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Abstract. In dimension d^4, the lattice U(l) gauge theory defined with the
Wilson action is shown to have a deconfining phase transition at weak
coupling. The proof uses a higher dimensional analogue of the Higgs
mechanism and a correlation inequality to remove the massless modes of the
theory. The remaining modes are controlled by a simple cluster expansion.

1. Introduction

This paper presents a new proof of the deconfining phase transition in the lattice
U(l) gauge theory in four or more dimensions. Although this result is not new, our
method of proof is quite novel. Furthermore, the proof uses the Wilson form of the
action rather than the Villain form which appeared in earlier proofs [7,4].

In the lattice formulation of gauge theories promoted by Wilson [10], an
element of the gauge group is introduced on each bond of a J-dimensional lattice.
The ordered product of group elements on the bonds around each plaquette p is
written as U(p), and the Wilson form of the action is defined by

S,r=-0ΣReTrU(p). (1.1)
P

This lattice theory is now a well-defined model in statistical mechanics, and
may be analysed in a non-perturbative way. In this paper we shall examine the
abelian model, for which the gauge group is U(l). So we write the group element on
bond b as exp [L4(fe)]5 where A(b) e [ — π, π). Then U(p) is exp [iF(p)~\, where F(p) is
the sum over the oriented bonds in plaquette p of the field A(b). The action (1.1)
becomes

(1.2)

We are interested in the phase structure of the theory defined by (1.2). To
analyse this, we will consider the expectation of a Wilson loop observable
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= ReΎr Π t/(fe) = cos (Σ A(b)\ where L is a closed loop on the lattice.
beL \beL )

For β small, a standard strong coupling cluster expansion [9] can be used to
prove that

< W(L)y ^ exp [ - C Area(L)] ,

where Area(L) is the area of the minimal surface with boundary L, and the
expectation is defined by the action (1.2). Of course this implies confinement of
static charges, which is not a desirable property of electrodynamics. So the
interesting question is whether for sufficiently large β the action (1.2) has
Coulombic behavior, implying in particular perimeter law decay for < W(L)>. To
understand why this is a difficult problem, we can rescale A(b)\-^ β~1/2A(b) and
expand the cosine in (1.2). Then up to a constant,

and we see that for large β the action is a perturbation of the massless gaussian
action describing a free electromagnetic field. Technically it is extremely difficult to
establish rigorous results in such cases, nor is it obvious what behavior is to be
expected. For example it has been proven that in the three-dimensional case the
action (1.2) never has a Coulombic phase [6].

The first rigorous result concerning Coulombic behavior of U(l) gauge theories
was produced by Guth [7]. He proved that a related model defined with the Villain
action had perimeter law decay for large β in dimension four or more. Frόhlich and
Spencer produced another proof for the Villain action [4] based on their earlier
work on the Kosterlitz-Thouless transition in the two-dimensional X—Ύ model
[5]. They also suggested how their proof could be extended to the U(l) model with
the Wilson action (1.2). Both these proofs used a duality transformation to replace
integrals of continuous fields by sums over integer-valued fields, thereby getting
around the difficulty mentioned before concerning massless modes.

This paper presents a new proof of the deconfining phase transition in the U(l)
model with the Wilson action in dimension four or more. Furthermore, the
method of proof is quite different from the earlier proofs mentioned before. We will
use ideas developed during the analysis of the Higgs mechanism in the abelian
Higgs model [8], We introduce an anti-symmetric tensor field Gμv which is coupled
gauge-covariantly to the U(l) field. This new theory has a Higgs mechanism which
is completely analogous to the usual Higgs mechanism in the abelian Higgs model.
In other words, the U(l) field can be "gauged away" by a gauge transformation of
the tensor field Gμv, producing a mass for the tensor field. In this way the massless
modes are removed from the model and replaced by massive modes.

To be more specific, we introduce a field G(p) defined on plaquettes of the lattice
(this is equivalent to defining a tensor field Gμv(Y)). This field is coupled to the U(l)
field in the action (1.2) by replacing F(p) by F(p) — gG(p), where g is the coupling
constant. We also need a kinetic term for the tensor field, and for this we choose the
gauge-invariant term J Σ \dG(c)\2. Here dG is the exterior derivative of G, which is

c

naturally represented by a function on cubes c on the lattice (in coordinates, dG is
dμGvλ + dvGλμ + dλGμV). Ignoring problems of gauge-fixing, the action for the new
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abelian tensor gauge field theory is

S = i Σ \dG(c)\2-β Σ cos[F(p)-0G(p)] . (1.3)
c p

This action is invariant under the simultaneous change of variables [recall that

1

- dA'(p). (1.4)
9

This invariance is the analogue of the usual gauge invariance of the abelian
Higgs model. Furthermore, we can use (1.4) to "gauge away" the yl-field and
produce the action

S = iΣMG(c)|2-/?Σcos[0G(p)], (1.5)
c p

which for βg2 large describes a massive tensor field. This is the Higgs mechanism.
In previous work on the abelian Higgs model [8], a "smeared string"

observable was used to analyse the phase structure of the model. In our abelian
tensor model there is a natural analogue of this, which can be thought of as a
"smeared surface" observable. Given any closed loop L on the bonds of the lattice,
let S be a surface (a connected set of plaquettes) with boundary L. Then there is an
obvious gauge invariant observable supported on S and L:

Σ A(b)-ig
beL peS J

To see that D(S) is invariant under (1.4), we note that

Σ dA'(p)= Σ A'(b).
pθS beL

We can see this in a slightly different way by writing

Σ G(p)=Σ<?(p)S(p),
peS p

where S(p) (or Sμv(xj) is a tensor field supported on the surface S. The requirement
of gauge invariance is then

ΣdA'(p)S(p)=ΣA'(b)h(b),
P b

where h(b) (or hμ(x)) is a vector field supported on the loop L. In other words, our
tensor field S must satisfy

dμSμv(x)=-hv(x). (1.6)

Now Eq. (1.6) has many solutions for Sμv(x), corresponding to different choices
of boundary conditions. In particular, there is a "smeared surface" solution:

(1.7)
y

where V(x — y} is the kernel of the inverse of the lattice Laplacian. The reader can
check that (1.7) satisfies (1.6) (remember that dμhμ = ϋ), and therefore the following
observable is gauge invariant:

exp Γi Σ A(b)-ig Σ G(p)J(p)].
I beL p J

(We have written J(p) instead of Jμv(x)).
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In order to see the usefulness of #(</), we may repeat the argument leading to
(1.5). This leads us to the expectation of the observable exp Γ — ίg Σ G(p)J(p)~\ in

the measure defined by (1.5). Taking βg2 large and expanding the cosine to
quadratic order, we may approximately compute this and get

expΓ-i#2 Σ J(p)£(p,pOJ(Pθl (1-8)
L P P' J

The covariance K(p,p'} has a mass g]fβ. When this is large, we may
approximate (1.8) by

and using integration by parts we see

ΣJ(P)2 = Σ hμ(x)V(x-y)hμ(y). (1.9)
p x,y,μ

In dimension four or more, (1.9) behaves as Per(L), the length of the loop L,
and so <H(J)> decays with a perimeter law. Furthermore, when β is small we will
see that <ff(J)> decays as the area of the minimal surface spanning L. Therefore,
<//(/)> gives us a gauge-invariant way of determining the phase structure of the
abelian tensor gauge theory.

It is worth pointing out that had we used the observable D(S) instead, the same
calculation would have led to

eχpΓ-i-L Σ ^
L L P9 PCS

Even in the putative "Coulombic" phase, the expectation <D(S)> has area law
decay, and is of no immediate use in determining the phase structure of the theory.

At this point the reader may be wondering how these results apply to the U(l)
model. Recall that when 0 = 0, the abelian tensor gauge theory reduces to the U(l)
model. Furthermore, the expectations of observables behave in a particularly
simple way when g is sent to zero. In Appendix A we prove that the expectation of
H(J) in the measure defined by (1.3) is monotonic decreasing in the coupling g.
Therefore, the expectation of the Wilson loop in the U(l) model is bounded from
below by </ί(J)> for all values of/?. When β is large, <fί(J)> should have perimeter
law decay, implying the same behavior for the Wilson loop. In the remainder of this
paper we will make this argument rigorous.

The introduction of local gauge symmetry is an attractive way of removing the
massless modes associated with a continuous symmetry. In principle this idea
could be applied to models with non-abelian symmetries. The difficulty is finding
an analogue for the correlation inequality which we use in this paper to turn on the
coupling constant g.

The paper is organized as follows. In Sect. 2 we define the model and state the
results. In Sect. 3 we derive the Higgs mechanism for the tensor gauge field, and in
Sect. 4 we use a cluster expansion to prove perimeter law decay. In Appendix A the
correlation inequality is proved and Appendix B contains a technical construction
needed in the proof of perimeter law decay.
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2. Definition of the Model and Results

We consider the model on a finite, closed rectangular lattice A with unit spacing in
d dimensions. The p-cells on A are written Ap. So A0 are sites, A1 are bonds, A2 are
plaquettes etc., and a p-form is a function on Ap. The inner product of two
p-forms / and g is written (/, g). The lattice exterior derivative d maps p-forms
into (p + l)-forms and its adjoint with respect to ( , •) is written d*.

The U(l) field is a 1-form A(b), beΛί9 taking values in [ — π, π). The abelian
tensor gauge field G(p) is a 2-form defined on plaquettes p in A2, and taking values
in ( — oo, oo). From these fields we form the action

S(G, A)=~ (dG, dG) + ̂  (d*G, d*G)

-)8 Σ cos[<L4(p)-0G(p)]. (2.1)
p e Λ 2

The 3-form dG is supported on cubes c in y!3, so the first term in (2.1) is
shorthand for

Similarly d*G is a 1-form defined on bonds bmAl9 and dA is a 2-form. β and #
are the coupling constants of the theory. The action (2.1) has two distinct
symmetries; one is the usual gauge invariance of the U(l) field A, displayed by the
change of variables

A(b)^A(b) + dχ(b), (2.2)

where χ is any 0-form. In addition there is a new gauge symmetry, corresponding to
the change of variables

A(b)^A(b) + A'(V) , G(p)ι->G(p) + - dA'(p) , (2.3)

where A' is any 1-form. The action (2.1) is invariant under the change (2.3), except

for the gauge-fixing term — -(d*G9 d*G). This term is necessary to define the

functional integral, but expectations of gauge-invariant observables are independ-
ent of α. Finally, we point out that when 0 = 0 the action (2.1) separates into a
quadratic action for G and the Wilson action for the U(l) field:

Sw(A)=-β Σ cos[<L4(p)]. (2.4)
peΛ2

We define the expectation of an observable ^(G, A) by

) . (2.5)

The measure is given by

IDGDA= n ί <*G(P) π ί dA(b),
peΛ2 —oo beΛi —π
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and Z is chosen to normalise the expectation. The equations dG = Q and d*G = Q
have the unique solution G = 0 on Λ2, so the functional integral is well defined.
When g = 0, the model reduces to the U(l) gauge theory with the Wilson action, for
which the expectation of an observable 3F(A) is

<&(A»W = Zwi f DA exp [ - SW(A)W(A) .

We are interested in an observable with the following two properties: it is
gauge-invariant, and when g = 0 it reduces to the Wilson loop exp Γi Σ A(b)\

L beL J
where L is a closed loop on the lattice. By introducing a 1-form h supported on the
loop L, we can write

Σ A(b) = (A,h). (2.6)
beL

The lattice Laplacian on 1 -forms is d*d 4- dd*, and we denote its inverse on A1

by C (this is well-defined since d*d + dd* has trivial kernel on 1 -forms). We define a
2 - f o r m o n Λ b y J = ̂  (2 ?)

and our gauge-invariant observable is given by

H(J) = exp [ί(A, h) - ig(G, J)] . (2.8)

The gauge invariance of H(J) follows from the two equations d*h = Q and
d* J = h. This choice of observable is motivated by ideas in [8]. We can now state
our main theorem, which is proved in Sect. 4.

Theorem 2.1. For d^.4 and any 0 < γ < oo there are constants gQ(y), R(y) such that
forg<g0(y)andβg2>R(y)

<H(J)>£exp[-y(fc,Cfc)]. (2.9)

In dimension d^ 4, (h, Ch) grows like the length of L, so (2.9) implies perimeter
law decay for <#(/)> when g is small and βg2 is large. To relate this result to the
U(l) model, we use the following proposition.

Proposition 2.2. d <Jί(J)> ̂  Q

dg

The correlation inequality (2.10) is almost identical to a result given in [3], and
the proof is sketched in Appendix A.

When β is small, we can use Proposition 2.2 to bound <H(J)> from above by
<exp[ϊ(v4, hy]yw, the expectation of the Wilson loop in the U(l) model. We know
that this has area law decay for small β, so we deduce the following result.

Corollary 2.3. In all dimensions for β sufficiently small, <//(J)>
^ exp [ — c Area (L)] .

By combining (2.9) and (2.10) we deduce the desired result concerning the U(l)
model.

Theorem 2.4. For d^4 and any 0<y < oo, there is a constant βo(y)
such that for β>β0(y)

(2.11)
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Proof of Theorem 2.4. The left-hand side of (2.1 1) is <#(J)> with g = 0. By (2.10),
this is bounded from below by <ίί(J)> with g = go(γ) — ε9 for any ε<^0(?) Since
β > βo(y)> we can choose ε > 0 so that

and then (2.11) follows from (2.9). D

The remainder of this paper is devoted to proving Theorem 2.1 . As we shall see,
this involves a simple cluster expansion for a model without any massless modes.

3. Higgs Mechanism for Tensor Gauge Field

In this section we will exhibit the Higgs mechanism for the model defined in Sect. 2.
By making a gauge transformation, we can remove the U(l) field from the
functional integral and display explicitly the mass for the tensor field. However,
because the U(l) field is compact, some care must be taken to carry out this
transformation, and so we follow the example of Balaban et al. who considered a
similar transformation for the abelian Higgs model [1].

We first choose a maximal tree T on Λί9 the bonds in Λ. Then since H(J) is
gauge-invariant, we can set A(b) = 0 for all bonds b e T. This gives

- ~ (dG, dG)- ^- (d*G,d*G)
2 2α

+ β Σ cosίdA(p)-gG(py] + i(A9h)-ig(G9J) '(3.1)
peΛ2 _\

where Z in (3.1) differs from the Z defined in (2.5) by a factor 2π for each bond in T.
Next we separate G into a compact piece and an integer-valued 2-form by

/^
Gίp) = G'(p)+ — υ(p), (3.2)

where G'(p) e -- , — and v(p) e TL. This allows us to write
L 9 9λ

<H(J)>=Z"1f ̂  Π δ(A(b))S DG' Σ exp Γ- \ (dG' + — q, dG' + — q )
beT c L 2 \ 9 9 J

O O \

d*G'+ — d*u,d*Gx+ — d*ϋ) +β Σ cos[ίL4(p)-flrG'(p)]
9 9 J pεΛ2

7,J)-2πi(ί;,J)l+ i(A, h) - ig(G', J) - 2πί(υ, J) L (3.3)

where q = dv and the subscript "c" is a remainder that the integral is now compact.
Since the integrand of the GMntegral (which includes the sum over v) is periodic in

2π
each G'(p) with period —, we can change variables as follows:
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Hence, using d* J = h,

Π δ(A(b)) I DG" Σ
beT c v

H
r\ r\

- G/x + — q,dG"+ — q
9 9

- -d*G" + — d*v+- d*dA,d*G" + — d*v+- d*dA
2α V g g 9 9

+ β Σ cos[gG"(pj]-ig(G',J)-2πi(υ,J)\. (3.4)
peΛ2 J

Given any closed, integer-valued 3-form q we consider an integer-valued 2-
form vq with the property q _

It will be shown in Appendix B that such a 2-form always exists. Furthermore,
any other integer-valued 2-form v satisfying (3.5) can be written as υ = vq + dn,
where n is an integer-valued 1-form. This correspondence can be made unique by
fixing n = 0 on the maximal tree T. Since each 2-form v gives rise to a closed 3-form
q, we have the relation T

Σ= Σ Σ,
v q:dq = 0 n

where the superscript "T" indicates that n is fixed to zero on T. Therefore,

<H(jγ> = Z~'LlDA Π δ(A(b)) Σ ί DG" Σ
beT q:dq = 0 c n

[ 1 / 9 0 \

- = (dG"+—q,dG"+—g)+β Σ cos[0G"(p)]
^ \ 0 9 / peΛ2

2α V gf gf

+ — d*ϋ« + - d*d(^l + 2πn) ) - ig(G", J) - 2πi(vq, J) \. (3.6)
<y if

, J) - 2πi(vq, J) .
J

We have used the fact that (dn, J) = (n, K) is an integer. Reordering the integrals
and defining χ = A + 2πn, we get

Z~1 Σ ΪDG"
q: dq — 0 c

xexp

-ig(G'

xexp

',J)-2πi(ι;β,J)lί/)χ Π
J beT

" 1 / 2π
~2αΓ G-+ — d ϋ « 4

„ 2π „

0

«(χ(fc))

--d*dχ,d*G' /

2π

0

(3.7)
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We now want to perform the χ-integral. This is done by finding a 0-form / such
that the following 1-form B vanishes on T:

We can compute / by integrating the 1-form gCά*G" + 2πCd*vq along the tree
T. Now we change variables to χ' = χ + B, and the χ-integral in (3.7) becomes

ί Dχ' Π δ(χ'(by> exp Γ - -̂  (d*dχ\ d*dχ')} (3.8)
beT L ^9 J

which is a finite, positive constant [the gauge-fix ensures the absence of zero modes
in (3.8)].

Therefore, our final representation for <H(J)> is

— q, dG + — q} -ig(G,J)-2πi(vq,J) . (3.9)
2 \ g g J J

4. Proof of Perimeter Decay

The proof of Theorem 2.1 which we present in this section is very similar to the
proof of long-range order for the abelian Higgs model in [8]. The proof uses a
simple cluster expansion taken around a product measure. Some of the technical
arguments which can be copied verbatim from [8] are omitted here.

We construct a simple polymer expansion for the functional integral in (3.9). In

that representation, it is clear that the tensor field G(p) has a mass of order #]//?,
and that for g small non-zero values of q are strongly suppressed. We define a
product measure for G by

dμ(G) = N Π {dG(p)exp[βcos0G(p)]} (4.1)
peΛ2

with N chosen to normalise the measure. The expansion will be made about this
product measure.

The zeroth order term in the expansion will be J dμ(G)exp[ — ig(G, J)].
This factorizes into a product over plaquettes, and gives the required behavior.

The idea of the polymer expansion is to write the remainder as a sum of terms,
which contain couplings between some plaquettes. Each of these terms then
factorizes into a product over sets of plaquettes. Some of these sets may be single
plaquettes, which others may contain many plaquettes coupled together. The mass

#]//? gives a large penalty for couplings of the field G between different plaquettes,

and any non-zero ^-configurations are damped by their action -I—) (q,q).
\ c/ /

These penalties mean that large coupled sets are unlikely, and that the behavior is
dominated by the zeroth order term.

It will be natural to consider the terms in our expansion as supported on sets of
sites on the lattice. Two such sets X and Y will be disjoint if no site in X is the
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nearest neighbor of a site in Y. Similarly a set X is connected if it does not have two
disjoint subsets. We also define the support of a p-form as the set of all sites
belonging to the p-cells on which the p-form is non-zero, and we write \X\ for the
number of sites in X.

The expectation (3.9) can be rewritten as

with <H(J)y=Z(OΓlZ(J)9

Z(J)= Σ f d K φ e x p Γ - ± d G + — q,dG+ — q

(4.2)

For every c e A3 and p e Λ29 we define

1 + ρ(c) = exp Γ - ± \dG(c)\2 - — dG(c)q(c)\ , (4.3)
I _ c/ _ I

1 + σ(p) = exp [ - igG(p) J(p)] . (4.4)

Therefore, we have

Z(J)= Σ
«:d« = 0

Π [l+ί?(c)] Π [1+σOO]

= Σ Σ Σ fefe^Z), (4.5)
q:dq = 0 YCΛz ZCΛ2

\ 2

k(q, Y, Z) = exp [̂  - i ̂ J (? , 4) - 2πί(»«, J) J

xίdMG)Πβ(c)Πσ(p) . (4-6)
ceY peZ

In order to proceed, we must factorize each term in (4.5) over its connected
components on the lattice. This requires some additional properties of the 2-forms
vq. These properties, some of which will be needed further on, are stated in Lemma
4.1 and proved in Appendix B. Notice that any closed 3-form q can be rewritten as
q = Σ qt, where each set supp^ is connected and dqt = 0 for each i. We define B(X)

i

as the smallest rectangular parallelepiped on A which contains X, for any set
XCΛ.

Lemma 4.1. For d^4 there is a choice of integer-valued 2- forms vq such that
(a) dύ* = q,

(b) vq= Σ vqi, where q= Σ q^ dq—Q, and each set supp^f^ is connected,

(c) v-q=-ifl9

(d) suppι?*CJB(suppg),
(e) ll^lloo^c(^,^)3, some constant c.
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We now return to (4.5). Given q, Y and Z, we let X19 ...,XncΛ denote the

connected components of the set (J £(supp^)uyuZ, where q= Σ q^dq

each slippy is connected. We have abused notation by writing 7, Z for the sites
contained in the sets 7, Z. By Lemma 4.1(b) and because dμ(G) is a product
measure, the activity (4.6) factorizes over different sets X{. Indeed we can collect
together all the terms corresponding to a choice of connected components
Xί9 ...9Xn9 and rewrite (4.5) as a sum over connected, disjoint sets {Xl9 ...9Xn}:

oo n

Z(J) = Σ Σ' Π K(Xt,J). (4.7)
n = 0 {Xι,...,Xn} ί=l

The primed sum is taken over connected, disjoint sets, and

K(X9J)= Σ k ( q , Y , Z ) . (4.8)
Y,Z,q

X=uβ(suρp^)uΓuZ

The point is that now Z(J) is the grand canonical partition function for a gas of
particles with activities K(Xi9 J) interacting with a hard core repulsion. When the
activities are sufficiently small, we can represent logZ(J) by a Mayer series. We
state below the required estimates for K(X9 J). These bounds are straightforward
and are almost identical to estimates proved for similar activities in [8], and so we
refer the reader there for proofs.

Lemma 4.2. For any M > 0 there exist e > 0 and μ < oo such that for g<& and

?> μ, \K(X, J)|^exp(-Λφφ.

Then the Mayer expansion for InZ(J) is the following:

oo 1 n

InZ(J) = Σ -. Σ Vc(*ι, , Xn) Π K(Xt, J) . (4.9)
n=ί n\ χlt...,χn ί=ι

The sum over sets Xl9...9Xnm (4.9) is unrestricted. The function ψc(Xί9 . . . , Xn)
is the connected part of the hard-core interaction between Xί9...,Xn, and it
vanishes unless (J Xt is connected. The derivation of (4.9) and the proof of

i

convergence of the series, given Lemma 4.2, are standard, and we refer the reader to
[2, 9] for details.

We are now ready to prove Theorem 2.1. This is done by proving a bound on
lnZ(J)-lnZ(0), which will then imply a lower bound on <#(J)> of the required
form. For s e [0, 1] define

/(s) = lnZ(sJ). (4.10)

It follows from (3.9) and Lemma 4.1 (c) that f ( s ) = f(-s). Therefore,

lnZ(J)-lnZ(0) = /(l)-/(0)= } ds(ί-s)Γ(s). (4.11)
o

Using (4.9) we get

/"(*)= Σ J(pW)m(p,P/), (4-12)
P,P'
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with
oo 1 «

m(p,p')= Σ - Σ Σ ΨAXL....XJ
n=l n\ ί,j=l Xit...,Xn:

Π K(Xk9sJ) Kp(Xi9sJ)Kp,(Xj9sJ). (4.13)

We have written KP(X9J) = —r-K(X,J). Also the terms in (4.13) with i=j
oJ(p)

contain Kptp,(Xi9J)9 rather than Kp(Xi9J)Kp,(Xi9J). Notice that we have used
Lemma 4.1 (d) to impose the constraints p e B(Xt), p' e B(Xj). In order to estimate
(4.13), we will need the following lemma giving bounds on KP(X9J) and
KP9P,(X, J). For these bounds to hold, it is crucial that we have Lemma 4.1 (e), since
a derivative may pull down a factor vq(p). Again the reader is referred to [8] for the
proofs, where almost identical bounds are established.

Lemma 4.3. For any M>0 there exist ε > 0 and μ<oo such that for g<ε and

9]fβ>μ,
\Kp(X9J)\9\Kptp,(X9J)\£exp(-M\X\).

Using Lemmas 4.2, 4.3, we see that a factor exp[ — ̂ Mdist(p,p')l maY be
extracted from the right-hand side of (4.13) /recall that ψc vanishes unless (J Xt is

connected). The remainder may then be bounded by the same methods used to

prove convergence of the Mayer series (see [8] for details), and therefore we get

|m(p,p')|^exp[-iMdist(p,pO], (4.14)

where δ can be made arbitrarily small by taking M sufficiently large. Combining
(4.14) with (4.11) and (4.12) we deduce

|lnZ(J) -lnZ(0)| ̂  (J, J) sup Σ \m(p, p')| .
s,p p'

Recall that (J9J) = (h9 Ch)9 so we get |lnZ(J)-lnZ(0)|^y(/ι, Ch)9 where y can
be made arbitrarily small by taking M sufficiently large. This implies the desired

Appendix A

We present a sketch of the proof of Proposition 2.2 below. The result is very similar
to the correlation inequalities in [3] and is proved in the same way. First we notice
by rescaling the field G that

— <H(J)y= (H(J)ι -r (dG,dG)+ —^ (d*G,d*G)
aq \ \q &q

U \ \<J U

where < — — > is the truncated correlation. By using the identity
2

x2 = lim -3 (1 — cosεx),
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Proposition 2.2 reduces to the inequalities

<# (J) cos [εdG(c)] > ̂  0 , <#( J) cos [εd* G(fc)] > ̂  0 (A.I)

for each cεΛ3 and beΛ^. We will write the expectation <H(J)> in the following
way:

xcos[μ,Λ)-(G,J)],

where dμc(G) is a Gaussian measure with the obvious covariance. We now
introduce duplicate variables A' and G', and in the usual way (A.I) reduces to the
positivity of the integral

/ = I dμc(G)dμc(G') f DAD A' cos \_(A, h) - (G, J)]

Σ cos[_dA(p)-G{p)-] + β Σ c

x {cos [εdG(c)] - cos [εdG'(c)] } (A.2)

(or with the last factor replaced by cos [εd*G(fe)] — cos [εd*G'(fe)]). Positivity of/ is
shown by making the following change of variables:

α = ±μ'-A), j8 = iG4' + Λ),
(A.3)

Γ = G'-G, ^ = G 7 +G.

Using simple trigonometric identities and expanding the exponential in (A.2),
we get a sum of terms with positive coefficients, and each term has the form

Γf dμCί(Γ) 1 Dα/ ( (α, ft) - ^ (Γ, J)) sin Γ^ dΓ(c)l Π
L \ L J LZ J P<^2

where C^ =2C, and n(p)^0 is an integer. Also the function / is either sine or
cosine. Since (A.4) is manifestly positive, the desired result follows.

Appendix B

In this appendix we construct 2-forms υq which satisfy the properties of Lemma 4.1.
Because of the difficulty of visualising objects in four or more dimensions, our
construction is quite detailed at every step, although it is a natural generalization
of the construction in Appendix B of [8].

We will take the lattice A to be a subset of the region {x : x μ ^OVl ^μ^d}
which contains the origin x = 0. Denote by Γ a maximal tree on the bonds in Λ,
specified in terms of the d lattice directions x l 5 . . ., xd. T contains all bonds in the xd-
direction; in the sublattice xd = 0, T contains all bonds in the xd _ x -direction; in the
sublattice xd = xd_1 =0, T contains all bonds in the xd_2-direction; and so on.

Each lattice site x in Λ is connected to the origin by a unique path Γx along T.
Suppose that b is any bond on the lattice lying in the μ-direction, so that
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Then we define a closed curve L(b) on the lattice by

L(b) = buΓ(b+)u-Γ(b_), (B.I)

where the minus sign indicates orientation is reversed. So — Γ(x) is the path along
Tconnecting 0 to x. This definition (B.I) allows us to introduce an oriented surface
Σ(b) as the surface of minimal area whose boundary is L(6), that is

dΣ(b) = L(b). (B.2)

Notice that if μ = d, Σ(b) is empty, since then Γ(b+)= — feuΓ(ft_). Indeed for
any μ>l, some parts of Γ(b+) and — feuΓ(fe_) cancel out in this way.

Equipped with (B.2), we now define for each plaquette p on the lattice an
oriented surface S(p) whose boundary is dp:

S(p) = U Σ(b). (B.3)
be dp

The union in (B.3) is taken over the oriented bonds comprising dp, and from
(B.2) and (B.I) it follows that

dS(p) = dp. (B.4)

We can now address the problem of constructing the 2-form υq with the desired
properties. Let q be a closed 3-form on the lattice, with suppg connected. For each
plaquette p, choose a 3-volume V(p) such that

S7(p) = pu-S(p). (B.5)

Once again, the minus sign indicates that the orientation of the surface S(p) has
been reversed. Furthermore, (B.5) makes sense since d2 = 0 and dp = dS(p). Then we
define a 2-form wq on the plaquette p by

W(P)= Σ q(c), (B.6)
ceV(p)

where the sum is over cubes c belonging to V(p). This definition is independent of
the choice of 3-volume V(p) because dq — 0.

From (B.6) we see that wq is integer- valued. Also for each p there is a choice of
V(p) which contains each cube on the lattice no more than once, and so

since q is integer- valued. Most importantly, we can see that dwq = q as follows:

<W(c)= Σ Σ 9(<0= Σ ί(<0 (B.7)
pedc c'eV(p) c'e (J F(p)

peac

However, we have

3 U K(p)= U (pu-S(p))^δcu U (- U £(6)^=5^,
peδc pedc pedc \ be dp J

since 32 = 0. Again because dq = Q, (E.I) can now be written

dw«(c)= Σ ί(cO = «(c), (B.8)
c'ec

which is the desired result.
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The 2-form wq does not satisfy part (d) of Lemma 4.1. However, by adding to wq

the derivative of an integer-valued 1-form mq we will produce the desired 2-form vq.
We will write B(q) for the minimal rectangular box on A containing suppg. Let us
denote by A the set A = B(q)cudB(q), where B(qf is the set of sites outside B(q), and
dB(q) is the boundary oΐB(q). It follows from (B.8) that wq is closed on A, and hence
exact in dimension four or more. However, we will need some specific information
about the 1-form nq on Λ whose derivative equals w*.

In order to define nq, we introduce a maximal tree T on Λ. Choose a
hyperplane, xμ — constant for some μ, which intersects dB(q), but not Άc (this can
always be done unless B(q) = A, in which case (d) holds for wβ). We can redefine
coordinates so that this hyperplane is xd = 0. If we write x = (x, xd), then the set B(q)
can be specified by

where A is a rectangular subset of jR*"1, and L is some positive integer.
We now define T on the sublattice xd = 0 in the manner explained at the

beginning of this appendix (that is taking all bonds in the xd_ 1 -direction etc.), but
this time taking the origin to be some site in dB(q). The tree is extended to xd < 0 by
taking all bonds in the xd-direction. In the region xd > 0, we first consider all sites x
whose "spatial coordinates" satisfy x€ΔcvdΔ. Each of these sites lies in Λ, and we
include in T all bonds in the xd-direction attached to such sites.

Finally we consider the sites in the region xd^L, xeΔ\dΔ. This intersects
dB(q)9 and may be covered by a maximal tree defined in the usual way. Once
again we take the origin of this tree as a site in dB(q). By inserting one additional
bond in the hyperplane xd = L, connecting dΔ to its interior, we obtain a maximal
tree T on the set Λ.

The foregoing rather complicated construction is just one choice of a tree on Λ.
Unfortunately we need this detailed description to prove our results. Let Γx be the
unique path in T connecting x to the origin (which is in the hyperplane xd = 0), and
define L(b) for any bond b by (B.I). Then for any choice of surface Σ(b) in Λ with
boundary L(b)9 define

nq(b}= Σ w«(p). (B.9)
peΣ(b)

In dimension d^4, the definition (B.9) is independent of the choice of surface
Σ(b) (this is because dwβ = 0 on Λ and H2(Sd~1) = 0 for d^4). It is easy to check
that dnq = w5 on Λ. Furthermore, (B.9) shows that nq is integer- valued. Finally our
explicit construction of T shows that the following bound holds:

\nq(b)\^\\wq\\mA(q) VbedB(q), (B.10)

where A(q) is the sum of the areas of the sides ofB(q). Since suppg is connected, we
have

for some constant c.
Therefore, define the 1-form mq on Λ to equal nq on Λ and zero otherwise, and

define
υq = wq-dmq. (B.ll)
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Then (B.8), (B.9), and (B.10) imply Lemma 4.1, parts (a), (d), and (e). If q = Σ qi
i

with each supp^ connected, then dqt = 0 for each /, and we can construct vqί

separately and add to get vq. To satisfy (c), we consider pairs q and — q, construct
vq, and define v~q= — vq.
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