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Abstract. The two-point function for spinors on maximally symmetric four-
dimensional spaces is obtained in terms of intrinsic geometric objects. In the
massless case, Weyl spinors in anti de Sitter space can not satisfy boundary
conditions appropriate to the supersymmetric models. This is because these
boundary conditions break chiral symmetry, which is proven by showing that
the "order parameter" < ij/\l/ > for a massless Dirac spinor is nonzero. We also give
a coordinate-independent formula for the bispinor S(x)S(x') introduced by
Breitenlohner and Freedman [1], and establish the precise connection between
our results and those of Burges, Davis, Freedman and Gibbons [2].

1. Introduction

Maximally symmetric spacetimes provide an interesting background for studying
quantum field theory in curved space. They also have nice applications: de Sitter
space (DS) appears in "inflationary" models of the early universe [3], and anti de
Sitter space (ADS) as the classical ground state of gauged supergravity models [1].

In this paper we extend the coordinate independent construction of two-point
functions for bosons [4] to the fermionic case. The method employs only geometric
quantities intrinsic to the manifold, such as the propagator of parallel transport. By
exploiting the maximal symmetry of the spacetime we therefore obtain very simple
expressions.

We use notation in which spinors ξA (conjugate spinors ξA) have undotted
(dotted) capital latin indices. This notation is explained in [5], and restricts the
applicability of this work to four dimensions.

In Sect, two we introduce the parallel propagator for spinors and calculate its
covariant derivative. Section three uses this result to find the massive two-point
functions for DS and ADS. Section four treats the massless limits, and shows why
chiral symmetry must be broken in ADS. In Sect, five we obtain a simple formula for
the Killing bispinor S(x)S(x') introduced in [1,2], and use it to establish the precise
equivalence between our results and theirs.

The conclusion—that chiral symmetry is broken by supersymmetric boundary
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conditions in ADS—is verified in Sect, four by showing that the order parameter
< \l/\l/ > of chiral symmetry breaking does not vanish for either choice of supersym-
metric boundary conditions. This confirms that Weyl spinors satisfying those
boundary conditions do not exist on ADS.

2. The Spinor Parallel Propagator DA

A (*,*')

In this paper the notation for two-component spinors and all signature and
curvature conventions are those of Penrose and Rindler [5]. The only difference is
that we use dotted and undotted spinor indices rather than primed and unprimed
ones. In our paper a primed index indicates that it lives in the tangent space at x',
unprimed indices live at x.

The use of two-component spinors restricts us to four dimensions and signature
— 2. We also adopt the bitensors na(x, x'), na'(x, x') and ga

b'(x,xr) as geometrically
defined by Allen and Jacobson [4] for maximally symmetric spaces. However our
conventions: ( + , — , — , — ) and 2V[αVb] Vc = — Rabc

d Vd are opposite those [4].
Nonetheless, all the formulae given in Table 1 of [4] remain correct, except that now
R2 > 0 for ADS and μ2 > 0 for timelike separated points, and the scalar curvature is
-12/R2. [In the conventions of [4] # 2 >0 for DS and μ 2 >0 for spacelike
separations. R denotes the radius of the space.] The formulae of that table are
sufficient for our needs, and necessary to reproduce our calculations.

Our fundamental object is the bispinor DA

A'(x,x'). It parallel transports a two-
spinor φA at the point x, along the shortest geodesic to the point x', yielding a new
spinor χA' at x7,

χA' = φADA

A'(X,x'). (2.1)

Complex-conjugate spinors are similarly transported by the complex conjugate of
DA

A'9 which is £>/. The elementary properties of DA

A' are given in the appendix.
We need to find the covariant derivative of DA

A\ which must be formed from the
tangent to the geodesic nAA = na and from DA

A itself (the proof parallels Appendix B
of [4]):

VAADB

B' = *(μ)nAADB

B' + β(μ)nBADA

B'. (2.2)

Here μ(x, x') is the geodesic separation of x and x', nAA = VAAμ, nA>λ> = VA>A>μ, and the
functions α(μ) and β(μ) remain to be determined.

Since DB

B by definition satisfies

naVaDB*' = Q, (2.3)

and nAAn
BA = 1/2δA

B, it follows that β(μ) = - 2α(μ). To determine β(μ) we use the
Ricci identity (integrability condition) for spinors, which is [5],

2V [ f lVb]φ
c = LεAόXABD

c + εABΦABD

clφD (2.4)

On a maximally symmetric space the Riemann tensor is

I
Rabcd = ~2 (9ac 9bd ~ 9ad9bc\ (2 5)
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and the curvature spinors [5] are

X = — —— (ε ε + ε ε ) (2.6a)

ΦABCD = V (2.6b)

Therefore DA

A must satisfy

4V[flVb]D
cc' = - -^(ε^£ε/ + ε/%£)^

£C' - (2 7)

Inserting (2.2) for VaDB

B< and contracting with £A

cε
AB and ε1'̂ '4, we find that β(μ)

must satisfy respectively
β' + 3A(μ)β + β2 - 2/R2 = 0, (2.8a)

β' + Λ(μ)j8 - l/R2 = 0, (2.8b)

where ' = d/dμ and A(μ) = JR ~1 cot (μ/Λ). (Note: >4 is given in Table 1 of [4]; it is
defined by Vanb = A[_gab - nanb~\).

The unique solution to (2.8) which vanishes as (μ/R) -» 0 is β = —(A + C), where
C= -R~lcsc(μ/R). Therefore we find

V,α V = (A + Q &nAADB

B' - nBADA

BΊ (2.9)

This result implies (1.22) in [4], because the parallel propagator for vector indices is
ga

b' = DA

B DA

B. Equipped with (2.9), we can find the spinor 2-point functions.

3. Massive Two-point Functions

We denote a four-component Dirac spinor by

(3.1)

where φA and χA are a pair of two-component spinors. The Dirac equations of
motion are (ref. [5] Eq. 4.4.66)

(3.2a)

(3.2b)

V 2

m

where m is the mass.
There are two basic two-point functions, which are

nA'9 (3.3a)

'. (3.3b)

We assume temporarily that x and x7 are spacelike separated so that the field
operators in (3.3) anti-commute. The right-hand side of (3.3) is the most general
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maximally symmetric bispinor with the correct index structure. [Any other
expressions with the correct index structure can be reduced to it via the equations in
the appendix.] The functions/and g depend only upon the geodesic distance μ. We
will shortly see that other two-point functions like <χ^χβ'> are entirely determined
by / and g.

The equations of motion (3.2) now imply that

(3.4a)

V/ρ/ = —P/'. (3.4b)
72

Thus inserting (3.3a(b)) into (3.4a(b)), one obtains two coupled equations for the
coefficient functions /(μ) and g(μ\

= 0, (3.5a)

= 0. (3.5b)

Combining these two equations, one obtains a single second-order equation for/,

/" + 3Af + [m2 -f/r 2 +f C(A - C)]/ = 0, (3.6)

where we have used A' = - C2, C = - AC and C2 - A2 = R~2.
Before finding /, let us return to the other possible two-point functions. The

expectation value of <I/Ί^> may be written in terms of 2-component spinors as

(3.7)

From the definitions (3.3) and equations of motions (3.2) and (3.5) it follows that the
remaining two combinations are

(3.8a)

<£ifcr> = - 21/2ifΓ1VM,ρ/ = -f(μ)DA

B,nAλ. (3.8b)

Thus in terms of 2-component bispinors

- A ' (39)(3-9)

Now we solve for /(μ) and g(μ).
Changing variables to Z = cos2 (μ/2R\ and letting

(3.10)

one obtains a hypergeometric equations for w,

Z(l - Z)vv + [c - (a + b -h 1)Z] w - αfew - 0, (3.1 1)

where = d/dZ. (Note: the factor R2 is included in the definition of w (3.10) to ensure
that the standard branch cut of the square root lies along timelike separations
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μ2 > 0). The parameters α, b and c are

a = 2 + ̂ m2R2, b = 2-^m2R2, c = 2. (3.12)

(Note: for R real it is important that a ̂  b.) In the same way one may show that
Z~ 1/2g satisfies a hypergeometric equation with parameters α, b, and c 4-1. We now
need to specify boundary conditions to uniquely specify a solution to this equation.

The correct solution to (3.11) in de Sitter space ,R2<0 is obtained [4] by
demanding that it is only singular when μ = 0 and not when μ = πR.
This yields

2F(α,b;c+l;Z). (3.13)

The short distance behavior μ->0 can now be used to fix the constant NΌS. In flat
space/^ -ί2~ 1 / 2π~ 2(-μ 2)~ 3 / 2 for small μ, thus

-i\Rm\(l-m2R2}
—-=. . (3.14)
l^/2π| R\3 sinhπ|Λm|

The Feynman function is obtained by evaluating/DS(Z) and#DS(Z) above the
branch cut from Z = 1 to oo,i.e. taking/DS(Z + iϋ) and gΌS(Z + iO). This concludes
the de Sitter case.

In anti de Sitter space, it is necessary to impose boundary conditions at timelike
spatial infinity, to (1) make the Cauchy problem well defined, and (2) conserve
quantities (like the inner product between modes) formally conserved (via in-
tegration by parts) [4]. This leads to "reflecting" boundary conditions at spatial
infinity, which for example reflect any flux of energy-momentum from the boundary
at spatial infinity, and thus conserve the Hamiltonian. In supersymmetry these same
boundary conditions also arise [1,2].

There are two possible reflecting boundary conditions for a field of mass m.
When m is nonzero, these correspond to the two representations D(3/2 + \mR\91/2)
and D(3/2 - \mR\, 1/2) of S0(3,2). In the limit w->0 + , the two representations both
become D(3/291/2), but there are still two different two-point functions, because
there are two physically ίnequίvalent sets of modes that can from a representation of
D(3/291/2). These modes differ only by a parity assignment. Following [2] (p. 270)
one set of modes is labeled D(3/2,1/2)+ and the other set of modes is labeled
D(3/291/2) ~. The "minus" nodes are obtained from the "plus" modes by a chiral
transformation whose effect is to change the sign of φA, while leaving χA unchanged.
The correlation functions of the modes in these two sets can be obtained as the limit
m-»0+ of the two distinct massive representations given above.

In the representation D(3/2 + \mR\91/2), which we label by " + ", the modes, and
the two-point function, fall off as fast as possible at spatial infinity Z -> CO. (This turns
out to imply that/and g are singular at both Z = OandZ= 1.) Since a>b9 we
therefore obtain

τ
\m\

-l) 1 / 2 Z- β F(fl ,α-c+l;α-fr+l;Z- 1 ),

βF(α,fl-c;fl-6 + l;Z-1), (3.15)
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and the constant is

_
- ~ - : - (3.16)ADS

The reason that the factor m/|m| has appeared in the formula for g +, is that changing
the sign of m (see (3.2)) is equivalent to changing the sign of spinor φA9 and this has
the effect of changing the sign of (3.3b), and hence of g(μ). In the limit m ->0+,/ + and
g + give the two-point function of the modes in D(3/2, l/2)+. In general, the Feynman
function is obtained by evaluating /^DS and g^os just above the branch cut from
Z = 0 to 1, i.e. taking /ADS(^ + *'()). We will return to the representation
D(3/2-\mR\9 1/2) later.

4. Massless Two-point Functions and Chiral Symmetry Breaking

On de Sitter space the massless four-component spinor correlation functions are
given by (3.13)

(4 ιa)

0DS = 0.

The function /DS, and thus (φAφB'y, is singular in the coincidence limit (μ->0 or
Z -> 1) as in flat space. Because the function 0DS,

 and thus < χAφ
B' > , is identically zero,

there is no correlation between the right- and left-handed components φ and χ. Thus
the massless four-component Dirac spinor on de Sitter space is equivalent to two
decoupled massless two-component Weyl spinors.

This result is not true on anti de Sitter space because the boundary conditions are
different there. From (3.15), when w->0+, the two-point function for the modes in
D(3/2, 1/2)+ becomes

(Z-1Γ1'2 (42a)

<4 2b)

As in the de Sitter case (φA(j)A'y is singular in the concidence limit. Unlike the de
Sitter case, the function g + is nonzero, and is singular in the limit Z -> 0, when x and
x' are antipodal points. Hence the right and left components of the four-component
massless spinor are not uncorrelated on anti de Sitter space. Thus we conclude that
there exist no Weyl spinors that satisfy appropriates ADS boundary conditions
because the existence of such spinors would force g+(Z) to vanish.

Breitenlohner and Freedman [1] have observed that supersymmetric boundary
conditions on ADS break the chiral U(l) invariance of the linearized sρin-O/spin-1/2
sector of gauged N = 4 supergravity. Weyl spinors are therefore absent because
supersymmetric boundary conditions break chiral symmetry. In a similar vein,
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Fronsdal [8] has pointed out that right- and left-handed neutrinos in ADS are
distinguished by a superselection rule.

We have already discussed the representation D(3/2 + \mR\, 1/2) for a field of
mass m. The other possible representation for a field of mass m is D(3/2 — \mR\, 1/2).
In this representaion we call the two-point function f~,g~. It is

-c,b-a+lZ-^ (4.3)

with

_ -iΓ(b)Γ(b-\)ADS~ ( }

(4'5a)

z"3'! (4 5b)

Thus in the massless limit m — 0+, this yields

which is identical to (4.2) except for the sign of g. Thus chiral symmetry is broken for
both the D(3/2, 1/2) + modes and the D(3/2, 1/2)' modes.

There is a simple way to understand the change of sign between
g+ and g~ when m = 0. As discussed earlier, the modes in D(3/2, 1/2) + are obtained
from those in D(3/2, 1/2) ~ by a chiral transformation (ref. [1] pg. 270), whose effect is
to change the sign of φA while leaving χA unaffected. Hence the expectation value
< φAφ

B' > (and thus /) is unchanged, but the expectation value < φAχ
B' > (and thus g)

changes sign.
As a final check of our conclusions, we calculate the order parameter < ij/ψy =

trace (tAίO This quantity is not invariant under chiral transformations
ψ-^e^ysΨ, and tnus serves as an index of chiral symmetry breaking. By the trace of

we mean

= lim trace < ψ(x)φ(x') >
x' -*x

= lim [ < φAχ
B' > /V + < Jύ#* > V] = lim 4θ(μ), (4.6)

and in the coincidence limit Z-> 1 one obtains from (4.2b) and (4.5b) respectively,

<^>-4^±

ADS(Z-l)= ±(4π 2)- 1 |Λ|~ 3 (4.7)

for the modes in D(3/2, l/2)±. We stress that this method of calculation requires no
regularization of any kind.

We can also calculate < ij/ij/ > using dimensional regularization, by taking the
coincidence limit, and tracing for n Φ 4 and then analytically continuing ton = 4.
Following Appendix B of [2] we obtain, for the modes in D(3/2 + mR9l/2)±

9
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In the massless limit m — 0, where we might except chiral symmetry to be restored,
we obtain the same result (4.7) as above. This confirms our conclusion.

5. The Bispinor S(*)5(jO, and the Representations D(3/2 ±\mR\, 1/2)

In this section we establish the precise connection between the spinor two-point
functions of [2] and the two-point functions in this paper. To do this, we need to
express the (4-component) bispinor S(x)S(x') defined in [1] in terms of geometrical
objects. Reference [2] notes that if G(x, x') satisfies the scalar wave equation for mass
M2scaiar = m2 - w/R - 2/R2, then

S(xt) (5.1)

satisfies the Dirac equation for mass m. We will use this fact to find S(x)S(xf).
First note that if m = 0 or m — l/R, then the scalar mass takes the conformally

invariant value M2

scalar = — 2/R2. Secondly, if G(JC, xf) has only one singular point as
Z-> 1, then (5.1) also has only one singular point (the converse is also true). Thus
choosing G(x, x') to be the conformally invariant scalar two-point function with only
one singular point ((2.9) [4])

we know from (5.1) that

= {('? + 2/R)G}Sx)S(x')9 (5.3a)

l/R)G}S(x)S(xl (5.3b)

where <ι^ι^> are correlation functions with only one singular point on ADS. Thus
subtracting (5.3b) from (5.3a) we find

0l (5.4)

Defining Δf=fm=l/R-fm=:Q and Δg similarly, and using (3.13), one obtains

(5 5a)

Thus from (3.9) and (5.4) we find

[S(x)S(.*')]/=[-
j2(Z-l)1'2Dc''nFλ

. (5.6)

In the limit as x -» x' (or Z -»1) this reduces to the identity operator, as expected.
Having obtained an expression for S(x)S(x') we can now compare our two-point
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functions to those of [2]. Take for y-matrices [6],

(5.7)(?,).'=-'V2

o
In this basis, the Dirac equation [iφ — rn]ψ = Q with ψ given by (3.1) implies the
equations of motion (3.2) for φ^and Q. Now if G(μ) is any function of geodesic
distance, then

Thus combining (5. 1) with (5.6) and (5.8), one obtains for < ή/\jiy the expression given
in (3.9), with

(5.9a)

Z1 / 2Γ d Ί
a = -fl-l (Z - 1)̂  + (1 + mR) JG(Z), (5.9b)

where we have used dZ/dμ = iR~l(Z2 - Z)1/2.
Now we can compare our two-point functions with those of [2]. In that

reference, we first take the scalar field A in ([2], 7.10) to have a mass parameter λ =
1 + |mR|. Then the two-point function for A is

(λ,λ- 1;2A-2;(1 -Z)'1). (5.10)

[Note: in the notation of [2] u = 2(1 - Z).] From (5.9) and (5, 10) we can easily see [7]
that this G(Z) of Burges et al. [2] gives our /^ and g +

ADS of (3.15). Thus/+, g+ and
the representation D(3/2 + |mR|, 1/2) corresponds to choosing the regular repre-
sentation of A for I mR \ > 1/2 and the irregular representation of A for | mR \ < 1/2. In
the massless limit ψ belongs to D(3/2, 1/2) +.

Similarly, if we take the scalar field A to have a mass parameter λ = 2 — | mR |, this
gives the two-point function/ ~ , g ~ (4.3) and ψ lies in D(3/2 — | mR |, 1/2). Thus, f~9g~
corresponds to choosing the (nonunitary) irregular representation of A for
I mR I > 1/2 and the regular representation of A for | mR | < 1/2. In the massless limit φ
belongs to 0(3/2,1/2)-.

We have also confirmed formula (7.10) of reference [2] by carrying out a brute-
force sum of the spinor mode functions. Since that lengthy calculation simply
confirms the results given there, we have not included it here; details are available
from the authors. We have also recently learned that further remarks by Freedman
on the boundary conditions in anti de Sitter space may be found in [9].

Appendix. Properties of the Parallel Propagator DA

A

DA

A'(x9x')=-DA'A(x'9x) or DA

A=-DA

A9 (Al)

DA

A'DA° = εA°, (A2)

DAA,D
AA' = 2, (A3)
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(limD/') = ε/, (A4)
x-+x'

(\imDAB,) = εAB, (A5)
χ-*x'

ga»' = DA

B'D*', (A6)

DA

B'DA

6'nAA=-nB'6', (A7)

nAcDA

B = - ng,6,D
6 'ύ, (A8)

C)nAAD
A

A,, (A9)

\ (A10)

VAADB

B' = (A + C)tinAADB

B' - nwD/'], (All)

VΛλnΛt = \Atλύ. (A12)
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