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Abstract. Explicit representations of super-Kac-Moody algebra are construc-
ted in terms of 2d-free fermions which form a non-linear representation of
supersymmetry with the fermions grouped with the generators of the algebra
into superfields. It is shown how the most general construction of this type
corresponds to homogeneous spaces G/H and how supersymmetry alone is
responsible for that structure.

It is well known that representations of Kac-Moody algebra [1] can be
constructed using two-dimensional free fermions [2]. This construction was
crucial in the proof by Witten [3] of the equivalence between non-linear sigma
models with a Wess-Zumino term [4] and free fermion systems. This equivalence
was later developed in a beautiful paper by Knizhnik and Zamolodchikov [5]
using the techniques of conformal field theory [6]. It was then noticed that the
supersymmetric extension of the sigma model [7] also had a rich algebraic
structure and that it gave a representation of a supersymmetric extension of the
Kac-Moody algebra [8]. In the case of SO(iV) for example the content of the
model in terms of free fermions is the following: there are two types of decoupled
fields, one transforming under the adjoint representation of the group while the
other (corresponding to the fermionization of the bosonic field of the original
model) is in the fundamental representation. These two fields form a nonlinear
representation of supersymmetry [8]. A similar property was also observed in
Goddard and Olive in [9]. The purpose of this note is to show that a large class of
representations of super-Kac-Moody algebra can be constructed in terms of free
fermions which realize a non-linear representation of the two dimensional super-
conformal (Neveu et al. [10]) algebra (for another point of view on this latter
construction and related considerations about superstrings see [11]). As we will
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show, supersymmetry alone determines the precise structure of the super-Kac-
Moody algebra and the required group theoretical content of the theory (in
particular the only allowed representations of the fermion fields). More precisely
the requirement of supersymmetry will be equivalent to the existence of an
invariant connection on an homogeneous space G/H and the two sets of fields can
be regarded respectively as vertical and horizontal vector fields on the principal
bundle G(H, G/H). This remarkable fact points at a deeper connection between
supersymmetry and the geometry of Lie groups.

We will consider free Weyl-Majorana 2d-fermion fields which are functions of
the coordinates z = x + ίy and z = x — iy. For later use we also introduce at this
point the Grassmannian coordinate θ associated with z. The superconformal
transformations defined by an infinitesimal displacement vector field V(z,θ)
= vQ(z) + θv1(z) which is any analytic function of z and the Grassmannian
coordinate θ (note that v1 is anti-commuting) will be given explicitly by:

and 66=^(2) + θdzυQ(z)). (1)

The model is described by the Lagrangian

*f, (2)

where the ψl(z9 z) transform under an as yet unspecified real representation r of
dimension d(r) of a compact Lie group H and the χα(z, z) are in the adjoint
representation of H whose dimension we denote by D. By the equations of motion
\pl and χa are functions of z only, and we have

(3)
z — w

and similarly for the χa field. One can define two currents:

^=-ivW (4)
and

, (5)

where fabc are the structure constants of the group H and the generators Tfi in the
representation .R satisfy

ft]y=/βftc75. (6)

J*(z) and Ja

ψ(z) will satisfy

3^ = 0 (7)

and

SZJ-=0 (8)

which reflects the fact that the transformations of H which leave the Lagrangian (2)
invariant can be any analytic functions of z. We have then the well known Kac-
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Moody algebra in operator product form:

" ipW" w\Ύr; ,->/ \2 ' ' \ /ψ ψ 2(z —w) z —w

where k = —-—, the central extension, is equal to the Dynkin number k(r) and

c(r)δίj = (TaTa)ίj. As usual we should interpret this equation in the following way
[5, 6]. Define the generator Jω of an ^-transformation parametrized by analytic
functions ωfl(z) by:

1

2τπ

The variation of the field ψl will be

1

and in particular the transformation of the generators themselves will be

2τπ 2

where the contour circles around w. From these remarks follows

where Ja

ψ(z) = Σnz " 1Jn We have similar relations for Ja

χ(z) with

K= ~JabcJabc — Cv
The only non-vanishing component of the energy momentum tensor, given by

TB(z)=iψidzψ
i+iyadsχ

a (14)

is an analytic function of z and the generator of the conformal transformations (1).
The Virasoro algebra [12] is given by

B B ι * ι w ΰ (\s\
~ ~ ' ( }

where c = -^ - is the central charge for free fermions. The operator product

expansion (O.P.E.) of TB with the fermionic field ψl is

(16).
2(z-w)2 (z-w)

This equation expresses the fact that the fermionic fields have a conformal weight^
under a conformal transformation. One checks similarly that the conformal weight
of the currents is one.

If one wants to have a nontrivial realization of supersymmetry linking these
two sets of fields, one first has to construct a candidate for the generator of super-
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conformal transformations TF(z) which will be the partner of Tβ(z), and satisfy the
Neveu-Schwarz-Ramond algebra [10]:

The first of these equations is the expression of supersymmetry, while the last one
simply shows that the conformal weight of TF is f . As in (15) all the coefficients are
determined unambiguously by the fact that TB and TF must be the generators of
superconformal transformations (1) except for the central charge which to be
consistent with (15) must be c = 2/3c (for more details about super conformal field
theory see [13]). The most general operator of weight 3/2 that can be built out of
the ψ and χ fields is

TF(z) =^fabcx
axbxc+^ijkip

lipjipk + ίyχaJa

ψ . (19)

It is understood that the product of several operators at the same point is normal
ordered with respect to the modes of these operators. Here α, β, y are unknown
constants. Notice the presence of a term tri-linear in ψl. Since TF must be a scalar
under a transformation of H, and since the ψl anti-commute ηijk must be a totally
antisymmetric tensor satisfying

= 0 (20)

and

(21)

We want to show now that it is possible to fix the constants α, β, and y in such a way
that TB and TF satisfy (15) and (17) and that the central charge is exactly the one
corresponding to free fermions. In taking the O.P.E. of TF with itself one sees that
there are two types of dimension two operators which can appear: either the usual
current-current terms Ja^Ja

ψ or Ja

χJ
a

χ which come in the Sugawara construction of
the energy-momentum tensor given any Kac-Moody algebra (this was extensively
studied by Goddard and Olive in [9], see also Zamolodchikov and Knizhnik [5]),
or terms in four fermions like ηίjkιlrskψlψjψrψs and TjjTkιψ

lψjψkψl. Since these terms
are not present in (14) they must appear either in combinations such that they
cancel each other or be simply absent. One sees immediately that two cases are
possible depending on whether the tensor ηijk exists or not in the particular
representation r we are considering. However, we will see that it is not necessary to
make an exhaustive study of the representations which do admit such a tensor for
different groups since the possible solutions will have a simple geometrical
interpretation.

a) In the case where η jk is absent, the above condition imposes the following
constraints on the generator 7]J:

0. (22)
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Then from (17) and (14) one finds

(23)

Note finally that in this case the energy momentum tensor is

7i(z)=^(jμ; + jμ«), (24)

and that the normalization can be easily checked using the null vector condition of
[5] by applying the two sides of this equation on some highest weight vector of the
Virasoro and Kac-Moody algebra. Let's stress that this equality is a purely
quantum mechanical effect. Also from the equality c =f c =^(d(r) + D) we have the
constraint

-1. (25)

which severely restrict the possible representations the ψl can be in; but we will
return to this later on. The very same constraint (25) comes in the study of
Goddard and Olive [9] through the requirement that the Virasoro algebra
associated with the ordinary Kac-Moody algebra (9) be precisely (24).

b) In the second case the constraint (22) is two restrictive. We define :

nijknijr=-c(r)δkr, (26)

Tw=ΪJJ7S+3S3J? + 73lϊϊ, (27)

and

Nίι/W = ηijrηklr + Ά^Άjlr + Ijkrlilr > (28)

from which follows

iN-T=-c(r)d(r)c(r), (29)

and

iTT = c(r)d(r) [k(r) + cv - 2c(r)] . (30)

We will then replace the constraint (22) by

c(r)
and one finds λ= -:-- - ̂  , x . Again we determine the constants from (17)

fc(r) + cv-2c(r) δ v ;

(32)- , / λ .
r))' cv + k(r)-2c(r)

So we see that when the constraint (22) or (31) are satisfied, the Lagrangian (2) is
invariant under the superconformal transformation (1) whose generator is given
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by (19). The transformations of the fermionic fields are

and

= - i2a Γ T^y (wV(w) + -±= ηijkψ
j(w)ψk(W)\ . (34)-=

We define the two superfields

), 05)

/ί(z' 6) = φί(z) + θ

(36)
ΔVL

We are now in the position to see the full structure of the super-Kac-Moody
algebra by simply taking the operator product of these superfields:

Sa(zl9 ΘJS\z2, Θ2)=k^δab + θ-^fabcS
c(z2, Θ2), (37)

Z12 Z12

'

S°(Zί, 9^\z2, Θ2)= -̂  [- 7Snz2, «2)] , (38)

(39)
12 Z12L|//l

with k = —^ =cv-\- fc(r), and where we have used the notation zί2 = z1—Z2 — θ1θ2
.Z OC

and Θ12 = θι — θ2 The first of these equations is nothing but the super symmetric
extension of the Kac-Moody algebra (9), the central charge k being as it should be
the sum of the one corresponding to Ja

ψ and Ja

χ since they commute with each other.
The second expresses the transformations properties of the Ψl field under H. More
surprising is the structure of the last equation. Notice that it exhibits the same
central charge k and that the Ψl play a role very similar to the supercurrents Sa. All
this is best understood by looking at the bosonic part of the equations above. If we
define Ja(z) = Σnz~n~1Ja

n and φί(z) = Σnz'n~1Φn9 we have for the modes zero
denoted by ja and φ1, respectively:

=ηtftyλ

(40)
(41)
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and

U»-^y. (42)

Since for all possible combinations of φl and/ the Jacobi identity easily obtains,
this is the Lie algebra g = h + m of a group G D H with ad(H)m = m'Ja and φ1 span h
and m respectively and G/H is an homogeneous space. This is well known to
correspond to the decomposition of the tangent fields of the principle bundle
G(H, G/H) at the identity into its vertical and horizontal components, and given

the corresponding invariant connection we recognize j=nijk as the torsion and
yλ

— TfiTu as the Riemann tensor [14]. The constraint (31) is the Bianchi identity.
These identifications provide the geometrical interpretation we were looking for.
Specializing to the case were the tensor ηίjk is absent is then equivalent to imposing
that G/H is a symmetric space [15]. One also recovers the result of [9] that free
fermions in the adjoint representation of a compact Lie group are supersymmetric
by themselves. As a last remark we would like to stress once more that all this rich
structure is the result of imposing supersymmetry.
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