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Some Examples Concerning
the Global Markov Property
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Abstract. We present examples of interactions of classical lattice systems whose
extremal Gibbs states fail to have the global Markov property. One of the
examples is translation invariant.

1. Introduction

Consider a classical lattice system on a lattice JS?, with a finite-range interaction Φ
so that the formal Hamiltonian is Σ Φχ\ - Sites x, y will be said to be neighbours

if φχ φ 0 for some finite Xc& containing x and y. For any subset ΛC3P, let J^ be
the σ-algebra generated by the spins in A, and let dΛ be the set of sites not in Λ
which have at least one neighbour in A. The Gibbs states for the interaction Φ
satisfy the local Markov property:

E(f\^\A) = E(f\^dA) for any finite Ac& and bounded ^-measurable /. (1)

The global Markov property is the same statement, but with A allowed to be
infinite.

It was conjectured in [2] that every extremal Gibbs state for Φ satisfies the
global Markov property. A more general conjecture would be that for lattice
random fields, the local Markov property plus triviality of the tail field imply the
global Markov property. Von Weizsacker [4] has found a counterexample to the
latter conjecture. His random field is not a Gibbs state in the usual sense: it
involves constraints rather than interactions. One could construct an interaction
whose Gibbs states have similar behaviour, but it would have to be unbounded,
growing rapidly enough at infinity so that with high probability all the constraints
of von Weizsacker's process are satisfied. In this note we will construct examples
with a bounded, in fact periodic or translation-invariant, interaction whose
extremal Gibbs states fail to have the global Markov property.
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2. An Example (Model 1)

The lattice <£ consists of the sites (z J, ± 1/2), (ί + 1/2 J, 0) and (i,j + 1/2, 0) in R3 for
ίJeZ (see Figs, 1 and 2). The spin at each site takes the values ± 1 we will denote
the spin at (x, y, z) by sXty if z = + 1/2 (the top layer), tXty if z = 0 (middle layer), and
uXfV if z = — 1/2 (bottom layer). The interaction is a ferromagnetic three-spin
interaction; the Hamiltonian may be written (formally) as

i.jeZ
ίj + ι/2si,j+ 1 tίJ+ l/2Uί,j+ l

(2)

Take for Λ the top layer J2? n {z = + 1 /2} , so that 3Λ is the middle layer JS? n {z = 0} .

Theorem, (a) In any Gzfcfcs sίaίe o/ this model for any J, E(sij\&r

dA) = Q. (b) For
sufficiently large J, m aw extremal Gibbs state E ( s i j U ί ί j ) + Q.

(This implies ^(s^^lJ^^^φO, so the global Markov property fails.)

Proof, (a) Note that the model has a local "gauge" symmetry: let Γ be any rectangle
with sides at half-odd-integer values of x and y (e.g. the dashed rectangle in Fig. 1),
and flip all the s and u spins inside Γ and all the t spins on its boundary. It is easy to
see that the Hamiltonian is invariant under this operation. Since it is a local
symmetry, all Gibbs states are also invariant. Now if g(t) is any function of the
spins in a finite subset A of dΛ, we may take Γ so large that A and (ij) are in its
interior. Then the symmetry leaves g(t) unchanged but flips sitj, so E(siijg(tJ) = 0.
Since functions of finitely many spins are dense in L2, E(sij\#r

dΛ) = Q.
(b) We may explicitly "integrate out" the t spins:

t= ±ι
with K -1/2 log cosh 2J. (3)

Fig. 1. Top view of &
T 1

Fig. 2. Side view of &
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The result is that the variables aij = sijuij describe the two-dimensional fer-
romagnetic Ising model at inverse temperature K. In particular, for K> Kc there
are two extremal Gibbs states with E σitj= ±mφO.

3. Variations on Model 1

Model 1 is translation-invariant in the x and y directions, but has only finite extent
in the z direction, normal to the dividing surface dΛ. It may be of some interest to
consider models with translations acting in all three directions. This may be
obtained trivially by stacking up copies of Model 1 as layers which do not interact
with each other. Somewhat less trivial is a model (Model 2) in which the s spins of
one layer are identified with the u spins of the layer above. This model is on the
lattice &2 consisting of sites (i + l/2J,fc), (ij + l/2,fc) and (i,j,k + l/2) with
i, j, k e ΊL. We use ί's to denote spins at the first two types of site and s's for the third
type; spins take values ±1. The formal Hamiltonian is

l ,/c+ 1/2 + Si,j,k+ l/2^i+ ί/2,j,kSί + l,j,k + 1/2

ksi+ l,j,k- 1/2) (4)

We take Λ = ̂ 2n{z>0}, so that dΛ = ̂ 2n{z = Q}.
In Model 2 there is no longer a local symmetry. However, the ί spins may still

be "integrated out," leaving a model with formal Hamiltonian

HS = K Σ (SίJ,k+ll2si,j+l,k+ll2sί,j,k-ll2si,j+l,k-ll2
i,j,k

+ Si, j,k + ί/2Sί + 1 ,j,k + l/2SiJ,k- l/2Sί + 1 ,j,k- 1/2/ (5)

Using (3) as well as

Σ teJt(SίS2+S3S4) = const- 5^2 + s3s4e
KsιS2S3S4, (6)

f= ±1

we find that for any finite AcdΛ, E(sij)1/2tA) is a constant times a sum of
expectations of products of odd numbers of s spins ( where tA= Π tx,y,z\ - NowI Λ JL Λ.

\ (x,y,z)eA

using the theory of Holsztyήski and Slawny [3] on the system with the ί's
integrated out, we find that in the + phase at low temperature, the products of s
spins which have nonzero expectation are those which may be written as products
of terms sijth+ ι/2Sijtk-1/2 (and in particular are even). Thus E(sίJΛI2tA) = 0, which
implies E(sίjίl/2\^dΛ) = 0, since linear combinations of the tA are dense in L2(^dΛ).
On the other hand, E(sijt ι / 2

s i j , -1/2) > 0. Thus the + phase (which is an extremal
Gibbs state) at low temperature fails to have the global Markov property.

While Model 2 is periodic in the z direction, the action of translations is not
transitive: the s and t spins are not equivalent, and even the t spins at (i +1/2j', fc)
and (zj + 1/2, fc) are not related by a translation. We will now describe a third
model (Model 3) in which translations act transitively on the lattice, but the spins
are no longer just +1.

This time the lattice is the face-centred cubic lattice, which we write as
J2?3 = {(x, y, z) e (1/2Z)3: x + y + z e Z}. At each site x there are three spin compo-
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nents σ£, σ2, σ3, each of which takes values ±1. The formal Hamiltonian is

(8)

where i, j, k are (1,0, 0), (0, 1 , 0) and (0, 0, 1 ) respectively. Again A = JS?3 n {z > 0} , so
aΛ = J^3n{z = 0}.

Model 3 is actually composed of four separate copies of Model 2, not
interacting with each other. One of these copies consists of the σ1 components on
the sublattice Έ? (acting as s spins), the σ2 components on the sublattice
Z3 + (0,1/2, 1/2), the σ3 components on the sublattice Z3 + (1/2, 0,1/2), and
nothing on the fourth sublattice Έ? + (1/2, 1/2, 0). The other copies are translates of
this one by (0, 1/2, 1/2), (1/2,0, 1/2) and (1/2, 1/2,0). Thus the results for Model 2
carry over to Model 3.

4. Open Questions

We conclude with some questions that remain open.
(1) Does the global Markov property hold whenever the Gibbs state for Φ is

unique?
The only known result in this direction is that strong uniqueness [1] implies the

global Markov property. On the other hand, in our examples the nonuniqueness of
the Gibbs state is a key ingredient in the failure of the global Markov property.

(2) If JS? is two-dimensional, does the Markov property (1) hold when A is a
half-plane?

If we take the cross-section of the lattice of Model 1 for y = 0 and make J
infinite (i.e. replace the interaction by the constraints Sί.o^+i/i.o Si+i .o
= wi,o ίi+ι/2,oMi+ι,o = l)> we obtain an example which is essentially equivalent to
von Weizsacker's [4]. This example would not violate the global Markov property
if J were finite, because a one-dimensional system with bounded finite-range
interactions can have no long-range order. Adding to the lattice in the z direction
would not appear to help; it seems the long-range order must "propagate along
3/1," which requires dΛ to be at least two-dimensional.

(3) Does the global Markov property hold for extremal Gibbs states with spins
of ± 1 and an interaction invariant under a transitive action of translations?

There is a good reason why to obtain an example (Model 3) with translations
acting transitively on the lattice, we had to use spins with more than one
component. For spins taking values ± 1 with a ferromagnetic interaction invariant
under a transitive action of translations, the Holsztynski-Slawny theory [3]
applies: E(σA) > 0 in the + phase at low temperature if and only if σA is a product of
translates .of σA, where A is the "greatest common divisor" of the bonds. Suppose
A £Λ and E(σA\^\Λ) Φ O.Then E(σAσB) φ 0 for some B C 3P\Λ, and σAσB is a product
of translates of σA. If we restrict the product to translates contained in ΛvdΛ, we
obtain E(σ^σc)φO with CcdΛ, i.e. E(σA\^dA)ή^O (all these expectations being in
the + phase at low temperature). This does not prove the global Markov property,
but shows that it will not be violated in quite the same way as in our examples. In
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particular, it would probably be much harder to prove that E(σA\^^\Λ)
\^dΛ) without the latter being zero.
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