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Abstract. This paper is devoted to the study of the radiative transfer equations :

U+ J σ
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First, we prove a global existence theorem, which allows a blow-up of the
opacity σv(<f) when <ί-»0. Thus, it extends Mercier's previous result [13]. This
proof relies mainly on a nonlinear version of Hille-Yosida theorem: see
Crandall-Ligett [9].

Then, we prove the uniqueness of the semigroup solving (TR), and some
regularity results (in the class of functions with bounded variation).

Finally, we prove the convergence of some splitting algorithms associated
to (TR).

Introduction

We are interested in a system of two nonlinear PDEs which can be actually
regarded as a perturbation of the well-known transport equation. These equations
are classical in astrophysics and represent the evolution of a stellar atmosphere in
the absence of hydrodynamical motion and heat conduction. The photons in the
medium will be ruled by a classical transport equation involving terms describing
emission, true absorption and Thomson scattering. On the other hand we shall
assume local thermodynamical equilibrium for the matter. It means that a local
temperature T [and energy <ί(T)] can be defined at each point of the medium.
Moreover, the emission coefficient at each point is proportional to the true
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absorption coefficient through the following factor (Planck's function):

This assumption enforces the emission and true absorption terms to be coupled in
an additional thermodynamical equation (energy balance), giving rise to a
perturbation of the kinetic equation. The scattering will be assumed to be
isotropic, and conservative. More details about the physical framework of this
work can be found in [2, 8, 15]. In the sequel we assume that $(T) is proportional
to T, so we write Bv(δ) instead of BV(T)2.

Now, we present the system describing this phenomena. We are given a
smooth convex open subset X of RΛΓ+ 1. For each point x e dX, n(x) will denote the
unit outward normal to dX at point x. The unknowns of our problem are:
• J(x, ί, Ω, v), where x e X, t ̂  0, Ω e SN, v e Rv

+ * , which represents the density of
photons located at x at time f, with frequency v and velocity with direction Ω,

• <?(x, f), where x eX, ί^O, which is the material energy at position x at time ί.
Now, the radiative transfer equations are written as:

¥+ if [ίvW-σv(<f)/]<5βdv = 0, (0.1)

qy(g) = m 9 (0.2)

/(x, 0, Ω, v) = /0(x, Ω, v), ί (x, 0) = ί 0(x) , (0.3)

Vχs")-=A (° 4)

In the monodimensional case (JV = 0) SN is replaced by [ — 1, 1] and Ω by μ (the
incidence parameter). The rest remains unchanged.

The function σv($) is the opacity of the matter, usually very complicated: it
contains all the difficulties from quantum mechanics for this problem. In the
physical problem, qv(£) = σvBv($\ where Bv($) is Planck's function (as defined
above). Here, we will only need few assumptions on σv and Bv (see Sect. I). 3) is an
integral operator describing the scattering, and may be written:

0 /(x, Ω, v) - j κd(Ω, ΩO (/(ΩO - /(Ω)) δΩ' . (0.5)
SN

Finally, (5Ω is the normalized measure on SN

δΩ = dΩ/\SN\, (0.6)

and we have denoted

SN\Ω n(x)<V}. (0.7)

1 c denotes the velocity of the light, h the Planck's constant, and k the Boltzmann constant
2 However, when /(T) is an increasing smooth function of T, the same methods may be applied [if
the assumptions (HI), (H2)... (H9) are satisfied]
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The main purpose of this paper is to study the Cauchy problem (0.1)-(0.4). The
existence result (of Sect. II) relies on Crandall-Ligett generation theorem [9].
Indeed, we treat the general case where σv(δ) may blow up when <f->0. Thus
(0.1)-(0.4) are no longer a Lipschitz perturbation of the transport equation.
Nevertheless, Crandall-Ligett theorem asserts the existence of a generalized
solution of (0.1)-(0.4), even knowing very few assumptions on σv(δ) and very few a
priori estimates on the solution. The counterpart of this general theory is that the
equations hold only in a semigroup sense and that it does not provide uniqueness
results. To prevent these difficulties, we prove that, for uniformly positive initial
data $o, the generalized solution is classical. The uniqueness of the semigroup
easily follows from this remark.

Then we are able to prove the regularity of the generalized solutions in the
singular case (in the class of functions with bounded variation).

Finally, we prove the convergence of some splitting algorithms associated with
(0.1)-(0.4). This result relies on a splitting formula, well-known for Hubert spaces,
that we adapt to the case of general Banach spaces.

Much of this work is inspired by Mercier [13] (at least, Sects. II and V). The
equations and notations are close to [13]. Our idea was to extend [13] to the case
of initially cold area (i.e. $Q ̂  0 instead of <ί 0 ̂  α > 0) and to deal with very general
opacities σv(S), in order to fit with the physical difficulties.

This paper is organized as follows: the assumptions and main results are stated
in Sect. I. We give also heuristic derivations for the theorems. Section II is devoted
to the existence proof, and the maximum principle. It consists in proving the
maximal accretiveness for the operator associated to (0.1)-(0.4). In Sect. Ill, we
prove that the generalized solution of (0.1)-(0.4) is classical when the initial energy
$Q is uniformly positive. We deduce from this the uniqueness of the semigroup
solving (0.1)-(0.4).

In Sect. IV, we shall prove a BV regularity theorem when the temperature is
allowed to vanish. Finally Sect. V is devoted to the study of some splitting
algorithms for (0.1)-(0.4): we prove their convergence.

I. Assumptions and Main Results

The purpose of the present section is to state precisely the assumptions we need on
the parameters of (0.1)-(0.4). We also introduce some notations and finally give
some heuristic proofs for the main results of this paper.

1. Assumptions

One of the physical constraints about the opacity σv(<?) is that it may blow up
when <ί-»0+. Moreover, the frequency dependance of σv(<ί) is not known very
accurately. Therefore, it is rather hopeless to look for some good mathematical
models for σv(<f). Thus, we work with some very general assumptions on the
opacity, coping with the fact that lim σv($)= + oo.
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We assume that:
(HI) σv(<f), gv(<?) are positive, defined on (R+*)2, and, for a.e. v>0, belong to

(H2) for a.e. v>0, (f->σv(^) [respectively <?->gv(<^)] is nonincreasing (respec-
tively nondecreasing);
(H3) for a.e. v>0, 4v(<f)->0 when <?-+0+;

(H4) MS > 0, K > 0, σv(f) BV(K) e Ll(^ *), where £v - —
σv

(H 5) the operator S -*qv(£) is continuous from L1 (X) + to L1 (X x S* x Rv

+ *) + 3

(H6) κd(ί2, ΩO e L°°(SN x SN)+, is symmetric, and ] κd(Ω, Ω") dQ'= 1, MΩ e SN;
SN

(H7) V(T > 0, σjf ) e L°°(RV

+ *);
(H8) V0<α<fc, Sup |σ;(<ί)Bv(<f)|< +00;

v > 0

(H 9) VO < a < b, Sup \qv(f)\ < + oo
v > 0

^e]fl,b[

Formally, we are given a function h = h(x, Ω, v) defined on (δX x SN)_ x
(the incoming density at the boundary) which satisfies:

0^/ι(x,ί2,v)^£v(M) (1.1)

for some positive constant M. We shall need some regularity assumptions on h for
the BV regularity theorem. This point will be discussed in Sect. IV.

Remark. It would be enough to assume that hε!}((dX xSN)_ xR v

+*;
Ω - n(x) dΓδΩdv)+ for the existence theorem. However, the bound (1.1) will be of
constant use later (see Cessenat [6 and 7] for a complete treatment of the boundary
conditions and trace theorems in transport theory).

2. Setting of the Problem

Let us begin with an energy estimate for the problem (0.1)-(0.4); by integrating
(0.1) on X, (0.2) on X x SN x Rv

+*, by adding up the obtained equalities we get:

^-($<$dx+WldxδΩdv)^- f f f Ω n(x)hdΓ(x}δΩdv<oo (1.2)
dt (dXxSN)-*-R +

[because $ 3HδΩ = 0, κd being symmetric according to (H6)]. The a priori estimate
(1 .2) leads us to the following abstract formulation of (0.1)-(0.4). According to (1 .2),
(δ, I) belongs to the Banach space: E = L\X} xL\XxSNx Rv

+*).
Then, we define on E an operator Q by:

{(dχxsN)_=h, and
i(XxSNxtt^*)}9

taking as a convention 0 σv(0) = 0.

3 If E is a real ordered vector space, E+ denotes its positive cone
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Now, (0.1)-(0.4) can be written as the Cauchy problem

(1-3)

[the boundary condition being contained in the definition of D(β)].

3. Main Results

Written as (1.3), Eqs. (0.1)-(0.4) allow a treatment by the nonlinear version of
Hille-Yosida theory (cf. Crandall and Ligett [9]). Mercier ([13, 14]) has already
noticed that some kind of truncation of the operator Q is accretive. Namely, we are
going to prove that β is, in some sense, m-accretive (cf. part II for a precise
statement). Thus, we have

Theorem A (Global existence). Under assumptions (H1)-(H6), there exists a
strongly continuous contraction semigroup onE+, denoted by exp (— tQ) and defined
as:

ί t \~n

exp(-ίβ) Z = lim /+-β Z, VZe£ + , ί^O. (1.4)
«-> + oo y n J

From now on, (δ, I) (t) = exρ( - tQ) - (<f 0, J0) [with t ̂  0 and (δ& /0) e £+] will
be called the generalized solution of (0.1)-(0.4). The main difficulty is to
understand in which sense Eqs. (0.1)-(0.2) hold for generalized solutions - we do
not even know whether they hold in 2)'. However, we can state that the generalized
solution is a classical solution when <?0 is uniformly positive. The first step in this
direction is the following

Theorem B (Maximum and Minimum Principle). Let (<?0,/0)e£+ such that:
:^0 such that: h^Bv(K), I0<,BV(K), and S'Q^K (respectively 3/c^O such that

Then, for each ί^O, (^,/)(0 = exp(-ίβ). (<?0Jo) satisfies: δ(t)^K and
(respectively ^(f) ^ k and l(t) ^ Bv(k)).

Theorem B can be derived from Eqs. (0.1)-(0.4) by a straightforward compu-
tation. We notice that:

ίί σv(#) [Bv((f)-/] sgn+((ί-K) δΩdv
^-K) δΩdv

= f J σv(£) ίBv(<ί)-Bv(K)']+δΩdv+ JJ σv(<?) [5V(K)-/] sgn^ \δ - K)δΩ dv .
(1.5)

In the same way, we have

f J σv(#) U-BVW] sgn+(/-5v(K)) δΩdv= ίί σv(<f) [/-5V(K)]+ δΩdv

+ ίί σtf) [_B,(K)-Bv(S}-\ sgn+(/-βv(X)) δΩdv . (1.6)
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By adding (1.5) to (1.6) we obtain:

Π σv(<f) LB^-n sgκ+(£-K)δΩdv

+ ίί σv(δ) [/-£„(*)] sgn+(/-βv(K))δΩdv

- (Bv(#) - BV(K)) sgn+(7-5V(K))] δO rfv

(I-Bv(K))sgn + (g-K)-]δΩdv^(). (1.7)

The same analysis on the scattering term is standard, κd being symmetric and
positive. In (1.5)-(l .7) we have only used the fact that Bv is nondecreasing, and that
σv is positive.

Now, we multiply (0.1) by sgn+(<ί — K) and we integrate it on X: we multiply
(0.2) by sgn+(I-Bv(K)) and we integrate it on Z x S* x Rv

+*. We add the two
obtained equalities, and using (1.7) and (1.8), we obtain:

Γdx+ JJf (I-Bv(K)ΓdxδΩdv]
X X S ^ X ] R + * )

^- i f f (h-Bv(K))+Ω ndΓδΩdv = Q. (1.8)
(dX*SN)- X R + *

And (1.8) is precisely the expected result. But, according to the previous remark,
this is only a formal proof, since (<?, /) (ί) has not been proved to be a solution of
(0.1M0.4) in 2)'.

Theorem B can be used to prevent σv(<f) from blowing up, and to consider the
nonlinear terms in Q as a Lipschitz perturbation of the transport operator.

If we were dealing with reflexive Banach spaces, the linear semigroup theory
would ensure that (<f,/) is a strong solution of (0.1)-(0.4). In fact, we have the:

Theorem C (Regularity for Positive <?). Assume (H1)-(H9) and, moreover, assume
that 3/c, K > 0 such that

k^0^Kι Bv(k) ^ /o ̂  BV(K) Bv(k) ^ h ̂  BV(K)

Ω- FXIQeL*(X x SN;M1^*)) -

Then, (S>J)(t) = Qxp(-tQ)'(S>

QJ0)
 ίs the unique classical solution of (0.1)-(0.4)

(for a precise definition of the usual "classical" - see Sect. III).

Remark. In the one-dimensional case, Theorem C will provide continuity of the
temperature δ(t), for all t > 0, under the same assumptions as in Theorem C.

Another easy consequence of Theorem C is

Theorem D (Uniqueness). Exp(-ίβ) is the only contraction semigroup on E + ,
solving (1.3) in the classical sense for ((?0,/0) satisfying the assumptions of
Theorem C.

We end the present section with a regularity result which is still valid when
σv(<?) can become infinite, for vanishing $.

Theorem E. Assume (H1)-(H9), and

hECί(X;LΌ(SN;L\ΊS.^)l 0^h^Bv(M) for some positive constant M,

0 ̂  (<ί0, /o) ̂  (M, BV(M)), (<fo, /o) e BV(X) xBV(X; L\SN x Rv

+ *)).
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Then, ((T(OJ(0) = exp(-i0.((foJo)eBF(X)xBF(X;LXS]VxIRv

+*)), with a
uniform bound on each compact t-interval.

Theorem E is a consequence of the following remark: differentiating (0.1) and
multiplying it by sgn(δ<ί/3xί)? differentiating (0.2) and multiplying it by (dl/dxt)
yields, after addition:

dX+ i f f dxδΩdv

N+ί

^- Σ f f j
i =1 (BX x SN) - x I

81
dΓδΩdv (1.9)

according to (H2). It remains to prove that the terms dl/dxt can be controlled on
the boundary, by using Eq. (0.2). Unfortunately, such arguments cannot be used in
the present situation, since the generalized solutions do not satisfy (0.1)-(0.2) in a
suitable sense. However, this remark will be of great importance for the proof of
Theorem E, see Sect. IV. Moreover, this remark seems to be nothing more than
accretiveness for the operator β, since it uses mainly the assumption (H2): see
Sects. II and IV.

The splitting results will be stated later, in part V.
One of the goals of this article is to give rigorous proofs of all these results, since

straightforward computations on the equations are no longer valid, when dealing
with generalized solutions.

II. Global Existence and Maximum Principle

We are now going to prove:

Theorem A'. Under assumptions (H1)-(H6), the operator Q is T-accretive, and
satisfies the range condition:

According to Theorem 1 of Crandall and Ligett [9], Theorem A is a straightfor-
ward consequence of Theorem A' and Theorem B is an easy corollary of:

Theorem B'. (comparison) (HI)— (H6) are assumed in this theorem.
1) Let (£0Jo) and ((S"0,/Ό)eE+ such that: (£09I0)^(£Ό,Γ0). Then Vί>0,

exp(- fβ) - (<?0, /„) ̂ exp(- tβ) (#'09 /Ό).
2) Let ((T0, 70) eE+;leth and hf be measurable functions on (dX x SN)_ x Rv

+ *
such that:

3M > 0 such that Q^h^h'^ JBV(M) .

Let (<?,/) (ί) be the generalized solution o/.(0.1)-(0.2) with initial data (0.4) and
boundary condition ,(0.3) I\(δx*sN)- =h'>

Let ($', Γ) (t) be the generalized solution of (0.1)-(0.2) with initial data (0.4) and
boundary condition (0.3)' I\(dXxS

N)- =h';
Then, for any positive t, (
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This part will be organized as follows:
- in Subsection 1, we prove that Q is T-accretive; this is a mere extension of
Mercier's proof (see [13]) of the accretiveness of some truncation (when τ->0) of g;
- in Subsection 2, we study the stationary problem which is actually the main part
of the proof of Theorem A;
- in Subsection 3, we turn to the proof of Theorem B' and Theorem B; actually
this proof is slightly different from the "heuristic" one which has been given in
Part I, since we use the T-accretiveness of (λ

For the functional analysis background of the proof of Theorem A', we refer to
the fundamental paper [9] by Crandall and Ligett, and to [4,5 and 10].

1. T-Accretiveness of Q

Let us recall the definition of T-accretiveness: cf. [4] for a general statement. Let A
be a single-valued operator on E, with domain D(A), such that: A(u, v) = (A^u, v),
A2(u, v}). A is T-accretive if and only if, V(w, v), (u\ v') e D(A),

+ ί ί ί [42(w, v) - A2(u\ vj] sgn +(υ-v/)dxδΩdv^09
XXSN X R + *

where:
and

Lemma 1. Under assumptions (H1)-(H6), the operator Q is T-accretive.

Proof of Lemma 1. We define on E the following operators
• /(<?, /) = (0, Ω - VXI - 21) with domain

J)=( Jf ίqv(£)-σvWf]δΩdv9σv(#)I-qv(£)\ with domain

and Q = A + B, with D(Q) = D(A)r\D(B).
The fact that A is T-accretive is quite well-known. It remains to prove that B is

T-accretive. Taking (g,I) and (<Γ,/0 in D(B)9 we can write the following
equalities, where , / Λ , , / T τ _4 φ-sgn+(^-^0 and ψ = sgn+(I-Γ),

ί ί ί [«vW ~ σv(ί)/ - (ίvW - σv(^0/0] Ψ dx δΩ dv

= ίίί [«,(*) -
-σv(<fO/Ί(v

+ f ί ί KίvW - ίv(*9)+ - (9vW ~ «v(O) V] dx δΩ dv

(2.1)
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This positiveness gives exactly the T-accretiveness for B, as defined before.
Therefore Q is T-accretive as the sum of T-accretive operators. D

2. Study of the Stationary Problem

The range condition ($) of Theorem A' is obtained by introducing the stationary
problem; we explain briefly what are the main difficulties: if we were dealing with a
monodimensional problem, the stationary transport equation for (0.2) would be
an ODE. But, as σv blows up when §->0+, we have no Lipschitz regularity on the
vector field defining this ODE. Now, Eq. (0.1) provides a L1 a priori estimate on the
nonlinearity:

J J J σ v (<f )/dx<5Ωdv^C<+oo. (2.2)
X X S N X I R + *

The difficulty is to treat the convergence in this nonlinearity. The key is to use the
monotonicity structure of the problem with (2.2) to deal with the convergence of
the nonlinear term σv(<ί)/. This will lead to the:

Proposition 1. Under assumptions (H1)-(H6), R(I + sQ)^>D(Q) = E +.

We will only consider the case 5 = 1, the proof is similar for any s>0.

Proof of Proposition L Our proof will be divided in three steps: Treatment of a
"regularized" system for "regular" data (in some sense we shall explain later), Proof
of Proposition 1 for regular data, General case.

Step 1. Let /, g e E+ moreover, we assume the following:

3K ^ 0 such that Vx E X, f ( x ) ^ y,

(2.3)
V(x, Ω, v) e X x SN x R+ *, g(x9 Ω, v) ̂  BV(K) ,

V(x', Ω', v') e (dX xSN)_x

Since our proof is based upon an iterative scheme, we use (2.3) to provide the
desired stability. The fact that the Planck functions are a privileged class as regards
comparison of solutions is clear, when thinking of the formal proof of Theorem B
we have given in Part I.

Lemma 2. Under assumptions (2.3) and (H1)-(H6), there exists α0 = α0(K) such
that: Vαe]0,α0[, there exists a solution (<ία, 7α) e D(Q) of

f, (2.4).
S 2 V x R + *

I. + Ω FA + σv(α + <fα)/α = g + qv

x(eXxs»)_=,snce<x,0e).

Moreover, we have the bounds:

(2.6),
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Proof of Lemma 2. We shall exhibit a sequence (<f ", /") decreasing towards its limit
(<fα, JJ e D(Q\ solution of (2.4)β-(2.5)β. We take 7° - BV(K) and (f ° the solution of

^°+ ίί ίqv(g°)-σtf0)Bv(Kj]δΩdv = f. (2.7)

Indeed, (2.7) has a unique solution, since its left-hand side defines a continuous
function of S ° and K, increasing with respect to <?° and decreasing with respect to
K. This solution is obviously positive, and because f^K/2, we have:

, for some constant fc, which depends on K only. (2.8)

Let us take oί0(K) = K — k. For each αe]0,α0[, we have, according to (H2):

(2.9)

for each v e 1R+ *. This inequality is the crucial point in the proof of Lemma 1 . Now,
we choose αe]0,α0[. The following iterative scheme will define the sequence:

(2.1 ())„
\(6X*SN)- ~n J

The existence and uniqueness of/" when Sn~l e L°°(Jί)+ is classical: cf. Bardos
[3]. A straightforward induction will ensure that <Sn and /" are decreasing:
- using the maximum principle in (2.10)π, if <$n~l ^Sn, Γ + 1 ^F;
- using the monotonicity properties of the left-hand side of (2.11)M5 if In + 1<^F9

We only have to check the first step of this induction: we want to prove that
J1 rg/°, knowing $ ° to be less than or equal to fe. We have

1 - Bv(Kj) + β - VX(P - BV(K)) + σv(^° + α) (J1 - Bv(Kj)

= (g- BV(K» + 9(1* - BV(K)) + [e v(ί°) - σv(^° + α) BV

^ ̂ (J1 - BV(JK:)), according to (2.9)

and (i1 — Bv(K))\(δχxSN}_ ^0; therefore, using the maximum principle, we have

Now, it is clear that:

-+<ία n

in L1(Zx

Ll(XxSNxt^*) [see(H3)].

According to (2.11)π, for a.e. xeX: if (fM(x)->0, then /(x) = 0 and

f J"(x)(5Ω->0 a.e. and in L^ZxR^*).
SίV

Thus:

= Jf σv(<f e(x)) Jα(x) (50 dv . (2.12)



Generalized Solutions of Radiative Transfer Equations 221

So, it is clear that (<ία,Iα) satisfies (2.4)α a.e. in X, since the case when <fα(x)>0 is
trivial.

As an easy consequence of the dominated convergence theorem, we know that
(2.5)α is satisfied in the distribution sense: V0<α^α0,

0 ̂  σv(α + S n~ l)P ^ σv(α) BV(K) e L\X x SN x R+ *) ,

according to (H4), so that:

(̂α + r-^Γ-^Cα + O/, in L\X xS*xR+*),
and therefore

Ω VXF-*Ω Vxla in L\X xSNx Rv

+ *) .

As an easy consequence of (2.4)α, σv(fa)IΛGL1(X xS^xR"1"*); therefore,
). D

. We keep the same assumptions on /, 0, /z as in Step 1. Now, we turn to the
convergence of (β^ 7α) for α going to zero. Since we have obviously a L1 bound for:

the key of our proof is to study the convergence of our sequences in the nonlinear
terms to get a control on each term of the above expression. This is essential to
have a solution of the stationary problem in D(Q).

Lemma 3. Under the same assumptions than in Lemma 2, there exists a unique
such that:

(2.13)

Moreover, we have the bound:

Q^tf^K and O^I^BV(K}. (2.14)

Proof of Lemma 3. By coming back to (2.10)£ and (2.1 1)^ (where we have omitted
the index α), a straightforward induction gives the fact that (<fα, Γ) is non-
decreasing:
- let us assume that <fπ

α_ 1 ̂  ̂ - 1 with α < αx; according to the maximum principle,
and the fact that σ^α + ̂ -^^σ^α' + ̂ lJ is a decay coefficient we obtain:

Jα</α'±n = ίn •>

- then, because of the properties of (2.11 )π underlined in Lemma 2, /£ = J^' ensures

This monotonicity will allow us to take the limit in the nonlinearities. First, we
use the uniform bound (2.6)α to obtain:

<fα-»<f in L\X) and a.e.,

/α->/ in L 1 CX r xS N xR + *) and a.e.,

tfvOO-»2vW in L 1(Xx5 ] VxIR+*) and a.e.

when α->0, and we get the bound:
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An argument similar to the one used in the proof of Lemma 2 yields:

if σv(#JIΛδΩdv-+ Jf σv(^IδΩdv (2.15)
S^xiR + * S^xiR-1-*

in L\X) and a.e., when α->0. In particular, σv(δ)I e U(X xSNx R+*).
Then, we write:

Iσtf) - /ασv(<fα) = 7[σv(<?) - σv(<?α)] + σv(<fα) [/ - 7α] . (2.1 6)

Using the dominated convergence theorem yields:

0 in LlXxSN

since 0 ̂  7[σv(<f) - σv(<fα)] ̂  7σv(<f).
Thus, we obtain, by using (2.15) that

ί ί σv(^α) (7-7α) δΩ dv goes to zero in I}(X) .

Since / ̂  7α, this implies that

σv(fa) (I - 7α) goes to zero in L\X xSNx Rv

+ *) .

Thus, we have proved that:

σv(ΛJIΛ-*σvWI in I}(X x SN xRv

+*)

when α->0. After some details which are routine, we obtain the solution

The uniqueness is clear, since Q is accretive. D

Step 3. We already know that Q^h^Bv(K) for some positive constant K (cf.
Part I, 1- Assumptions). Then for each λ >1, let us take:

Λ = Inf(/,A)
and

0A = ϊm(0, A) ί-^β, v)eχ x S2V x ]R + *| ve]l/λ, λ[] '

Thus, there exists, for each λ> 1, a positive constant Kλ such that:

fλ^Kλ/2,9λ^Bv(Kλ) and K λ^M.

Using Lemma 3 there exists a unique solution (<ί, /) 6 D(β) of:

A+ ίί (q,(^-σv(fλ)Iλ)δΩdv = f λ 9 (2.17),
S^ X R + *

j

x 5^) _ = Λ [since (<Tλ, 7λ) e D(β)] ' ' λ

Since Q is T-accretive, and /,, gλ are increasing with A, ̂  and JA increase with /I [it
is well-known that the resolvent (7 + Q)"1 is an order preserving mapping on its
domain, when Q is T-accretive]. Integrating (2.17)λ over X, (2.18)λ over
X x SN x Rv

+ * yields f - , Γ f f 7 , 5rι , ,̂ /o I Q Λv J \Sλdx+ J J J IλdxδΩdv^C, (2.19)

and according to (H3) and (2.19), integrating (2.18) on X x SN x R+* yields:

ίίί σv($λ)IλdxδΩdv^C, (2.20)
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where C is a positive constant. We claim that, by using similar techniques (but
easier since Sλ is nondecreasing) as in step 1 and step 2:

(δλj^(δ,ΐ) in £ when λ-> + oo,

(<?,/) e£>(Q) and (I + Q) (δ,Γ) = (f,g). Now the proof of Proposition 1 is
complete, together with the proof of Theorem A'. G

3. Maximum Principle and Comparison of Generalized Solutions

Let us denote by j£ the resolvent of β; V/l>0, J% = (I + λQ)~l. According to
Theorem A', it is a contraction defined on E+ with values in D(Q). Moreover, since
Q is T-accretive, Jf and exp(-ίβ) are order preserving [4]; we can state it as a
corollary of Theorem A':

Corollary 1. Under the same assumptions as in Theorem A' for each λ > 0, and for
each (f9g) and (f\g')eE+ such that (/,#) ̂  (/',#'), then:

and exp(

Thus, we have proved point 1) in Theorem B'. Now, we turn to the proof of
point 2).

Let h' be another measurable function on (dX x SN)_ x R+* such that:

3M>0 such that

and let us define the operator Q' on £ by:

Q'(*> I) = (ί ί [«vW ~ *v(*)ί] δΩ dv,

with domain

D(Q') = {(δ, I)eE+ such that σv(<f)/ e L\X x SN x Rv

+*) ,

Obviously D(Qr) = D(Q) = E+ and Q' satisfies the range condition (K), and is
T-accretive.

Lemma 4. Let (<?0, /0)e£ + . For eαc/z A>0, we Λαi e:
(i)

(ii)

Proof o/ Lemma 4. (ii) is an easy consequence of (i) according to Crandall and
Ligett [9] indeed, since Q and Qf are T-accretive and satisfies (R) :

exp(-λβ) = lim(J^)" (point wise on E+),
π-* oo

and

Let us now prove point (i). We proceed exactly as in the proof of Theorem A'.
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We first assume that (<f 0, J0) satisfies (2.3). According to Lemma 2, there exists
α0>0 such that for each αe]0,α0[ we can build:

solution of

<$« + λ ίί faW-σtfJΓ
S^xR + *

Λ+λΩ FA + Aσv(α + δ^IΛ = J0

I <*\(dx * SN) - = h

solution of

4ί + λ ίί [

Applying the maximum principle, and taking into account the properties of (2.4)α

(see the proof of Lemma 2), each step of the iterative schemes defined in the proof
of Lemma 2 yields:

Vα6]0,α0[, (C/α)^(«)

Then, using Lemma 3 and taking the limits for oc->0 gives:

The extension of this result for any (<f 0, /0) e E+ can be performed as in step 3 of
Proposition 1 and is routine.

This completes the proof of Theorem B'. D

We are going to end this section with the proof of Theorem B.
Let us take:
(<?0, /0) G D(Q), and K>0 such that:

• h ̂  BV(K) , and (<f0, J0) ̂  (X, BV(K)) .

Then we can define Qf as in the proof of Theorem B', point 2), by choosing
h'=Bv(K).

According to Theorem B', point 1):

Vί > 0, exp( - ίβ) (<f o, 70) ̂  exp( - tQ) (K, BV(K))

then, applying Theorem B', point 2), we have for any positive t:

exp( - ίβ) (K, BV(K)) g exp( - ίβO (K, BV(K)) -

Thus, Vί>0, exp(-ίβ) (ί0,/0)^exp(-tβ') (^,βv(JO);

and, Vλ > 0, J?' (K, Bv(/0) = (K, BV(K))

thus, Vί > 0, exp( - ίβO (K, BV(K)) = (K, BV(K)).
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Remark. For the proof of Theorem B, we could have used the ideas of the "formal
proof in part I on the stationary problem. The one we have just given seems more
interesting since it underlines the order-preserving properties of the problem.
However, the "formal proof provides an a priori estimate, without assuming
accretiveness for Q (it requires only that B should be increasing). The open
question is: can we expect any kind of global existence result without assuming
accretiveness for Ql

III. The Case of a Uniformly Positive Temperature

The present section is devoted to the proof of Theorem C, Theorem D, and of some
other results using the same kind of arguments. We are given two positive
constants:

and, for the sake of simplicity, we assume that the incoming density h is the
boundary value on (dX x SN)_ x Rv

+ of a function still denoted by Λ, such that:

^:)),

We will use the Banach space:

E1=LGO(X) x U°(X x SN; M1^)),

where M1(R^h) is the space of bounded Radon measures on Rv

+. We know that El

is the dual space of I}(X) x L\X x SN; C0(RV

+)), where C0(RV

+) is the space of all
continuous functions on R^ going to zero at the infinity (see [16]). This remark
will be used to obtain the compactness in the proof of Theorem C.

On Eί9 we define the two following operators:

Aί (δ, ΐ) - (0, Ω - VXI - 21) with domain

D(^)={(<y,ί)e£JΩ-iyeL0 0(XxSJ V;M1(R+)) and I \ ( d X χ S » ) _ = h } 9

and

- ίί σv

with domain:

D(BJ = {(<?, /) e E, μmin ̂  g rg <fmax , 5v(<f

We are now able to state the main result of this section.

Theorem C'. Under assumptions (H1)-(H9) and (3.1), if
then (<ί, J)(ί) = exp( — ίβ) •(<?(), ί0) is the unique classical solution of:

(3.2)
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This means that:
(i) \/t^09(^I)(ί)ED(A1)nD(B1);

(ii) (3.2) holds with j-(^J) taken in the sense of @'(Rf*xX)

x ^'(R/* x X x SN x Rv

+*);

(iii) since — 0£J)eL00QO,jΓ[;E1) for all T>0, (^eCCR+ EO, and this

remark gives a sense to the initial condition.
The main consequences of Theorem C' are:

Theorem D (Uniqueness). Under assumptions (H1)-(H9) and (3.1), exp( — tQ) is
the only contraction semi-group onE+ solving the radiative transfer equations in the
classical sense for (<?0, /0) satisfying the assumption

of Theorem C'.

The continuity of the temperature, in the one-dimensional case results in

Corollary 2. Under the same assumptions as in Theorem C", with N = 0 and if
<fo e C(X\ then,

is continuous on X

and

J I(t)δΩ is continuous on X with values in I/(RV

+*)
SN

both uniformly on each compact t-interval.

We now turn to prove Theorem C'. Assumptions (H1)-(H9) and (3.1) ensure
that Q is a perturbation of a m-accretive linear operator by a Lipschitz continuous
operator (see below). According to this remark, Theorem C' would be obvious if
we were dealing with Hubert spaces. Since we are working in E1 which is non-
reflexive, we do not know whether ((?, /) (ί) is a.e. differentiable with respect to the
time variable. However, the proof of Theorem C' is not far from the Hubert space
case.

Proof of Theorem C'. The proof is divided in three steps: Estimates on the
nonlinear terms, Discretization in time and estimates on the derivatives, Taking
the limits when the time step goes to 0.

Step 1.

Lemma 5. Under assumptions (H7)-(H9), the operator B1 is Lipschitz continuous.

The proof of this lemma is quite straightforward, and is omitted here.
Now, we set:

un

k(t) = (ft®, J2(0) = W ' (^o, /o) -
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Lemma 6. Assume (H1)-{H6) and (3.1). Then, if ((g>

0J0)eD(B}), we have that:
ul(t)GD(B1) for each t, k, n.

This lemma is merely a restatement of Corollary 1 and Lemma 4.
According to (HI) and Lemma 6, we have that:

l(t) ^ σv(<fmin) £v(<fmax) ,

for each t,n,k. We recall here that σv(£m{n)Bv(<£mΛJeLlQRj*) [see (H4)].

Step 2. We are now going to use the accretiveness of A!.

Lemma 7. Assume (H1)-(H9) and (3.1). Then we have that, for each T>0:

where C is a positive constant (depending on \\A1 ($o,Io)\\Eί, $mm> <Cnax only).

Proof of Lemma 7. We have that

un

k(f) +^Aί ul(f) = - ^B,Ul(t) + «ϊ_ !(ί) .

This equality yields, after a straightforward induction:

(Jί/i)k (^/o)+- Σ (Jffi^-'^-BrtV)).

Therefore, we have that

ul(t) - ul_ i (t) = [(

i-^oJo))- JΣ (̂
 + l-1 [Bi -wίW-B! «?-!

Since ^4X is accretive, we have that

and

IIW+1~'-[B^
according to Lemma 5 and Lemma 6. Therefore:

\\ui(t)-uι.m\E^ v + v Σ κω-«ί-ι(ί)iι£lfl Π p= 1

for some positive constant C, depending on \ \ A 1 ' ( S >

0 , I 0 ) \ \ E l , (omin,$max only.
GronwalΓs lemma, together with this inequality yields the estimate of Lemma 7.
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We introduce the discretized version of the transfer equation:

J2(t)-/Z_ι(t)
+ Ω VxΓk(f) =

According to Lemma 7 and the estimates (3.3), we have that

sup \\Ai- um\\Eί<+™ (3.4)
ίe[0,T]
n . f c ^ O

Step 3. Now, we have enough estimates to finish the proof of Theorem C'. We
have the following convergences when n-> + oo :

un(t)~~s* w(0 in £> uniformly on each compact ί-set;

(see Crandall and Ligett [9]);

< ( 0 " ( 0 A itW-A u®, and ^(0-<-i(0_^

N 1 +in L°°([0, Γ] x X x SN; M1(RV

+)).
These three assertions are easy consequences of Lemma 6, Lemma 7 (3.4) and

the fact that L°°([0, T] xXxSN; Ml(Rf)) is a dual space (see Treves [16]).
Moreover, for the third assertion, we need the following obvious remark:

and, therefore:

n
t dt

n

Now we have that B1: D(Bl)cE-^E is Lipschitz continuous for the E-norm; (see
Mercier [13]). Therefore:

B - un

n(t)—^ B - u(t) in £, uniformly on each compact ί-set.

To finish the proof of Theorem C, we notice that

since

I"n(i)-wϊ*I(i) m LX)([_^T']xXxSNιM1(lS.^))

and Ω - VxΓn(f) is bounded in L°°([0, T] x X x SN; M1^ *)). D

We now turn to prove the corollaries of Theorem C'. The proof of Theorem D
is rather straightforward (it uses merely the fact that El is dense in £); we do not
give it here.
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Proof of Corollary 2. In the one dimensional case, estimate (3.4) can be written as:

dl_
dX

dv<C

for all ί e [0, Γ], x e X, and μ e [-1,1]. Thus, we have that:

T
+ 00

ί
0 -1 -1

< f f _ίίίl
= J J /•)

Λ; |μ|>ε μ Z

^Taking β = |y-χ|1/2 when |j; — x|<l yields that J I(t)-£- is uniformly
-i 2

bounded in C1/2(X;I}(Rf*)) on each compact ί-interval.
Now, we look at the regularity of δ. We know that

Thus, we have the following inequality:

x)-(f(ί,y)|^K0(x)-

f 1

0 -1 R-ί*

ί 1

0 - 1 IR + *

, x) -

- S0(y}\ + d |̂ (s, x) - *(s,
0

where C and Cx are two constants independent of ί, x, y, and <5 a non-negative
function such that δ(f)-+Q when £-»0. Using GronwalΓs lemma now yields the
desired result. D

Let us go back to the N + 1 -dimensional case. We want to prove a continuity
result for the stationary problem.

Proposition 2. Under assumptions (H1)-(H9) and (3.1) if ( f θ 9 /0) e D(B) and

((f o, /0) e C(X) x C(X L°°(SN x LL(RV

+ *)))

then, we have, for any Ae]0, A0]

x C(J!Γ L°°(SN

^o = ̂ o(^minj^max) ^s a positive constant :

(**,/') = J? (*o,/o)

To obtain this result, we perform a truncation of the operator B, as in [1 3], and we
use a standard fixed point theorem.
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IV. Bounded Variation Regularity of the Generalized Solutions
(in the Degenerate Case)

The present section is devoted to the proof of Theorem E. Here again, for the sake
of simplicity, we assume that the incoming density h is the boundary value on
(dX x SN)_ x IR+* of a function, still denoted by Λ, such that:

heC*(X'9L°(SN;LHRt*))). (4.1)

Moreover, we assume that there exists a positive constant <fmax such that:

?max). (4.2)

We recall the definition of the space BV: let F be a Banach space; then BV(X; V)
= {ueL1(X:> V) such that Vxu is a bounded (F-valued) Radon measure on X} [the
notation BV(X) means BF(X IR)].

Now, we recall the statement of Theorem E:

Theorem E. Assume (H1)-(H9), (4.1), and (4.2). Let (£Q,IΌ)
x BV(X, L\SN x Rv

+*)) such that:

and let (<f(0;/(0) = exp(-£0 (<?0,/0), for each non-negative t.
Then, for each non-negative t,

\ /(ί)) e BV(X) xBV(X;

Moreover, (δ(t)9I(ί)) is bounded in BV(X)xBV(X,L1(SN x1^^)) uniformly
on each compact t-interval.

The proof of Theorem E relies mainly on the following remark. In the non-
linear terms, as well as in the scattering term, the space variable can be regarded
merely as a parameter. Thus, using accretiveness for these terms yields an estimate
for:

x — x
+ ίί δΩdv.

Proof of Theorem E. This proof is divided in three steps: BV estimate for the
stationary problem with regular data, BV estimate for the evolution problem with
regular data, BV estimate for the evolution problem with general data.

Step L We assume that there exists a positive constant $min<$max, such that:

βKnin)^^v(^max), (4.3)

(<?min, Bv(*min)) ̂  Of o, Λ>) ̂  (^nax, SvGCnax)) , (4-4)

(<?0, J0) G C°(X) x C°(X; L»(SN; iW*))) . (4.5)

We define

We recall that there exists λ(βmiw ^max) > 0 such that V/l e ]0,

(^A, 7λ) e C°(Z) x C°(X; L°(SN;
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[according to (4.1)-(4.5) and Proposition 2]. In this step, we assume that

9$max). Our goal is to prove the following result:

Proposition 3. Under assumptions (H1)-(H9) and (4.1)-(4.5), (δ λ, Iλ) satisfies the
following BV estimate:

lim ί
Xε X SN X

dxδΩdv>

ε-»0

+ Cλ +

dxδΩdv>

dX x SN x IR + * (dX

ίίί \Iλ-I0\dΓδΩdv,

(4.6)

is an orthonormal basis of(where X ε= {x e X\dist(x, dX)>&], (e^^

c is a positive constant which depends only on <?max and sup
( d X x S N ) - v

We begin the proof of Proposition 3 with

Lemma 8. Under assumptions (H1)-(H9) and (4.1)-(4.5) we have that:

' )- (̂x)
ίίί

ίίί dxδΩdv

dΓεδΩdv. (4.7)

Proo/ o/ Lemma 8. Let us introduce the following operator on the Banach space
RxL1(S J VxRv

+*):

C (*,/)

with domain

[with the convention that 0 σv(0) = 0]. We can easily prove that C is T- accretive,
by using the same kind of proof as in Lemma 1.

Now, for a.e. x e Xε, we have that

\ Iλ) (x) + λA - \ Jλ(x)) = (ί o (x), J0(x))

and

\ Iλ) (x + fie,) 4- A^ - (<$\ Iλ) (x + ε^ ) + AC -
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Subtracting the first equality from the second one, and using the T-accretiveness of
C yields exactly estimate (4.7). D

Now, we must study carefully the "boundary term":

ίίί dΓδΩdv.

We begin with the following elementary lemma. Since it is not the heart of the
matter, we shall only give the main tricks its proof.

Lemma 9. Under assumptions (H1)-(H9) and (4.1)-(4.5), we have that:

lira ΠJ |0 n
ε-> 0 (dXε*SN)- xiR ί*

^ ίίί(d^xS^)- x

dΓδΩdv

\\Txh\\dΓδΩdv+ f f f \Ω 7Iλ\dΓδΩdv.
(dX x SN) - x IR.T *

Proof of Lemma 9. We choose ε0 > 0 such that Xεo Φ 0; and in the following ε will
be such that 0<ε<ε0. We know that dX and dXε are parallel hypersurfaces in
RN+ *. Using a C°° partition of unity on the set X - XFn and straightening locally
the boundaries dX and dXε allows us to consider the simplest situation, where
dX and dXε are parallel hyperplane sets.

We pick some xQedX and we consider the cylinder C(δXn£(x0,4α),
— ε0n(x0))4 to which the restrictions of dX and dXε are parallel hyperplane sets.
We pick some ΩeSN such that Ω n(xπ)<0, and for x e C(dXnJ5(x0,4α),
— ε0n(x0)) we consider the following points:

εΩ

" ~ ' |Ω n | '

) = projection of x + het on the parallel hyperplane
to dX containing x, following the direction Ω\

We notice that:

Then, using the dominated convergence theorem, and the fact that
Ω VJ. e C( ;̂ L°°(SN;v 1(1R+*))), we get that, for a.e. x, Ω such that Ω - n(x0) <0 and

0, α):

ί i
Rv+*

dv= dv

|Ω n|

\eί n\\Ω PxI(x)\dv.

1 With the notation: C(A, V) = {X + λ\, where AT e A and A e [0,1 ]}
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Now, let us call:

233

εΩ

Cε(Σ, Σε) = the open cylinder of basis Σ and Σε. Then, we choose a test function
φ such that:

>~1 on <

> = 0 on (

Using Stokes formula on Cε yields:

\Ω.n\\Iλ(x*)-Iλ(tf)\dΓ°dv-- ίί \Ω n\\Iλ(x)-Iλ(tf)\drdv
ε ε R v + * χ £

- Vxφ\ \I\yι)-Iλ(x)\dxdv .

Since / and Ω - VXI e C(X; L°°(SN; L1^*))), and since mesCε-0(ε), we easily get
from (4.8) that:

lim
ε-»0

\Ω n\\I\xe)-I\yi)\dΓdv

-0.

Then, we notice that

lim ίί |Ω n| dΓdv

= lim ίί |sin[(e;,n)-(Ω,n)]|

^ ίί ||Txft|||sin[(eί,n)-(Ω,n)]|dΓdv.
R v + * x ^

The remaining details are sheer routine. D

Now, using the equation (βλ,Iλ) = J% (β°,I0) yields:

whence we get

λ ίίί \Ω VJίλ\dΓδΩdv^λ ίίί
(ax

+ 2/1 ίίί q^JdΓδΩdv + λ ίίί |
d * χ s N χ R + * (axxs^)- X R + *
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Thus, we have that:

\Ω FxI
λ\dΓδΩdv^Cλ +

(dX x

ίίί

since we know that

F. Golse and B. Perthame

\Iλ-I0\dΓδΩdv

(4.9)

ίί

Equation (4.9) is the crucial point of the present section. Now, Proposition 3 is
clearly a consequence of Lemma 8, Lemma 9, together with (4.9). D

Step 2. We keep the same regularity assumptions as in Step 1. We are going to
prove

Proposition 4. Under assumptions (H1)-(H9) and (4.1)-(4.5) we have that
Vί>0, e-tQ (£Ό,IQ)eBV(X)xBV(X;Ll(SNxΈiϊ*)) with the estimate

(4.10)

Proof of Proposition 4. We define

An easy induction yields, with estimate (4.6),

lim ί
Uβ

ίίί dxδΩdv]

dx + ίίί

J

dx δΩ dv

+ Cf+ i f f (fi-*0)dΓδΩdv+

(4.11)

for fe ̂  1, and n > , since, for fc^l, In + 1\(dx*sN)- — In\(dx*sN)-

oo yields estimate (4.10), without anyNow, taking the limits when n->
supplementary difficulty. D

Step 3. To finish the proof of Theorem E it is enough to prove that estimate (4.10)
is still valid under assumptions (H1)-(H9) and (4.1)-(4.2) with

and
(<f o, /o) e BV(X) x 5F(X; L1^ x

We take (^ Jε

0) e C(JT) x C(X,L*>(SN; liQRf*)) such that

(<T0,/y->(<fo, /o), when ε-^0, in BV(X) x BF(X; L1^ x IRV

+*)).
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We apply Proposition 4 of Step 2 with

(ε + sup(0, δ ε

0); Bv(ε) + sup(0, Jε

0)) instead of (<f 0, /0)

and Bv(ε) + h instead of h. Taking ε-»0, and using Theorem B' yields exactly
estimate (4.10).

Now, the proof of Theorem E is complete. D

V. Splitting Formulas for the Radiative Transfer Equations

We know that A, J3, and Q are T-accretive, and that Q satisfies the range condition
(β}. Obviously B satisfies the range condition (&) (by using the same techniques as
in the proof of Proposition 1); and it is well-known that A is m-accretive.

Our main goal in this section is to prove a Cranck-Nicholson like represen-
tation formula for the semigroup exρ( — fβ), see below.

Let us now state the supplementary assumptions we need for our purpose.
(H10) 3y>0 such that, V<f >0 f qv(#)dv£y<£,

R +

(H 1 1) V(/, g) e D(B), 30 < α < 1 such that VA e ]α, 1 [, (λf, λg) e D(B)
(HI 2) Vv>0, δ\-*σv(δ)qj(δ) is a nondecreasing function;
(HI 3) the operator δ\-^σj(δ)qv(δ) is continuous from Ll(X)+ to

[we recall the convention Oσv(0) = 0]. We now state the main result of this section.

Theorem F. Under assumptions (H 1)-(H6) and (H 10)-(H 1 3) we have that, for each
xeD(Q), when rc-»oo,

uniformly on each compact t-interval.

This section is organized as follows:
- first, we prove an elementary abstract lemma from functional analysis necessary
for the proof of the theorem; j
- then, the proof of theorem reduces to the study oΐ—(I — Jf) when /l-»0+.

A

We shall end this section with some remarks about the case of a uniformly
positive temperature.

7. A Splitting Formula for Single-Valued Accretive Operators
in General Banach Spaces

On a Banach space J*, we consider the following evolution equation:

du
—-
at

(5.1)
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where R, S, and .R + S are accretive operators on & with domains D(R), D(S),
D(R + S} = D(R)nD(S) satisfying the range condition ($). We shall study the
Trotter like representation formulas for the generalized solutions of (5.1). We need
the following assumptions on jR and S:

(i) ft is affine with dense domain
(ii) R and S are single-valued

and
(i)' D(S)cD(jR)and

I
-(x —J*x)->Λx when λ-+Q +
A

uniformly on each compact subset of D(S).

Lemma 10 (Consistency). We assume (i) and (ii). Let G(λ) be a family of mappings
from D(S) into 3$ such that:

— (x —G(λ) x)->Sx when
A

for each xeD(S). Then:

when λ-+Q + , for each xεD(R + S). The same conclusion holds if we substitute
assumption (i)7 to assumption (i).

The proof of this lemma is an adaptation of the Hubert space case (see [12]).
We give the proof here for the sake of completeness.

Proof of Lemma 10. Let x e D(R + S); and let xλ = G(λ) - x; thus our assumption is
that

-(x —xλ)-»Sx when λ-+Q+.

Therefore, since Jf is a contraction:

i(J«(x-λSx)-J? xλ)-»0

when A->0+.
If we assume (i), without restricting the generality of the proof, we can assume

that R is linear. Thus, we may write:

and since R is linear and m-accretive, we know that

-τ(x — J* x)-+R x when λ-+Q+ and Jf(Sx)-»Sx when /ί-»0+ .
A
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If we assume (i)' we may write

and assumption (i)' yields that

when Λ,-»0 + . Thus, in both cases:

1
~λ(x~Jλ'(

and

Thus, the proof is complete. D

Together with Chernoff s formula, for which we refer to Brezis and Pazy [5],
Lemma 10 yields the following:

Proposition 5. Assume (i) or (i)x and (ii) from Lemma 10. Let D(R + S) be convex, and
let G(λ) be a family of contractions from D(S) to ̂  such that, for each xεD(S):

-(x-G(λ)-x)-+S'X

when λ->0 + . Then, for each xeD(R + S), we have that

J*nG(njJ

when n-* + oo, and this limit is uniform on each compact t-ίnterval.

Essentially, Proposition 5 has reduced the proof of Theorem F to the study of

-(x-JB

λ-x) for xeD(B), when λ-*Q+.
A

2. Consistency of JB

λ with B

We now turn to prove

Lemma 11. Under assumptions (H1)-(H6) and (H10)-(H13) for each
(f,g)eD(B), whenλ-+0 +



238 F. Golse and B. Perthame

Proof of Lemma 11. Let (<?λ, 7λ) - JB

λ - (/, g) for λ>0. We have the following
obvious estimates:

for a.e. x e X:

Λ(*)+ ίί /λ(x)<5Ωdv = /(*) + ίj g(x)δΩdv 9

(5.2)xv v = l+y;r

Now, one immediately sees that

and

This yields the following domination relations:

Q^qv($λ)^qvff + ίί gδΩdv\ (5.5)

according to (H2), and

\

(5.6)
according to (H2), (5.4), and (HI2) for Q<λ<λ0.

Using assumption (H 5),

qjf+ if + gδΩdv\eL1(XxSNxR+*)9

and, according (Hll) and (HI3) by choosing AO sufficiently small:

ίί gδΩdv\.qv(f+ ίί gδΩdv\

Thus, (5.5) and (5.6), together with (5.3) and (5.4) ensure that

(<^λ9/A)-K/5 #) in E and a.e. when A->0+ . (5.7)

Furthermore, putting (5.7) again into (5.3) and (5.4) yields, with (5.5) and (5.6):

— f I —
l J , ff Γ— / / \ « ~ (f\~\ zn ,̂. ar»H λ

v
Λ

in L1^) and ί/pf x SN x R+*) respectively, according to the dominated conver-
gence theorem. D

Lemma 11, together with Proposition 5, gives the proof of Theorem F.
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The same method can be used to prove the convergence of another splitting
algorithm for (TR), introduced by Mercier. But this splitting algorithm is valid for
uniformly positive temperatures only (see [13]).

Acknowledgements. We wish to thank Prof. C. Bardas for many helpful discussions on this topic.
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