect. II that the series
Σ lnF/F0(/) was divergent. Rigorously speaking, we assume that these divergent

f
undefined series fΣ IK\ and /Σ ^F/F0\ have been regularized everywhere as

Σ lfKe cos/φ and Σ ln ^ cos/φ, with φ going to zero. In this case, the two
€ e FQ(€ )

series are convergent when φφO, and the subtraction of the "asymptotic"

behaviour given by the series (constant) x Σ * 7 cos/φ (which is also convergent
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+ 00 / 1 \

for φ Φ 0), gives a finite result for both Σ /K — — — and
+ 00 / F TR1\
Σ I In — --- ^—r- (no more "φ" regularization is needed then). All this must

< f = - o o \ ^o 2KI /
+ 00

be done under the J dv ~ 2kL sign so as to use (4.6) and formally be able to speak
p -CO

of ί Σ ln — and ί Σ IfK* as being well defined, since this integration over dv~2kL
^ FQ £

enables one to add any constant or polynomial (in fcj quantity. (This is how one
demonstrates (4.3).) However, once the two series are thus "made convergent," the
use of (4.7) to get the limit v-»2 is forbidden for each separately, since these two

F 1
objects: Σln -- linear part in I// or ΣlfKf — — — - are no more test functions.

€ FQ j 2\f\

The expression (4.8) is the only one that, at the same time, is entirely written in
terms of test functions, and subtracts its divergent term to each of the series

and Σ^^ This mutual subtraction clearly appears when one writes
t

( under ί dv

— GO

-2fe .
ΛxJ

^ +00 +00 J

+ - ί rv(r)dr-2 f lfKf(rλ/m2 + kl) r v(r) dr\. (4.11)
£ o o J

Using the trace identity (TR1) shows that (4.11) and (4.8) are identical. Now both
+ 00

(Indet) and J Ί^K^rv(r)dr in (4.11) are test functions. Moreover this series is
o

convergent: the last two terms give back Eq. (4.10) (when sum is taken over /Φθ
and / = 0) and the first two terms lead to a series behaving asymptotically as I//2

(the term of order 1 exactly cancels in Σ owing to its dependence on the sign of £,
+ 00 ^ + 0

as ± J θ(r)dr.
o

Hence the function under the integral sign in (4.8) is a well-defined test function,
and the limit can be taken. One finally gets

+ 00

S = V

,K0 + 2 Σ ( I e K e - ~ } I rv(r}dr. (4.12)
^>0

We have replaced here lnF(0)/F0(0) by 1/2 ln^^_^=ln^-. This is
^ o W ^ o W ^o(w

justified by noting that F(0) is not a well-defined object, since the Jost function is
F+ for Re/>0 and F' for Re/<0, and the limit |/|->0 is not well controlled (for
interacting solutions). Actually, all through this paper we have used
F(iτ) = F+(iτ + β) or F" (iτ — β), δ->0, according to the side of the imaginary axis on
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which the spectral parameter was to be taken. This prescription was never
ambiguous. Here however it is clear that the full expression of Seff has a manifest
symmetry by exchanging (/-> —/); therefore we understand that InF(O) has the
meaning of 1/2 ln(F+(0)jp~(0)). Now we only have to apply the sum rules and
series equalities so as to get the effective action in terms of the SD. We know that
(3.30),

Σ h
κ± t

The first term cancels between Σ(^>0) an(i Σ(^<0) in (4.12). The following

terms lead, together with the counterterms in (4.12), to the series:

+ 00 / /__/ 9 / \ ±00

Σ

(4.14)

which is obtained as [30]

( Γ(\ _|_^ )\ +00

2ytκ + \n—, ^ 1 + f
T (\ S \ I

*• v^ ^ K)/ ~ 0°

) ( τ ) . (4.15)

Using now the sum rule (4.10) for fc± = 0, together with the trace identity for
+ 00

j r lnmr v(r) dr, (this term arises immediately when inserting (4.10) into
o

(4.12)), we finally get the expression of the effective action as a function (in a
completely closed form) of the scattering data:

? 1 +l +

Seff=
- -

+ 2 Σ
K Φ L

+ 2 Σ ln(44sinπ(^sgnRe/κ))-2 Σ lncx. (4.16)
A: ί:

Note that when θ = 0, one can apply the particular properties of the scattering
data derived in Sect. Ill; and when v is real, one recovers in that way the 1/JV-
effective action of the non-linear sigma model [10]. The clearest property of this
effective action is that it can be written in a closed form as a function of the
scattering data. This feature was always met with whenever we studied 1/JV
expansion of 2-dimensional integrable models, NLσ or Gross-Neveu, or Chiral
Gross-Neveu [27]. However there is a difference here. The CPN_V model is
classically integrable (the field equations are the compatibility conditions of an
associated linear system, see [12]). This integrability is broken at quantum level by
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renormalization effects [18]. However this does not seem to affect the separability
of the 1/JV action. Of course we have restricted ourselves to spherically symmetric
fields; we have already seen effective actions that were separable in terms of the SD
(while their "integrability" properties were not clear), once one had restricted the
study to spherically symmetric fields: in particular, this was the case for the
massless Φ4-model in four dimensions, either classical or 1/JV action, and also for
the 1/JV expansion of massless Φ4 +Yukawa model in four dimensions with a
convenient relation between the coupling constants [5c], but there is a more
immediate reason. The terms inducing the non-conservation, at quantum level, of
the first non-local charge, are obtained at the 1-loop level in the 1/JV perturbation
expansion [18]. Since we are dealing with a "classical" 1/JV-action, finite at tree
level, but without any higher order effects (which should appear with higher orders
of 1/JV), it is normal that we do not see any influence of the non-integrability of the
model on the large-JV effective action. Anyhow we believe that the link between
classical integrability and/or quantum integrability, and separability of effective
action, should be further investigated. In particular, one notes that in the case of
the massive Thirring model, which is an integrable theory [28], the effective action
obtained as a function of the auxiliary field:

+ 00

— oo

does not seem separable in terms of the SD of the associated linear problem (taking
+ 00

Aμ = εμvd
vh(r), and making 1ST in angular momentum, J AμA^d2x does not

appear as a trace identity). ~ °°
Let us go back to our specific problem of instantons. The second property of

this action is that it does not have any (spherically symmetric) instanton, owing to
the (lnCx) dependence in (4.16). Any instanton would have to obey the following
equations:

n\ /

(4.17)
δcκ cκ

δS
= 0, (4.18)

δS =0. (4.19)
δD(τ)

Equation (4.17) implies that an instanton of Seff cannot have a bound-state (fκ, cκ)
since any bound state would lead to a finite value of cκ. Equation (4.18) is then
purposeless and we remain with (4.19), which merely implies (using Seff without
bound states)

V° lnD(τ)

or equivalently:



Inverse Scattering Transformation in Angular Momentum 317

for any τ', which means that:

d Λ F+e~ίΘdr

 Λ F~eίΘdr\ Λ-T- In — =+ -- In -0
dτ \ Fζ F0 J

(from the definition of D(τ) and the dispersion relations (3.13)). Hence the quantity
F+e~5θάr FQ .

δ(τ) = — p — f e . is a constant for all τ, and since <5(τ) = 1 when τ -> + oo, it has a
^0 •* e p+e~Sθdr

trivial value 1 for any τ. But we can write a dispersion relation for - + — and
jp- e/Wr ^0

— — — , using the quantity <5(τ) instead of D(τ). We get

Hence, since δ(τ) is equal to 1, — -+ - is also equal to 1, which means that D(τ) is
^o

equal to 1, and finally the configuration (θ, u) which has no eigenvalues fκ and a
unit continuous SD D(τ) = l, is trivial. Hence no instanton exists with a finite
action (at least spherically symmetric.)

However we do not know whether the 1/JV series of the CPN_ ί model is more
than Borel-summable, or even convergent, as it seemed to be the case in the NLσ
model [10] and the Chiral Gross-Neveu model [11]. Owing to the breaking of
integrability by quantum effects, the S-matrix is not known, and therefore no
indications, even indirect, exist about the 1/JV series. Our general conclusion,
therefore, is that the absence of spherically symmetric instantons is probably a
proof of particular (more than Borel-summable) behaviour of the 1/JV series, but
that since no exact result is available, this conjecture is not supported by other
facts.

However it must be emphasized that the inverse scattering method exposed in
this paper (and also in all the other papers dealing with this subject, see [22]) can be
used for other purposes than studying saddle-points of effective actions; in
particular it is possible to use these methods for estimating the effective actions of
background field configurations, thereby studying the structure of non-trivial
vacua (see for instance [16]). In the particular case of CPN-l9 it should be possible
to study the confinement of the field (Aμ) by computing directly by 1ST the action
of a non-zero-^4μ configuration (for instance a soliton-like (θ, t;) configuration with
trivial continuum contribution D(τ) = 1, that can be obtained by explicitly solving
the GeΓfand-Levitan equation with a degenerate kernel), and studying it when its
range should go to infinity: therefore 1ST would provide us with a method for
exact computation of the 1/JV action for these "unconfined" configurations; we
could in this way study how exactly they are suppressed in the functional integral.
We shall leave this problem open here.

This type of study could also be extended to abelian, and possibly non-abelian
gauge theories, but we have not formulated until now the proper inverse-scattering
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problem, even for maximally symmetric gauge fields. In fact, with massless vector
fields in four dimensions, it should be necessary to introduce two independent,
angular-momentum-like spectral parameters (see [29]). This also remains a
completely open problem.

Acknowledgements. I wish to thank H. de Vega and J. M. Maillet for useful discussions.

References

1. a) See for example, Chadan, K., Sabatier, P .C.: Inverse problem in quantum scattering theory.
Berlin, Heidelberg, New York: Springer 1977
b) Vega, H. de: Large orders in the 1/N perturbation theory by inverse scattering in one
dimension. Commun. Math. Phys. 70, 29 (1979)
c) Gel'fand, I.M., Levitan, B.M.: Am. Math. Soc. Transl. 1, 253 (1955)

2. Ablowitz, M., Kaup, D., Newell, A, Segur, H.: Stud. Appl. Math. 53, 249 (1974)
3. Faddeev, L.D.: Sov. Sci. Rev. Cl, 107 (1980)
4. Coleman, S.: "1/JV", proceedings of the international School of Subnuclear Physics, Erice

1979, Zichichi, A. (ed.). New York: Plenum 1982
5. a) Guttierez, W.R.: Nucl. Phys. B176, 185 (1980)

b) Amati, D., Veneziano, G.: Nucl. Phys. B204, 451 (1982)
c) Avan, J., de Vega, H.: Nucl. Phys. B269, 621 (1986)

6. a) Lipatov, L.N.: JETP Lett. 25, 104 (1977)
b) Zinn-Justin, J.: Phys. Rep. 70, 109 (1981)

7. a) Coleman, S.: Phys. Rev. D15, 2929 (1977)
b) Callan, C, Coleman, S.: Phys. Rev. D16, 1762 (1977)
c) Schulman, L.S.: In: Techniques and application of path integration. New York: Wiley 1982

8. Buslaev, V.S.: Topics Math. Phys. Vol. 1, p. 69, Birman, M.Sh. (ed.). New York: Consultants
Bureau 1967

9. Vega, H. de: The inverse scattering transformation in the angular momentum plane.
Commun. Math. Phys. 81, 313 (1981)

10. a) Vega, H. de: Phys. Rev. Letters 49, 3 (1982)
b) Avan, J, Vega, H. de: Phys. Rev. D 29, 2891 (1984)
c) Avan, J., Vega, H. de: Phys. Rev. D 29, 2904 (1984)

11. Avan, J, Vega, H. de: Commun. Math. Phys. 102, 463 (1985)
12. Eichenherr, H.: Nucl. Phys. B 146, 223 (1978)
13. d'Adda, A, Lϋscher, M., di Vecchia, P.: Nucl. Phys. B 146, 63 (1979)
14. Weiss, G., Scharf, H.: Helv. Phys. Acta 44, 910 (1971)
15. Degasperis, A.: J. Math. Phys. 11, 551 (1970)
16. Vega, H. de, Schaposnik, F.: Phys. Rev. D 26, 2814 (1982)
17. Vega, H. de: Phys. Lett. 98B, 280 (1981)
18. Abdalla, E, Abdalla, M.C.B, Gomes, M.: Phys. Rev. D23, 1800 (1981)
19. Witten, E.: Nucl. Phys. B 149, 285 (1979)
20. Golo, V.L., Perelomov, A.M.: Phys. Lett. B 79, 112 (1978)
21. Gross, D.J., Neveu, A.: Phys. Rev. D 10, 3235 (1974)
22. Avan, J.: Inverse scattering transform in angular momentum. In: Non-linear equations in

quantum field theory. Vega, H. de, Sanchez, N. (eds.). Lecture Notes in Physics, Vol. 246.
Berlin, Heidelberg, New York: Springer 1986

23. Bardeen, W.A., Lee, B.W, Schrock, R.E.: Phys. Rev. D 14, 985 (1976)
24. Magnus, W., Oberhettinger, F., Soni, R.: Formulas and theorems for the Special Functions of

Physics. Berlin, Heidelberg, New York: Springer 1966, p. 107
25. tΉooft, G., Veltman, M.: Nucl. Phys. B 44, 89 (1972)



Inverse Scattering Transformation in Angular Momentum 319

26. For references on NLσ models and integrability, see:
• Vega, H. de, Eichenherr, H., Maillet, J.M.: Classical and quantum algebras of non-local
charges in σ models. Commun. Math. Phys. 92, 507 (1984)
• Eichenherr, H.: In: Tvarmine Lectures 1981, Hietarinta, J., Montonen, K. (eds.). Lecture
Notes on Physics, Vol. 191. Berlin, Heidelberg, New York: Springer 1982

27. Neveu, A., Papanicolaou, H.: Integrability of the classical [vwJl an<^ Cvwdl ~~ [WsVdi
interactions. Commun. Math. Phys. 58, 31 (1978)
• Vega, H. de, Eichenherr, H., Maillet, J.M.: Nucl. Phys. B 240 [FS 12], 377 (1984) and
references therein

28. Polyakov, A., Wiegmann, P.: Phys. Lett. 131 B, 121 (1983) and Phys. Lett. 141 B, 223 (1984)
29. Bogomol'nyi, E.B, Kubishin, Y.: Sov. Nucl. Phys. 34, 853 (1981)
30. Gradhzteyn, I.S., Ryzhik, I.M.: Tables of integrals, series and products. New York: Academic

Press 1980

Communicated by A. Jaίfe

Received January 8, 1986






