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Abstract. Under suitable conditions it is shown how to change the velocity of a
C2 Axiom A attractor so that the Sinai-Ruelle-Bowen measure coincides with
the measure of maximal entropy. These measures are obtained as limits of
certain closed orbital measures.

There are two invariant (probability) measures which come to the fore in the study
of C2 hyperbolic attractors (and no doubt in the study of dynamical systems
satisfying less stringent hyperbolic conditions). They are (i) the measure of
maximal entropy and (ii) the Sinai-Ruelle-Bowen (S.R.B.) measure, which, in case
the flow preserves a smooth measure is this measure. There are many examples
where these two measures differ and many where they coincide.

The aim of this note is to show that it is possible, under suitable conditions, to
change the velocity so that the corresponding measures for the new flow coincide.
This change of velocity is brought about by the multiplication of speeds by a
function which is essentially unique. In other words the "reason" for the two
canonical measures differing appears to be that the system is running at the wrong
speed and that there is a canonical speed (up to constant scalar factors) for the 1
dimensional foliation of the flow.

A secondary purpose of this note is to describe the S.R.B. measure from an
internal point of view as opposed to the usual external definition in terms of the
behaviour of (Lebesgue) almost all points. Our description is in terms of weighted
orbital measures. Unweighted orbital measures converge weakly to the measure of
maximal entropy according to a theorem of Bowen [4] whereas weighted orbital
measures converge to the S.R.B. measure (for appropriate weights, of course). The
latter fact has been observed and conjectured for certain systems by Hannay and
Ozorio De Almeida [6].

In Sect. 5 we discuss, briefly, the Ruelle zeta function, which captures periodic
orbital data and is an invariant of topological conjugacy. In contrast to this
function we introduce (for C2 hyperbolic attractors) a different zeta function which
is invariant under C1 velocity changes (but not topological conjugacy). Under
appropriate conditions the synchronisation mentioned above yields a flow for
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which the two zeta functions coincide. The internal definition of the S.R.B. measure
results from certain analytic properties of another zeta function.

We conclude with an account of the proof, due to Anosov and Sinai [3], that a
smooth change in the velocity of an Anosov flow results in an Anosov flow. This is
needed for our main result.

1. Transforms of Invariants

We begin by making some elementary observations of a topological dynamical
nature.

Let φt be a continuous flow on the compact metric space Ω. If I is a strictly
positive continuous function defined on Ω, we can define a new flow ψt by
multiplying speeds by /. The new flow has exactly the same oriented orbits as the

ί
old flow. To do this define k(x) = l(x)~ *, fc(x, ί) — ί k(φsx)ds, and let l(x, ί) be the

o
inverse self-homeomorphism of R, for each x, i.e. t = k(x,l(x,i)) = l(x,k(x,t)).
Next one checks that ψt(x) = φi(X,t)(χ) *s a fl°w? which amounts to showing ψs(ψt(x))
= ψs+t(x) or φί(φtXts)(φi(Xtt)(x)) = φi(XtS+t)(x) or l(ψtX>s) + l(x>i) = l(x,s + i).

The latter condition can be expressed by saying that / is a ψ 1 -cocylce. Note also
that k is a φ 1-cocyle and φt(x) = Ψk(χ,t)(x) Furthermore, / can be continuously
differentiated along flow lines and

I ( x 9 t ) = l l ( \ p a x ) d s .
o

Ergodic Measures. If μ is an ergodic φ invariant probability measure, then μk

= k(x)μ/$k(x)dμ is an ergodic φ invariant probability measure.

Cocycles. If α(x, t)isaφ 1-cocycle, then /?(x, ί) = α(x, /(x, ί)) is a φ 1-cocycle. When
α is a φ coboundary (i.e. α(x, i) = y(φtx) — y(x) for some continuous y) then β(x, f)

y(χ) so t^t β is a ψ coboundary.

Periodic Orbits. If τ is a φ periodic orbit of φ period λφ(τ\ then τ is a ip periodic orbit
of ψ period λψ(r) = fc(x, λφ(τ)) for x e τ.

Equivalently λφ(τ) = ί(x, Aφ(τ) for x e τ. The φ invariant measure of total mass
λφ(τ) concentrated on τ is denoted mf and m^ = km^.

Winding Numbers. Let H1(Ω,%) be the first cohomology group, interpreted as the
Bruschlinsky group. Elements oϊHl(Ω, Έ) are continuous maps from Ω to K, the
unit circle, modulo those which are homotopically constant. Elements of £Γ1(Ω, Έ)
can be represented by continuous maps which are continuously differentiable with
respect to φ, where

If μ is a finite φ invariant Borel measure, define

= (l/2πί)
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This defines a homomorphism of H\Ω, Z) into IR (cf. [12]). The range of W* is
called the winding numbers group with respect to μ. Since fφ(x)=fφ(x) l(x), we
have W^μ—W^. Notice that the range of W£ is a subgroup of Z when μ is the φ
invariant measure mf .

Entropy. Let h(φ, μ) = h(φ^ μ) denote the entropy of the flow φ with respect to the
ergodic φ invariant probability measure μ. Using a result of Abramov's (cf. [1]) one
can show that

(Entropy is always defined with respect to probability measures.)

2. Hyperbolic Attractors

Let φt be a C1 flow defined on the compact Riemannian manifold M and let Ω C M
be a φ invariant closed set with the following properties:

(i) φ\Ω is topologically transitive,
(ii) the periodic points of Ω are dense in Ω and there are no fixed points in Ω,

(iii) there exists an open set U^Ω such that Π φtU = Ω,

(iv) φ\Ω is hyperbolic, i.e. TΩM = EU + ES + E° (continuous splitting) where
||Dφ tt?||^Ce-c>||,whenι;eE*, ί^O, \\Dφ.tv\\ ^CέΓcί||u||, when veEu

x, ί^O, E°
is the one dimensional tangent space defined by the flow at x.

(v) Ω is non-trivial, i.e. it is not a topological circle.
Under these conditions φ\Ω is called a hyperbolic attractor. We shall impose

stronger differentiability conditions as we need them. A flow which satisfies (iv) for
Ω = M is called an Anosov flow. (In this definition the other conditions above are
not assumed.)

When φ is C2 it is known that the hyperbolic splitting is Holder continuous so

that Dφt\E" and lim(l/ί) log| Jac(DφJE")| = φu(x) are Holder continuous, where
f-»0

the Jacobian is defined with respect to the given Riemann metric (cf. [2, 5]). An
improvement in the smoothness of φ does not, in general, lead to an improvement
in the smoothness of φ". If we assume that φ is Cn(n ̂  2) and also assume that the
hyperbolic splitting is C""1, then φu(x) is C""1.

Proposition 1 [13, 5]. When φisaC2 hyperbolic attractor and f is continuous, then
for almost all x e U (with respect to the Riemann volume)

lim (l/T)]f(Ψtx)dt=ίfdmφ9
T^oo 0

where mφ is the unique equilibrium state defined by —φu.

The measure mφ is called the Sinai-Ruelle-Bowen (S.R.B.) measure.

Corollary. If φ is a C2 hyperbolic attractor which preserves a probability measure m
which is absolutely continuous with respect to the Riemann volume on U (i.e. m is
smooth on U) then m = mφ.
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This is an immediate consequence of the proposition together with Birkhoff s
ergodic theorem.

Remark. The measure mφ is independent of the Riemann metric chosen for M. This
is deduced from the fact that a change of metric leads to a change in

φu(x,t) = I φ»(φsx)ds = log\]3ic(Dφt\EΪ)\
o

by the addition of a coboundary.
Now let us change the velocity of φ\Ω by using a strictly positive / e C(Ω) as in

Sect. 1, to obtain the flow ip on Ω. In general ψ will no longer be a smooth flow, but
it will be when Ω = M and / i s C1. In any case we have

Corollary. If Ω = M (so that φ is Anosov) and /e C(M), then for almost allxeM

lim (ί/T)]f(Ψtx)dt=ίfkdmφ/ίkdmφ.
Γ->oo o

It is therefore reasonable to refer to the normalised measure mk

φ as the S.R.B.
measure for ψ. A further reason is that when / is C2, φ" is well defined and mφ = m* ,
as we shall see, from the fact that ψ is a C2 hyperbolic attractor.

Theorem 1 (Anosov and Sinai [3]). // φ is a C1 Anosov flow and ψ is obtained from
φ by the multiplication of speeds by a positive C1 function /, then \p is Anosov.

In addition we have

\pu(x, s) - φu(x, l(x, s)) + #(φsx) - g(x)

with g continuous.

The last statement is included for completeness. Anosov and Sinai (see Sect. 5)
prove their result by constructing a hyperbolic splitting TM = FU + FS + F° for Dψs

as follows:
For a suitable real valued continuous function z(x,v), veEu

x,

Fl = {υ + z(x,υ)Xx: X is the vector field defining φ} .

The function z(x, ι;) is linear in the second variable. Fs is defined in a similar way.
Moreover

Dψs(v + z(x, u)JQ - Dφ.i; + z(φtx, Dφtv)Xφt(x) ,

where ψsx = φtx, i.e. ί = /(x,s).
Now consider the maps of linear spaces

given by

v-+v 4- z(x, v) Xx *—+ Dφtv -f z(φtx, Dφtv)Xφt(x}-*Dφtv

with Jacobians G(x), Det(Dt/yc), G(φtx)~1, so that

Det(Dφtx) = G(x)I
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and with g(x) = \og\G(x)\ we have

φu(x, f) = ψu(x, s) + g(x) - g(φtx) or ψu(x, s) = φu(x, l(x, s)) + g(ιpsx) -g(x).

An immediate consequence is that ψu(τ) = φu(τ\ where φu(τ) = φu(x, λφ(τ)), xeτ.
In other words

Proposition 2. Each φ"(τ), τ a closed orbit, is an invariant of velocity change by C1

multiplication when φ is C2.

3. Equidistribution of Closed Orbits and Weighted Closed Orbits

We shall need the following equidistribution theorems. The first one, which is due
to Bowen [4], is unweighted, whereas the second one is weighted by Ju

τ = eφu(τ\

Proposition 3. // φisC1 then the measure μφ of maximum entropy is the weak limit of
the orbital measures Στm%/Στλφ(τ), where the summations are over closed orbits with
periods λφ(τ) between x and x + ε and x-»oo. (When φ is not topologically weak-
mixing λφ(τ) is restricted to a closed discrete subgroup of RJ

Theorem 2. When φ is a C2 attractor the S.R.B. measure mφ is the weak limit of the
weighted orbital measures

The proof of Theorem 2 is similar to the proof of Theorem 7 as presented in [9].
We shall comment further on the proof of this theorem in Sect. 5.

Remark. We have chosen to concentrate on two canonical measures - the
equilibrium states of 0 and — φu, respectively. In fact, for every t e IR we might have
considered the equilibrium state of tφu. The method sketched in Sect. 5 provides
appropriately weighted orbital measures which converge weakly to this measure.

Problem. Is there a weighted version of Proposition 1 where the limiting integral is
with respect to the measure of maximal entropy?

4. Synchronisation

Now let us suppose that φ is a C2 hyperbolic attractor with Ω = M, and in addition
that the sub-bundle Eu is C1. Then φu is C1 so that if we define l(x) = K/φu(x),
k(x) = φu(x)/K (K a positive constant) then ψ is also C1 and

ψu(x, t) = φu(x, l(x, 0 + g(ιptx) - g(x) = Kk(x, l(

0(*)

Hence φ"(τ) = logJ" = K/lφ(τ), from which we conclude, since

that

Theorem 3. Under the above conditions mψ = μψ.
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A more direct proof, perhaps, is given by noting that — ιpu and — K have the
same equilibrium states.

Moreover, there is only "one" C1 ψ in the velocity class of φ such that mψ = μψ.
By this we mean the following:
We know that mψ = μψ when ιpu(x, i) = Kt and then the topological entropy of ψ

is K. For this fixed K if ρ has topological entropy K and mρ = μρ then the cocycle
effecting a change from ψtoρ has the form /(x, i) = t + g(ρtx) — g(x). However, ψ
and ρ are topologically conjugate (as well as related by a velocity change) as is seen
from the equation ψj(θx) = θ(ρtx)9 when θ(x) = ψ-g(x)(x).

Remark. The C1 condition we have imposed on Eu is a significant strengthening of
the automatic Holder condition associated with C2 Anosov flows. As to its
commonness the situation is not at all well understood. In [8] Hirsch, Pugh and
Shub show that a C2 Anosov flow such that dimEu = 1, dim£s ̂  2 has the property
that Eu is C1, assuming that the flow preserves a smooth volume. Another class of
examples where Eu is C1 is provided by the prototypical geodesic flows on surfaces
of variable negative curvature. This is proved in [7] where it is also proved that if
the curvature of a compact Riemannian manifold is negative and "absolutely
1/4-pinched" then the Anosov splitting for the geodesic flow is C1. On the other
hand Plante [11] has shown that small smooth perturbations of geodesic flows on
surfaces of constant negative curvature generically (among those preserving a fixed
volume) cannot have C1 splittings. In a similar vein (and surprisingly in view of the
construction of Anosov and Sinai, cf. Sect. 6) a generic smooth velocity change of a
constant suspension of an Anosov diffeomorphism of the 2 torus, cannot have both
sub-bundles E", Es satisfying the C1 condition. There seems to be at least some
possibility that the difficulty in achieving our condition is peculiar to low
dimensional flows.

A further point to note is that we have imposed the C1 condition on Eu in order
that the velocity changed flow (after synchronisation) remains a C1 Anosov flow.
Had we relinquished this requirement we would have been forced to consider
Holder flows. The essential content of this paper would remain intact had we
decided to allow such flows into our considerations.

Let us assume that φ is C2 so that φu is Holder, and let l(x) = K/φu(x),
k(x) = φu(x)/K, where K is a positive constant. Then t/;ί(x) = φί(JC>ί)(x) is a well
defined Holder flow with the same oriented orbits as φ. The S.R.B. measure
mψ = m^ is well defined and it is easy to see that mψ = μψ, the measure of maximal
entropy for ψ. Indeed, by Abramov's formula we have to show that

h(ιp9 mk

φ) = h(φ, mφ)/\ kdmφ ̂  h(ψ9 p
k

φ) = h(φ, pφ)/$ kdpφ

for all ergodic φ invariant probabilities pφ9 or equivalently that

(h(φ9 mφ) - ί φ"dmφ)/ϊ φudmφ ̂  (h(φ, Pφ) - J φudpφ)/i φudpφ.

However, the (numerator of the) left-hand side of this inequality is zero since it
represents the pressure of - φ" and mφ is the equilibrium state for - φ". Hence the
inequality follows from the variational principle.

I am grateful to Mark Pollicott for discussions concerning these problems and
to the referee for asking for an elaboration of our C1 condition.
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5. Zeta Functions

The Ruelle zeta function of φ is defined as

where the product is over all closed orbits τ and where h is the topological entropy
of φ\Ω. For φ restricted to a basic set Ω of an Axiom A flow (in particular for φ
restricted to a hyperbolic attractor) ζφ is non-zero and analytic for 91 (s) > 1 . When
φ\Ω is topologically weak-mixing ζφ has a non-zero analytic extension to 9ϊ(s) = 1
except for a simple pole at 5 = 1 (cf. [10]). It is clear that ζφ is an invariant of
topological conjugacy but it is not invariant under velocity changes.

Here we introduce, what might be called a differential zeta function. If φ is a C2

hyperbolic attractor with Ω = M we define

It can be shown, in much the same way as for the corresponding result for ζφ, that
ζu

φ has a non-zero analytic extension to 9l(s) ̂  1 except for a simple pole at s = 1 ,
(when the changed flow φ, discussed in Sect. 4, is topologically weak-mixing i.e.,
when {φu(x, λφ(τ) : τ is a closed orbit} does not consist of integral multiples of a fixed
number.) Since J" is invariant under C1 changes in velocity, it is clear that ζu

φ is an
invariant of such velocity changes. However, ζu

φ is not an invariant of topological
conjugacy - unless the conjugacy is smooth.

When the flow φ is synchronised, so that φu(x, t) = ht + g(φtx) — g(x), the zeta
functions ζφ, ζu

φ coincide. This is the case, for example, with a geodesic flow on a
surface of constant negative curvature. One wonders whether synchronisation has
something to do with the very desirable features of the zeta function of such a
geodesic flow?

The proof of Theorem 2 is based on another zeta function.
Let φ\Ω be a C2 topologically weak-mixing attractor and let / be a C1 function

defined on M.
Define (for each ε > 0)

where λf(τ)= $f(φtx)dt, xeτ.
τ

The proof of the following theorem is similar to the proof of Theorem 3 in [9].

Theorem 4. For each s0eC with 9t(s0)^l, s 0 φl, C(s, z) is non-zero and analytic
(or has such an extension) in a neighbourhood of (s0, 0). There is an analytic
function Q(s, z) such that

(i) £(s,z)(l — eQ(s'z}) is non-zero and analytic in a neighbourhood of (1, 0),
(ii) β(l,0) = 0, β1(l,0)=J/dmΦ,β2(l,0) = fi.

By taking logarithmic derivatives we obtain

n=l
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Again, proceeding as in [9], we obtain

Theorem 5.

Σλφ(τ}^xλf(τ) exp( - φ\τ) + ελφ(τ)) ~ f fdm9(<f*/s)

as x->>oo.

An immediate consequence is that

Σ λf(τ) (J«) - 1 *«λ*<τ) / Σ λφ(τ) (J«) ~ 1 e*λ^

converges weakly to \fάmφ for every ε>0. The same is therefore true with ε = 0,
and hence Theorem 2 follows.

6. The Anosov-Sinai Theorem

We take the liberty of presenting a slightly modified account of the proof, due to
Anosov and Sinai of Theorem 1.

Following the notation already established we suppose that φ is a C1 Anosov
flow, that I is a strictly positive C1 function and that fc(x) = ί(x)~1.

The flow obtained from φ by multiplying speeds by / is denoted ψ and is also a
C1 flow.

For a fixed x let t = /(x, 5) and 5 = /c(x, t) so that ψ>s(x) = φt(x) We find a function
z(x, (^) defined on the tangent bundle of M such that z(x, •) is linear and

Dφs(£ + z(x, ξ)Xx) = Dφ,£ + z(φΛ D<ptί)*^ , (6.1)

when ^ is a tangent vector at x with £ e E* . To find such a function we apply the left-
hand side derivation to a smooth function / to obtain (ξ + z ( x 9 ξ ) X x ) ( f ° Ψ s )
When 5 = 0 we obtain (ξ+z(x, ξ)Xx)f and the difference is

,-/). (6.2)

If we consider the right-hand side of (6.1) instead, we obtain

ξ(f° <P, -/) + z(%*, DΨ& xφtx(f)-z(χ> ®x*(Γ) (6-3)
Dividing the supposed equal quantities (6.2), (6.3) by s = fc(x, ί) and letting 5, t

»0 we have

where z' denotes differentiation with respect to the flow (x, ξ)->(φtx, dφtξ). Hence

(ξ + zX) (l(Xf)) + l(ξ + zX) (Xf) = h'X(f) + l(ξ + zX) (Xf) ,

To solve this equation, and find the required function z, we consider the
homogeneous version W'(x,ξ)=W(x,ξ)k(x)Xx(Γ). Clearly l(φtx) is a solution,
which suggests, by "variation of constants", that
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is an appropriate solution of (6.4) for some function C(t). We consider, therefore,

The function C(ί) should therefore satisfy

C'(ί) = ξ(l)/l2 , Le. C(ί) - J (DφBί)//(/ o φJ2du + C(0) ,
o

which depends linearly on ξ. By requiring that C(oo) = 0, we have

00 00

z(x,ξ)= -l(x) ί (Dφuξ)(l)/l(φux)2)du = l(x) J ξ(/co<pu)dM,

which converges since ξ e Es

x. The function z is clearly continuous and we define
F°x = {ξ + z(x,ξ)Xx:ξεE>x}. By (6.1) we have DψsF

s

x = Fs

ψs(x), i.e. DysF
s = Fs.

The sub-bundle F" is defined in a similar way and F° = E°, by definition. It is
not difficult to check that

is a hyperbolic splitting for ψ, so that Theorem 1 is established.
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