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Abstract. We study the bifurcation of radially symmetric solutions of
Au + f(u) = 0 on n-balls, into asymmetric ones. We show that if u satisfies
homogeneous Neumann boundary conditions, the asymmetric components in
the kernel of the linearized operators can have arbitrarily high dimension. For
general boundary conditions, we prove some theorems which give bounds on
the dimensions of the set of asymmetric solutions, and on the structure of the
kernels of the linearized operators.

1. Introduction

We are interested in the bifurcation of radially symmetric solutions of semilinear
elliptic equations

Au(x) + f(u(x)) = 0, x e β " = an rc-ball,

into asymmetric ones; when this happens we say that the symmetry-breaks. In a
recent paper, [7], we studied this problem for solutions which satisfied (homog-
eneous) Dirichlet boundary conditions. Our goal here is to consider more general
boundary conditions, and to demonstrate some interesting differences which can
occur for other boundary conditions. For example, we show that for (homog-
eneous) Neumann boundary conditions, the symmetry can break in such a way
that the asymmetric components in the kernel of the associated linearized
operators have arbitrarily high dimensions. In fact, we shall construct a function
f(u) and a sequence of monotone radial solutions {uk}, such that the asymmetric
component of the kernel of the linearized operator about uk has dimension

J [ —— I. Thus the symmetry breaks infϊnitesimally in an increas-

ingly more complicated manner. It should be contrasted with the case of Dirichlet

boundary conditions, where for monotone radial solutions, the symmetry can
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break only in a most rigid way; namely the asymmetric component of the kernel
always has the same fixed dimension n (see [7]). In this case /(0) < 0 is a necessary
condition for the symmetry to break on positive solutions, and when the symmetry
breaks on such a solution, it only breaks in the first mode. By contrast, for
Neumann boundary conditions, there is no requirement on sgn /(0), and there can
never be symmetry-breaking in the first mode. Indeed there can be, (and is)
symmetry breaking in all sufficiently high modes, as shown by our example.

For general homogeneous linear boundary conditions, we prove some
theorems which give bounds on the dimensions of the manifolds of asymmetric
solutions, and on the structure of the elements in the kernels of the associated
linearized operators. Thus, if the symmetry breaks on a monotone radial solution1,
then we prove that the asymmetric component of this kernel must be irreducible2.
This fact is sometimes needed to apply certain bifurcation theorems, e.g. [10]. We
also show that for any element in this kernel, its radial part cannot have more zeros
than the derivative of the radial solution itself. We use this result to estimate the
number of irreducible components in the kernel, and hence to bound the number
of distinct sets of asymmetric solutions which can bifurcate out of a radial solution.

Certain of our results are extensions of those in [7], where we studied related
questions for monotone solutions of the Dirichlet problem. The fairly difficult
construction given here, (in Sect. 4), of the existence of an asymmetric element in
the kernel of the associated linearized operator, (with homogeneous Neumann
boundary conditions), relies on the fact that this operator is self-adjoint with
respect to a weighted L2-inner product3. This allows us to view the problem as a
variational one. The success of this approach in turn, is based upon rather careful
estimates of the "time-maps" (see [5, 6]), together with an existence theorem
proved in [8].

We point out that since radial solutions of our equation satisfy an ordinary
differential equation, it is natural to allow the radii of the domains to vary, and to
consider orbits of the associated first-order system of equations which satisfy
u(0)=p>0, and u'(0) = 0. In this context, then, we can take p to be the bifurcation
parameter. This is a slightly different approach from the usual one, where one
considers the equation Δu + λf(u) = 0, on a fixed domain Ω, and one takes λ to be
the bifurcation parameter. We could just as well study the equation Au + f(u) = 0

on the domain |/ΪΩ, i.e., changing the domain by a similarity transformation is the
same as changing λ. We find it more convenient to use p as the bifurcation
parameter.

2. The Equations

Let Dn

R be an n-ball of radius R, centered at the origin with boundary dDn

R. We
consider the equation

x)) = 09 xeDn

R, (2.1)

1 So in particular, if it breaks on a positive solution of the Dirichlet problem; see Gidas et al. [3]
2 That is, under the action of the orthogonal group O(ή), it has no proper invariant subspace
3 We are indebted to Charles Conley for bringing this fact to our attention
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together with general linear homogeneous boundary conditions

OLU(X) + βdu(x)/dn = 0, xedDn

R. (2.2)

Here α and β are constants, <x2 + β2 = l, and d/dn denotes differentiation in the
radial direction on dDn

R. The special class of solutions of (2.1), (2.2), depending only
on the radius r = |x|, and which we term radial solutions, (or sometimes, invariant
solutions), satisfy the ordinary differential equation

u»(r) + ^Zλ U'{r) + f(u(r)) = 0, 0<r<R, (2.3)

together with the boundary conditions4

ι*'(0) = 0, otu(R) + βu\R) = 0. (2.4)

We observe that there is exactly one solution u of (2.3) having w'(0) = 0, and
u(0) = p; we write this solution as u(r,p), and in these terms, we have

u(0,p)=p. (2.5)

Throughout this paper we will consider p as the "bifurcation parameter," and
prime, (% will always denote differentiation with respect to the variable r. Let

A = {p:lT=Ta(p):u(.,p) solves (2.3) κ'(0) = 0,

and αu(Γ, p) + βu'(T, p) = 0}.

Notice that for each p, Ta(p) is (at most) a countable set: 7̂ °(p), T*(p)9..., where
T™(p) is the "time" that it takes the solution to make M/2 rotations about the line
au + βu' = 0, M = 0,1,2,..., in the (w, w^-plane.

The function p-^Γα

M(p) will be called the (μ,M)-time map. We will use the
notation

TD=1f, TN = T°, TX = T? (2.6)

to denote the M = 0 Dirichlet-time map, the M = 0 Neumann-time map and the
general M = 0 time map, respectively. In this paper we shall be concerned only with
these latter functions.

If κ(.,p) solves (2.3), (2.4), then the linearized operator Lp:Cl(\x\^R)^C(\x\
^ R), (R = Ta(p))9 defined on the class of C2 functions on |χ| ^ R which satisfy the
boundary conditions (2.2), into the continuous functions on the same domain, is
defined by

Lpv(x) = Δυ(x) + f(u(\xl p))v(x), \x\<R. (2.7)

We say that v φ 0 is in the kernel of Lp, if v satisfies the linearized equation

Lpv(x) = 0, \x\<R, (2.8)

together with the boundary conditions

<xv(x) + βdυ(x)/dn = 09 \x\ = R. (2.9)

•" The condition w'(0) =0 is necessary if u is to be differentiable at the origin
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That is, v is an eigenvector of Lp corresponding to the eigenvalue zero. Using the
implicit function theorem, we see that if w( , p) is a "bifurcation point," then zero is
an eigenvalue of Lp.

We shall now briefly review some facts concerning the eigenfunctions of the
Laplacian A on S""1, and the associated spherical harmonic decomposition of
functions defined on an n-ball; for more details, see, e.g., [1, 4].

The eigenvalues of A on Sn~ι are given by

2), JV = O, 1,2,.... (2.10)

Let {Φf lrgiίgk^} denote a basis for the JVth eigenspace of A; i.e., for the
eigenfunctions of A on Sn~ \ with eigenvalue λN. Then we have the following facts:

(i) The dimension of the JVth eigenspace is

(ii) The set {Φf: 1 ̂  i ̂  kN, i = 0,1,2,...} forms a complete orthonormal set on

As a consequence of these facts, any function h on Sn~1 can be written as

Σ
ί,N

where
(KΦ?y= ί h(θ)Φf(θ)dθ.

Sn-1

Thus, for any function ί;(r, 0) on an rc-ball |x| ^ R, we may write z; in the form

v(r, Θ)=Σ <v(r, •), Φf(-)}Φf(θ)= Σ α,»Φf(0), (2-12)
iN iN

for each fixed r.O^r^R. Now suppose in particular, that v satisfies (2.8), and (2.9).
Then using (2.12), we find

Σ [<N

It follows that all the coefficients in the above sum must be zero. Thus we see that:
1) Each aUN satisfies a second-order ordinary differential equation;
2) For a fixed JV, each aiN satisfies the same ordinary differential equation,

PN(aUN) = 0;
3) For each N>0, there is only one solution (up to a constant multiple) to the

equation P ^ α ^ O , which is finite at r = 0.
This last fact holds since the Wronskian of any two solutions satisfies the first-

order equation w' + (n — l)w/r = 0, and hence w either "blows-up" at r = 0, or w = 0.
Now in view of these facts, we see that we can write each aiN(r) in the form

aUN(r) = c?aN(r), and hence (2.12) becomes

v(r,Θ)=ΣΣ ai<N(r)Φm =ΣΣcfΦf(θ)aN(r) = ΣaN(r)ΦN(θ),
N i N i N

where
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and aN satisfies the ordinary differential equation

α ) + ( / ' ( ( ) ) + ^ ) ( ) 0 (2.13)

o n O < r < R . Moreover, if i; is a solution of (2.8), (2.9), then since

fl*(r)= ί v(r,Θ)ΦN(θ)dθ,

Sn-ί

we find that for N > 0 (cf. [7]), % satisfies the boundary conditions

aN(ΰ) = 0, oιaN(R) + βa'N(R) = O, N^l. (2.14)

Also, (2.13) and (2.10) show that a0 satisfies the boundary conditions

αΌ(0) = 0, aao(R) + βaf

0{R) = 0. (2.15)

If u( , p) is a radial solution of (2.1), (2.2) and an asymmetric solution bifurcates
out of u(-, p), then it is not hard to show that the kernel of Lp must contain a non-
trivial asymmetric element (see, e.g., [2]). Accordingly, we make the following
definition (see [7]).

Definition 2.1. If w( ,p) is a radial solution of (2.1), (2.2), then we say that
(i) The symmetry breaks infinitesimally on w( ,p) if there exists an element in

the kernel of the linearized operator Lp, which is asymmetric; i.e., non-radial.
(ii) The symmetry breaks on w( ,p), if an asymmetric solution bifurcates out of

u( ,p).
In these terms as we have remarked above, symmetry-breaking implies

infinitesimal symmetry breaking. Note too that if the kernel of Lp contains a non-
invariant element, then from (2.12) and the fact that t/( , p) is invariant, we can find
an element in the kernel which is of the form aN(r)ΦN(θ).

The above considerations show that the kernel of Lp is different from zero if and
only if there is a non-zero solution of (2.13) and (2.14) or (2.15). Evidently if the
problem (2.13), (2.14) has a non-zero solution, then the symmetry breaks
infinitesimally at u( ,p). In order to show that the symmetry actually breaks on
M( , p), we shall appeal to the Crandell-Rabinowitz bifurcation theorem [9, p. 173]:

Theorem 2.2. Let U = SxV be an open subset o / R x I , and let FeC2(U, Y),
where X and Y are Banach spaces. Suppose that F(λ,0) = 0 for all λeS, and let
L0 — D2F(λ0,0), Lί=D1D2F(λ0,0). Assume that the following conditions hold:

(a) The null space of Lo is one-dimensional, spanned by u0.
(b) The range of L o has co-dimension 1.
(c) LXUQ is not in the range of Lo.

Let Z be any closed subspace of X such that X = [spanw o ]φZ. Then there is a
δ > 0, and a Cι-curve (λ, φ):(-δ, <S)->IR x Z such that: (i) λ(0) = λo; (ii) ̂ (0) = 0; and
F(λ(s), s(uo + ψ(s))) = 0 for \s\<δ.

This completes the background material which we shall need in the subsequent
sections.
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3. General Boundary Conditions

We begin this section with a simple comparison result concerning solutions a of the
equation

r21 a"{r) + £ a'{r) \ + φ(r)a(r) = 0, 0 < r < K, (3.1)

(λ = constant), which is independent of any boundary conditions that a satisfies.
This then will be applied to Eqs. (2.3), (2.4), to yield some general theorems
concerning the functions aN(r). Afterwards, we shall prove some results which
apply to particular boundary conditions. Here is the useful comparison theorem,
which is really a slight variant of the well-known Sturm comparison theorem.

Proposition 3.1. Suppose that b(r) is a solution of the equation

+0(r)6(r) = O, 0<r<R, (3.2)

and a(r) solves (3.1). Assume that φ and θ are continuous onO^r^R, and θ(r) ^ φ(r)
on this range. If αφO, then b has a zero between any two adjacent zeros of a.

Proof If a(r) = a\r) = 0 for some r, 0 < r ̂  R, then a = 0. Thus the zeros of a can only
accumulate at r = 0. Let rx and r2 be adjacent zeros of a, 0 ̂  r x < r2, where α(r) > 0 if
rί<r<r2.

Now multiply (3.1) by rλ~2b(r), (3.2) by rλ~2a(r), subtract, and integrate from r1

to r2. This gives

r V(r)b(r) - a{r)b\r)Z\ + f (^(r) - θ(r))a(r)b(r)rλ -2dr = 0,

so that

rλ

2aXr2)b(r2) - r\a\r\)b(r\) + f(φ- θ)abrλ~2dr = 0. (3.3)

If b had no zero in the interval ri<r<r2, then b would be of one sign in this
interval, thus violating (3.3) D

We shall now obtain some consequences of this proposition.

Corollary 3.2. Let aM and aκ be non-zero solutions of the equations

* = 0, (3.4)

κ = 0 (3.5)

on an interval 0<r<R, where the λN's are defined in (2.10). If K>M, then aM has a
zero between any two adjacent zeros of aκ.

Proof Using (2.10), we see that λM>λκ. Thus we can multiply each of the
differential equations by r2, and then apply the propostion. D
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Suppose now that u is a non-constant radial solution of (2.1) on the w-ball
|x| <JR. Then u satisfies (2.3), and since λ1 = 1 — n we see that WΞw'isa solution of
the equation

^ ( ^ ) *i = 0, 0<r<R.

This gives the following two corollaries.

Corollary 3.3. If ]V > 1, then on the interval O^r^R, uf must change sign between
any two adjacent zeros of aN.

We now consider the general case where u' is allowed to change sign on an
interval. Here is the main result.

Theorem 3.4. Let ube a solution of (2.3). Assume that u' has k zeros on the interval
0 <Ξ r < R, and that aN φ 0 solves (2.13), where N ^ 1. Then aN has at most k zeros on
this interval. If in addition u satisfies the boundary conditions (2.4), then there are at
most k positive integers Nu N29..., Nk, for which aN. is a (non-trivial) solution of
(2.13), (2.14), l ^ f c .

Before giving the proof of this theorem, some remarks are in order. First, if we
consider positive solutions of (2.1), together with Dirichlet boundary conditions
[α = 1, β = 0 in (2.4)], then Gidas et al. [3], have shown that u must be a monotone
decreasing radial function. In this case k= 1, (N= 1), and aγ has exactly one zero
on 0 < r ^ R; this is in agreement with the result found in [7]. Next, if we consider
monotone solutions of (2.3) together with homogeneous Neumann boundary
conditions [α = 0, β = 1 in (2.4)], then here too k= 1, and so again aN has exactly
one zero. Finally, note that if k> 1, and there are two non-zero functions, say
α M φ0, and % φ θ , (K + M), which are solutions of (3.4) and (3.5), for the same
u = u( ,p), then the kernel of the linearized operator Lp [see (2.7)] contains the two
non-zero elements aκ(r)Φκ(θ\ and aM(r)ΦM(θ). Since X + M, the subspaces
generated by these two elements are distinct, proper, and both are invariant under
the orthogonal group. Thus the asymmetric component of the kernel of Lp cannot
be irreducible. It follows that the bifurcation theorem discussed in Sect. 2 does not
apply since hypothesis (α2) is not satisfied. (But some statements concerning the
bifurcation of solutions can be made; these will be considered in a future
publication.)

On the other hand, the problem of demonstrating that there can be two non-
zero functions aκ and aM, as above, is quite delicate, and is still unresolved.

Proof of Theorem 3.4. Suppose that aN has (k + l)-zeros on the interval; i.e., aN(z0)
= aN(z1) = ...=aN(zk) = 0, where 0 = zo<zί <.. . <zk<R. From Corollary 3.3, uf

has a zero on each interval (zi _ γ, zf), i = 1,2,..., k. But as u'(z0) = 0, we see that uf

has (fc+l)-zeros on [0, R). This is a contradiction; thus aN can have at most
/c-zeros. In order to prove the last assertion, we need the following lemma, which is
of some interest by itself.

Lemma 3.5. Under the hypotheses of the theorem, (including the fact that u satisfies
(2.4),), suppose that K and M are positive integers, K>M, and that aM and aκ are
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non-zero solutions of (3.5) and (3.6), respectively, together with the boundary
conditions (2.4). Then on the interval O^r^jR, the following inequalities hold:

# zeros of aκ< # zeros of aM^ # zeros of u''.

Proof The second inequality is a consequence of Corollary 3.3. In order to prove
the first, we note that λM>λκ [see (2.10)]; thus from Corollary 3.2, # zeros of aκ

5Ξ # of zeros of aM. If equality holds, then we have

M O ) = %(^i) = ... = aM(zs) = 0,

where 0 < z1 <... < zs and 0 < wx < . . . < ws, and these are all of the zeros of aM and
%, respectively. Using Corollary 3.2 again, we get the inequalities

0 < z 1 < w 1 , w i < z i + 1 < w i + 1 , ΐ = l , 2 , . . . , 5 - 1 .

There is no loss in generality to assume that aM > 0 and aκ > 0 on (0, z j . Then the
product aMaκ is negative on the intervals (zf5 w, ), lrgi gs, and positive on the
intervals (wi5 z { + 1 ) , l ^ i ^ s — 1 . We distinguish two cases; namely ws<R, and
ws = R.

Suppose that ws<R; then aMaK>0 on (w s,#). Now if we multiply (3.4) by
rn~1aκ, and (3.5) by rn~1aM, subtract, and integrate from ws to R, we get

1 + j (λk-λM)aκ(r)aM(ry-3dr = 0. (3.6)

Now since aaκ(R) + βάκ(R) = 0 = ocaM(R) + βa'M(R), we see that (aκa'M
— a'KaM)(R) = 0. Thus (3.6) reduces to

- w Γ 1 ^ ( w > M ( w s ) + ί (^-Λ M )fl x (r)α M (r)r"- 1 dr = 0. (3.7)

However, this is impossible since both terms on the left-hand side of (3.7) are
negative.

We now consider the case where ws = R. Then from (2.14),

Since aκ φ 0, and aκ(R) = 0, it follows that a'κ{R) φ 0, and so β = 0. Therefore,

0 = aaM(R) + βa'M(R) = aaM(R) = ααM(w s),

so that aM(ws) = 0. Thus aM has 5 + 2 zeros; this is again a contradiction, and the
proof of the lemma is complete. D

We can now easily complete the proof of Theorem 3.4. For suppose that there
is a positive integer N1 such that aNl has k zeros on [0, R). Then our lemma implies
that there can be at most (k — l)-indices JV2,..., Nk for which aN. φ 0, 2 <; i ̂  k. D

Corollary 3.6. If uf is a solution of (2.3), (2.4), and is of constant sign on an interval
0<r<R, then there can be at most one N > 1 for which aN φ 0. Moreover for this N,

on 0<r<R.
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This last result indicates that if vΐ is of constant sign on an interval 0<r<R,
then the unique non-zero %, (if it exists!), could conceivably be shown to exist via a
variational approach, as the principal eigenfunction of some operator (see [9,
Chap. 11]). In Sect. 4, we shall show that this program can indeed be carried out in
the case that u satisfies homogeneous Neumann boundary conditions [α = 0, β = 1
in (2.4)].

As a final result along these lines, we have the following corollary to
Lemma 3.5.

Corollary 3.7. Suppose that aM and aκ are non-zero solutions of (3.4) and (3.5),
respectively, and both satisfy the boundary conditions (2.4). J / M φ X , then aM and
aκ cannot both be of constant sign on 0<r<R.

We turn now to the problem of radial bifurcation; that is, we shall study the
question of when ao(r) φ θ . Thus using (2.13) and (2.10), we see that a0 satisfies the
equation

flSW + Ά-γ- aόto + /7(κ(r, P)KW = 0, 0 < r < R, (3.8)

together with the boundary conditions (2.15). Of course, we assume here that we
are given a particular radial solution u = u(r,p) of (2.3), (2.4) on 0<r<jR, where
R = Ta(p), [cf. (2.5ff.)].

If α o φ 0 solves (3.8), (2.15), then we say that «(•,/?) is radially degenerate;
otherwise w( ,p) is called radially non-degenerate. Here is the theorem which
characterizes infinitesimal radial bifurcation.

Theorem 3.8. Suppose that W = {u( ,p):p1<p<p2} is a family of solutions of
(3.8), (2.15). Then u( ,p)eύίl is radially degenerate if and only if5

{«u'(TJβ),f)+βu"(TJ(p),p)}T;(p) = O. (3.9)

Remark. We note that this extends a result in [6] stated for Dirichlet boundary
conditions, ( α = l , β = 0). Also observe that for Neumann boundary conditions
(α = 0, β = 1), (3.9) reduces to - f(u(TN(p), p))%(p) = 0, and as f(u(TN(p), p)) * 0, (if
we consider non-constant solutions), this means T^(p) = 0.

Proof We differentiate6 (2.3) with respect to p to get

Wp H Up + f'(u)up = 0,

and thus up( ,p) satisfies the linearized equation (3.8). Moreover since u'(0,p) = 0
for all p, p1 < p < p2, we have u'p(0, p) = 0, so that up( , p) satisfies the first boundary
condition in (2.15). To obtain the second boundary condition, we recall that by
definition of Tα(p), we have

) = 0, p,<p<p2.

5 In [6] it is shown that Ta is a C1 function if/ is continuous
6 In [6] it is shown that u, u', u" are C1 functions of p if / is continuous
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Then differentiating with respect to p and evaluating at p gives

{αiι'(Γβ(p), p) + βu\Ta(p\ p)} Γα'(p) + αup(Γβ(p), p) + /top(Γβ(p), p) = 0. (3.10)

Thus, if (3.9) holds, then up( , p) satisfies the boundary conditions (2.15), and since

M p (0,p)= 1 [cf. (2.5)], we see that wp( ,p) is a non-trivial solution of (3.8), (2.15), so
that w( , p) is radially degenerate. Conversely, if w( , p) is radially degenerate, let z be
a non-trivial solution of (3.8), (2.15). Then z/(0) = 0, zφO, so z(0) + 0. Thus wp(r,p)
= z(r)/z(0), since they both satisfy (2.13), N = 0, and the same initial conditions.
Hence (3.9) follows from (3.10). D

We remark that this theorem holds for the general time maps Γα

M where in (3.9)
Tα is replaced by 7^M; the proof is the same as the one given here.

We now give an extension of a result in [6], to more general boundary
conditions.

Theorem 3.9. Let u( ,p) be a non-constant solution of (2.3) which satisfies the
boundary conditions

au(R9p) + βuXR,p) = c9 (R=Ta(p)). (3.11)

Then referring to solutions aN of (2.13), (2.14), the following hold:
(i) There is a solution aγ φ θ if and only if

(3.12)

(ii) If (3.12) holds, and u'^0 on O^r^tf, then aN = 0 if N>1.

Remarks. If we consider homogeneous Dirichlet boundary conditions (α = 1, β = 0,
c = 0), (3.12) reduces to u'(#, p) = 0, a result obtained in [6]. In our theorem, the ray
u = 0, I/ΞΞI ^ O, is replaced by the ray au + βυ = c, v^0; see Fig. 1, (c = 0).

Proof of Theorem 3.9. If (3.12) holds, we set α1(r) = M/(r,p), O^r^jR. Then aλ

satisfies (2.13) for JV=1, and ax also satisfies the correct boundary conditions
(2.14). Furthermore, in this case, aN = 0 if JV> 1, in view of Lemma 3.5.

It remains to show that (3.12) holds iΐa1 is a non-trivial solution of (2.13) (for
N= 1), and (2.14). Now from the equation

(with,

Fig. 1

; = u\ as usual), we have, since λί-\-n—l=0,

wXR)a1(R) - w(R)a\(R) = 0.

v

u or

αu+βv=0
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But also, αα1(Λ) + j8αi(JR) = 0, and since (a^R), α;CR))φ(0,0), the determinant of
this system of linear homogeneous equations must vanish. Therefore ocw(R)
+ βw'(R) = 0; thus (3.12) holds. D

This last theorem shows that for solutions of (2.3), (2.4), which have w'^0, the
general homogeneous linear boundary conditions yield results for infinitesimal
symmetry-breaking which are exactly the same as those for homogeneous
Dirichlet boundary conditions. Notice that if we consider homogeneous Neumann
boundary conditions (α = 0, β = l\ then (3.12) implies that u"(R,p) = 0, and since
u'(R,p) = 0, (2.3) shows that f(u(R,p)) = 0. Thus the solution w( ,p) must be the
constant function u(R,p). It follows that for non-constant solutions of (2.3), (2.4),
with a = 0,β—l,a1 must necessarily be the zero function. We state this formally for
later use.

Theorem 3.10. Let u(-,p) be a non-constant monotone solution of (2.3), together
with homogeneous Neumann boundary conditions (2.4) (α = 0, β = 1). Then there are
no non-trivial solutions ax of (2.13) (N= 1) and (2.14) (α = 0, j8= 1).

Thus symmetry-breaking for (monotone) solutions of the Neumann problem
must necessarily occur in a more complex manner than that for (monotone) radial
solutions of the Dirichlet problem. In the next section, we shall make this
statement more explicit.

4. Homogeneous Neumann Boundary Conditions

We consider monotone radial solutions of (2.3), which satisfy homogeneous
Neumann boundary conditions, u'(0) = u'(R) = 0. Our goal is to construct an
example of symmetry-breaking for the Neumann problem. In this section we shall
show that there is infinitesimal symmetry-breaking, and in Sect. 5 we shall show
that the symmetry actually breaks.

Using Theorem 3.10, we see that to construct an example of infinitesimal
symmetry breaking for the Neumann problem is fairly more difficult than the
corresponding construction for the Dirichlet problem. Indeed, in the latter case,
aN = 0 if N > 1, and the only possible non-zero mode is α l 5 which turns out to be the
function u\ The question thus arises as to which mode can "survive" for the
Neumann problem; i.e., for which N9 (necessarily JV> 1, by Theorem 3.10), can aN

be non-zero? Of course, in view of Corollary 3.6, for any given monotone radial
solution w( , p), at most one aN (N > 0) can be non-zero - but which one? We shall
show here that it is possible to have aNφ0 for arbitrarily high indices N. More
precisely, we shall construct an example of a function /, and a bounded, increasing
sequence of points {pj, for which there is a solution w( , pk) of (2.3) and (2.4), (α = 0,
β=i\ and such that there exists a non-zero solution of each problem,

a"{r) + ^ a'(r) + (f'(μ(r, Ph)) + ^) a(r) = 0, 0 < r < TN(pk),
V (4.1)

a(0) = a'(TN(pk)) = 0.

This will show that the asymmetric component of the kernel of the linearized
operator can have arbitrarily high dimension [see (2.11)]. It is worth mentioning
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again that for the Dirichlet problem, the asymmetric component of the corre-
sponding kernel always has dimension n. In Sect. 5 we shall show that the
symmetry actually breaks on each of the solutions u(-,pk). We proceed now with
the details.

Let u = u(r,p) be a (non-constant) solution of the equation

u"(r) + ^ - u\r) + f(u(r)) = 0, 0<r<R, (4.2)

together with the homogeneous Neumann boundary conditions

u(0) = p, M/(0) = M/(JR) = 0 . (4.3)

Here, (by definition) D ^ , Λ

and u is monotone decreasing; i.e.,

(4.4)

Now in order for the symmetry to break infinitesimally on this solution, it is
necessary and sufficient that for some positive integer fc, there exists a non-trivial
solution of the following boundary-value problem:

Φ) + ̂  4 W + (f'(μ(r, p)) + ί n ak(r) = 0, 0<r<R, (4.5)

and
0. (4.6)

In view of Corollary 3.6, and Theorem 3.10, k> 1, and ak is of constant sign on 0 ̂  r
^R. Moreover, there can be at most one integer k> 1 for which αfeφ0. This last
fact implies that under our hypotheses, the non-symmetric part of the kernel of the
linearized operator is irreducible7; this result will be used in Sect. 5 when we prove
that bifurcation actually occurs.

We now turn our attention to the construction of a non-zero solution of (4.5),
(4.6). Thus, let u(r, p) satisfy (4.2)-(4.4), set # = TN(p), and define a function q%(r) by

(4.7)

Next, we define a space of functions Φp by

Φp = {φe C2[0, K] : ̂ (0) = φ\R) = 0} , R= TN(p). (4.8)

Finally, let Lp

k be the linear operator on Φp into C[0, R~} given by

(4.9)

Observe that if we can find a non-zero function φ e Φp for which Πkφ = 0, then this φ
can serve as the desired ak; this will demonstrate that the symmetry breaks
infinitesimally in the feth mode, on the radial solution w( ,p).

7 See footnote 2, and [4, p. 417]
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In order to carry out this program, we shall use a variational approach. Thus,
we define an inner product on Φp by

R

(φ,ψ) = ί φ(r)\p{r)rn-Hr, φ,ψeΦp.
o

We claim that IFk is self-adjoint with respect to this inner product. Thus if φ e Φp, we
can write rn ~ 1Lp

kφ = (rn ~ xφy + qζφrn ~ί, so that if also ψ e Φp, integrating by parts
twice proves the claim. Now it is well-known, see [9, Chap. 11], that the principal
eigenvalue, μζ, of Uk has a variational characterization; namely

Or, if we integrate by parts, we can write

μf = sup f {-(φ'(r))2 + qp

k(r)φ(r)2}rn~Hr, R = TN(p), (4.10)
o

where the supremum is taken over the same class of functions as before.
We shall make use of these notions in the following way. Thus we shall

construct a function f(ύ) defined on R, having the following property:

There is an integer k0 ^ 2 such that if k ̂  fc0, there exists a (non-
trivial) solution u( ,pk) of (4.2)-(4.4), and a corresponding non-
trivial solution of (4.5), (4.6). (*)

This, in turn, will be done by showing that if k ̂  fc0, there are points pk and qk in the
domain of TN for which both of the following inequalities hold:

= l}<0, (4.11)

s u p { < L l ^ ^ > . ^ e Φ ^ μ | | 2 = l }>0. (4.12)

If we prove that the domain of TN is connected, then since the principal eigenvalue
depends continuously on p [as follows from (4.10)], we can conclude from (4.11)
and (4.12) that there is a point pkedom(TN) for which

The corresponding eigenfunction, call it ak, will be the desired non-trivial element
in the kernel of the linearized operator LPk

k. To carry out this program will require a
rather careful study of the properties of the time map TN.

Let f(u) be a smooth function defined on IR which satisfies the following three
conditions (cf. Fig. 2):

f(ύ) = u if u£l; (4.13)

f ( u )

Fig. 2
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for some c> 1, f(u)>0 on [1,c), /(c) = 0, and /'(c)<0; (4.14)

/ » ^ 0 for all we[l,c]. (4.15)

Later on we shall further restrict /; the above conditions will suffice for our first few
results.

Lemma 4.1. Let f be defined as above. Then there is a positive integer fc0, and a point
p>0, such that the solution u(-,p) of (4.2), (4.3) exists, and for all integers fc^/c0,

s u p { < L ^ > : ^ e Φ p , | | ^ | | 2 = l}^0. (4.16)

Note that if equality holds in (4.16), there is nothing further to prove; otherwise
we have that (4.11) holds with pk = p for all k^k0.

Proof. For balls of small radius K, the only solution of (4.2), (4.3) are the trivial
solutions u = 0, and u = c. As R increases, there is a critical value R for which a non-
zero radial solution bifurcates out of 0 (see [8, Chap. 24]). Choose the positive
integer k0 to be the smallest one for which [see (2.11)], R2^ —λko; i.e.,

ko = min{ksZ+ \R2^-λk}. (4.17)

Note that if fc>fc0, then R2<-λk.
Now for any p, 0 < p < 1, since / is linear in the range u ̂  p, we see that we can

(easily) find a solution of (4.2), (4.3) for which TN(p) = R. Hence if φ e Φp and k ̂  fe0,
then

in view of (4.17). D

We turn our efforts now to proving the far more difficult inequality (4.12); this
will follow from a sequence of lemmas. [Recall that TD and TN are defined in (2.6).]

Lemma 4.2 (i) dom(TN) = dom(TD) = (0, c).
(ii) // 1 <p<c, and τ(p) is defined by u(τ(p),p)= 1, then τ(p)-»oo as p-+c.

Proof If pedom(TD), then since /(0) = 0, we have from a result in [7], that
u'(TD(p),p)<0. Thus for every such p, there is an ε = s(p)>0 for which u(TD(p)
+ ε, p) < 0. Now on this solution, if r > TD(p) + ε, then in the region u' < 0, f(u(r)) is
bounded away from zero say f(u(r)) ^ — σ2, if r > TD(p) -f ε = Tt. In this range, we
may write

and integrating from 7\ to r gives
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This implies that ι/(r) = 0 for some r^.Tί9 and thus pedom(TN). Hence dom(TD)
Cdom(T^), and since the reverse inclusion is obvious, we see that dom(TD)
= dom(TN).

Next, we shall show that dom{TD) = (0, c). Thus, if 0 <p ^ 1, then since f(u) = u
on 0 ̂  u ̂  1, it is easy to see that p e dom(TD). Suppose now that 1 < p < c. On the
interval 1/2<u<p, f(u) is bounded from below, and so as follows from [6,
Lemma 6], the orbit of (4.28) starting at the point u = p, v = 0, crosses the line
u= 1/2 in the region ι;<0. Define θ by tanθ = v/u; then if r>τ(p), f(u) = u and

0 l ^ ^
2Ύ

Therefore for large r, say r^r0, θ' ζ —\ so θ(r)^θ(r0)— \{r — r0), and thus θ(r)
< — π/2 for large r. It follows that there must be an f > 0 for which θ(f)= —π/2.
Thus w(f,p) = 0 and pedom(TD). This completes the proof of (i).

To see that τ(p)-> oo as p-»c, we note that since w(r, c) = c for all r, it follows by
continuity, that given any T> 0 and δ > 0, there is a neighborhood U of c, such that
iίpe U, then \u(r,p) —c\<δ for r^T. Thus τ(p)>T, and so τ(p)-κx) asp-^c. This
proves (ii) and completes the proof of the lemma. D

For p> 1, and p near c, we define the three numbers τ(p), σ(p), and s(p) by

«(τ(p), p) = 1, «(σ(p), p) = 1/2, (4.18)

)9p). (4.19)

Then obviously we have τ(p) < σ(p) < ΓD(p) < 7^(p).
At this point we shall put some more conditions on/, in order to help us to

make the technical details a little easier. To this end, let F be the primative of /
defined by

F' = f, F(0) = 0.

We choose c> 1 so close to 1 in order that

arcsin(l/|/2F(c)) > 1 + π/6. (4.20)

Next, let ε be a positive number satisfying

2 U ~ β ) > 1 + β (4 21)

For such an ε, we want c to also satisfy8

arcsin(l/2|/2F(c)) > J - ε. (4.22)
6

Note that inequalities (4.20) and (4.22) are actually conditions which imply that
F(c) is close to

8 If we set ̂ (w) = arcsin(2F(tt))~1/2, then φ(i) = π/2, since F(l) = l/2. But as π/2> 1 +π/6, we see
that (4.20) can be achieved. Ifψ(u) = arcsin(l/2j/2F(w)), then ψ(l)=π/6, ψ' < 0, and thus (4.22) can
be simultaneously achieved
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In what follows, we assume that / is a fixed function which satisfies our earlier
conditions (4.13)—(4.15), as well as (4.20)-(4.22). For such an /, we have the
following proposition.

Proposition 4.3. Assume that f satisfies (4.13)—(4.15), as well as (4.20)-(4.22), and
let kbea given positive integer, k^k0. Then there exists an interval I = (c — η,c) such
that both σ(p) — τ(p) and TN(p) — σ(p) are bounded from above on I. If there is a δ > 0
such that

(TN(p) - σ(p)) (σ(p) - τ(p)) = 1 + δ, pel, (4.23)

then there is a function φeΦp for which (JLPkφ, φ}>0.

Proof In view of Lemma (4.2), if p is close to c, p<c, then solutions of (4.2), (4.3)
exist, and thus the quantities τ(p), σ(p), TD(p), and TN(p) are all defined. We choose
a function φ(r) as follows (see Fig. 3):

i) # 0 = 0, if r = τ(p),
ii) # 0 = 1 , if r = σ(p),

iii) φ is linear on τ(p)^r^σ(p).

I i
J I

φ ( r )

τ(p) σ(ρ) TD(p) TN(ρ)
Fig. 3

For this φ, we have, (dropping the dependence on p for notational convenience),

since if τ ^ r ^ σ, we have by the last lemma,

for p near c. Thus,

n κ n-2

so that for p near c,

(4.24)
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Next, since we may approximate φ in L2(0, TN(p)) as close as we please by a smooth
function, we may assume that φeC1 in evaluating (LFkφ,φ}. This gives

σ

τ

TN

ί -

1 „ _ !
{σ-τf1 l

1 (σ-^+c
n

1 /
(σ-τ)2l

L

λ)

- τ "
0

Therefore, TN γ

J (4.25)
o σ — τ

If we add (4.24) and (4.25), we get

= σn- 1 "(T N -σ)(σ-τ)- l
(4.26)

σ — τ

Now we shall show that there are constants A > 0 and B > 0 such that for /? near
c, p ,

σ(p)-τ(p)^A and T^p)-σ

Granting these, we find from (4.26), and (4.23), that

, φ} ^ ^ - ^ + λkTS"3B^ ?—?- + λkB(σ + B)"-3.
A A

But σ(p) > τ(p), and since τ(p)-> oo as p^>c (by Lemma 4.2), we see that for p near c,
)"~3^2"~ V~ 3 . Therefore, for p near c

as desired. Thus in order to complete the proof, it suffices to show that both σ(p)
— τ(p), and TN(p) — σ(p) are bounded from above, for p near c.

To this end, suppose that \ < u ̂  1 then on this range

Integrating from τ to r ̂  σ gives,

so that for τ ̂  r ̂  σ,

yj=2n In In'

If we integrate this from τ to σ, we get

, ^ , ^ ( < r - τ ) 2

i=-«W + «W^—^ ,
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and thus

\ίϊn^σ-τ. (421)

Next, for p near c, if we write (2.3) as the first-order system

u' = v, v/=-n—^v-f(u)i (4.28)

and define 2( .

ί ? J ^ r , p ) ) , (4.29)

we find that Hr = (\ -n)v2/r<,0- Thus along the orbit of (4.28) which starts at the
point u = p, v = 0 when r = 0, we have (cf. (4.19)),

F(s) = H(TN, p) ̂  H(r, p) = F(u) + v2/2.

So if r ^ σ (i.e., u(r,p)^ 1), we obtain

-u2 = γ2(F(s) - F(u)) S-v.

Now we shall show in the lemma below that for p close to c, s(p) < —1/2. Granting
this, we obtain

? du ψί du ψ du _ψ du . 1
= arcsin—- — π/2<;== J /-= arcsin

v s -v γs

2-u2 2\s\

and this completes the proof of the propostion. D

Lemma 4.4. For p close to c, p<c, the function s(p), defined by (4.19) satisfies

s(p)<-1/2. (4.30)
Proof. Choose η > 0 so small that

F(c)-2η>lβ. (4.31)

This can be done since F(c) >F(l)=^. Now orbits of (4.28) which start at the point
v2

u=p, v = 0 at r = 0, (0 < p < c), all lie inside the closed level curve of H defined by —

+ F(u) = F(c). Thus, there are constants M > 0, and d > 0 such that along each such
orbit, we have the bounds

-d2^u(r,p)<c, and 0^-u'(r,p)^M, if O^r^T^O),

(4.32)

foral lpe/ = (0,c).
Now let T>(n— \)M(c + d2)/η; then for p near c, and s(p)<w(0,p)<c, we

claim that9

H(T9p)-H(r9p)<η9 if T^r^ΓN(p). (4.33)

* Since TN(p)->co as p / c, such a T< TN(p) exists if p is near c
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Indeed,

H(T9p)-H(r9p) = { -H\Up)dt=){n-\)U^p^dt
T T t

Since u'(r, c) = 0 for all r, we have H(r, c) = F{c) for all r. Since H is continuous,
there is a ξ>0 such that H(T,c)-H(T,p)<η if c-^<p<c. Thus, if c-<!;</?<c,
we have, for T<>r<^TN(p),

It follows that s2/2 = H(TN(p)9p)>%, and this gives (4.30). D

We can now state the following theorem, which establishes infinitesimal
symmetry-breaking where the corresponding null-spaces of the associated linear-
ized operators have arbitrarily high dimensions.

Theorem 4.5. Let f satisfy (4.13)-(4.15), as well as (4.20)-(4.22), and let k0 be
defined as in (4.17). Then there exists a sequence of points {pk: k ̂  k0} C (0, c) such
that the symmetry breaks infinitesimally on each radial solution M( , pk) of (4.2)-(4.4),
(p = pk). Furthermore, the kernel of the linearized operator L£k (cf (2.8)J, has

. / \ / ^
dimensionVV k )\k + n-2

Proof In view of Lemma 4.1, and Proposition 4.3, we must show two things;
namely, that (4.23) holds for all p near c, p<c, and that the domain of TN is
connected. However, the connectedness of dom(Γ^) follows from Lemma 4.2. Thus
we need only show (4.23). For 0 < p < c, we have H(r, p) ̂  iί(0, p) = F(p) < F(c\ so
that if 1/2 ^ u(r, p) ̂  1, and υ = u\

- v^γ2(F(c) - F(u)) = ]/c2 -u2 , (4.34)

where c2 = 2F(c). Thus from (4.20),

H2du _ \ du_> \ du
1 V 1J2—V 1/2 | / c 2 —

. 1 . 1
= arcsm- -arcsin— : = a r c s i n - ^ = — arcsin-

c 2c hvi

because c>\ implies that arcsin— ^arcsinj=π/6. Therefore for l<p<c, we
have 2 c

σ(p)-τ(p)>l. (4.35)
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Next, if u ( r , p ) ^ l , then (4.34) holds so using (4.30) we have, for l < p < c ,
p near c,

TίΛ (Λ Ύ dU ^ Ψ dU

= arcsin I —-1 — arcsin I - ) ^ arcsin ( — I + arcsin ( —-
\2cJ \cj \2cJ \2c

= 2arcsinί

in view of (4.21) and (4.22). This, together with (4.35) implies (4.23). The proof of the
theorem is complete. D

We shall next obtain some further information on the sequence of points {pk}
whose existence was proved in the last theorem.

Theorem 4.6. One can choose a sequence of points {pk: k^.k0}C(0,c) converging
monotonically to c, and such that the pk satisfy the conclusion of the last theorem.

Proof If fe^/c0, then by construction we have

sup{<Uk%φ}:φeΦPk,\\φ\\2 = l}=0. (4.36)

Using (2.10) we can write λk+ί =λk — (2/c + n— 1), so that

ru / ^ λk + 1 λk (2k + n— 1)
/'(μ(r, pk)) + ^ = f'(u(r, pk)) + ^ - ^ -2

 L,

if 0 < r ^ TN(pk). Thus if φ e ΦPk,

TN(Pk)

k o r-

in view of (4.36).
It follows that

If this supremum were equal to zero, it would mean that we could find a non-zero
function ak + 1 which would satisfy the equation

a\r) + ^ a\r) + (f'(u(r, pk)) + ^ J a(r) = 0, 0 < r < TN(pk)

together with the boundary conditions

a(0) = a'(TN(pk)) = 0.

However since akφ0, this would violate Corollary 3.6. It follows that strict
inequality holds in (4.37). Thus pk+x may be chosen so as to achieve pk+i>Pk-
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Next, recall that pk <c for all /c, so that if pk^>p<c, as fc-»oo, we would have
TN(Pk)~*TN(β)<oo, and thus the sequence {TN(pk) :k^k0} would be bounded; say
TN(pk)^M, for all k^k0. Now using (4.36), we know that for each k^k0, there
exists φkeΦPk, satisfying (Ukφk, φky = O, and ||<^fc||

2 = l. For such φk, we have

TN(Pk) 1 1 TN(pk)

( 4 3 8 )

On the other hand (Lp

k

kφk,φk) = O and / ' ^ 1 imply that

TN(Pk)

Oύ ί φ'k(?frn-ιάr
o

TN(pk) TN(pk) jj

= ί ίf'(u(r,pkmφk(r)2r'-1dr+ f -f
0 0 Γ

o or

It follows from (4.38) that

= " M 2

for all k^k0. This is impossible, and the proof is complete. D

Observe now that if / is C1-close to /, then it is easy to see that the
corresponding time maps TN, TD, σ, τ for / are L00 close to the corresponding time
maps 7 ,̂ TD, σ, τ, of /, at least on compact intervals. Also since the inequalities
(4.23) and (4.30) are "open" conditions, and since Lemma 4.2 continues to hold for
f we see that Theorems 4.5 and 4.6 continue to hold for such / Since we shall make
use of this fact later, we state it formally.

Theorem 4.7. There is an open neighborhood of f in the C1-topology for which
Theorems 4.5 and 4.6 are valid.

5. Symmetry-Breaking in the Neumann Problem

We turn our attention now to the task of showing that the symmetry actually
breaks at each of the points pk\ more precisely, (in order that our "bifurcation
diagram" has a nice form), we shall actually construct a function / which is C1-
close to the given /, for which the symmetry-breaks at each of the corresponding
points pk. In order to do this, we shall rely on the bifurcation theorem stated in
Sect. 2; Theorem 2.2.

Thus we may assume that (4.2), (4.3) has solutions for all p, 0 <p <c. We know
that for the given /, there is a real number ρx >0 such that the set
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is contained in the interior of the interval \u\<ρ1.In what follows, we shall drop the
"bars" and assume that f is a function which satisfies the hypotheses and conclusion
of Theorem 4.8, as well as the condition

(f(u)/u)'Z0, \u\<ρ, (5.1)

where ρ>2ρ1.

Proposition 5.1. If 0<p<c, then

Tϋp)>θ. (5.2)

In particular, no radial bifurcation is possible.

Proof Inequality (5.2) is a consequence of (5.1), as follows from arguments similar
to those given in [6, Theorems 2 and 3]. The last sentence follows from the remark
given after the statement of Theorem 3.8. D

In order to apply Theorem 2.2, we first make a change of scale so that (2.1)
becomes

x) + f(u(x)) = 0, xeD\, (5.3)

together with the boundary condition, du/dn = 0 on |χ| = 1. Here λ( = R ~ 2) is now
to be thought of as the bifurcation parameter. We let B be the space of real valued
H1 functions u on D\ which satisfy homogeneous Neumann boundary conditions,
and which are O(n — l)-invariant; i.e. if T e O(n - 1), then u(Tx, xn) = u(x, xn), where
x = (x1,..., xn-1).

We endow B with the following inner-product:

(u,v)= J VuVv + J uv.

Now take any (fixed)pk, and let λ o = TN(pk)~2. We implicitly define an operator
A:B^B by

<A(u),v}= J (J(μ + uo)-f(uo))v + λo ϊ uv, VυeB,
Dι Sn~ι

where, in this new parametrisation, u0 is a radial solution of the Neumann
problem: λoAuo+f(uo) = 0; i.e., uo(') = u( ,pk). Next we define F.BxΈt^B by
F(μ, λ) = A(u) - λu, and set Lo = FB(0, λ0) = A'(0) - λol, Lx = Fλu(0, λ0) =-I.

For any space W of functions we denote by W0{n υ to be those functions in
W which are invariant under 0{n—\). Let A denote the Laplacian (Laplace-
Beltrami operator) on S""1, and set

We now have the following proposition whose proof we defer to the appendix.

Proposition 5.2. V is a one-dimensional space.

We can now verify the hypotheses of Theorem 2.2. (a): Lo has a one-
dimensional kernel.
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Proof. We first calculate A'(0).

t-*o ι
 \Ό\ sn~ι

= J f'(uo)zυ + λo J zv.

Thus if L0(z) = 0, we have

o)z + λoAz)υ, VυeB;

thus we see that z satisfies

so z is of the form aN(n)ΦN(θ), and Proposition 5.2 implies that z is uniquely
determined; this proves (a). Next, since Lo is a Fredholm operator, we have that (a)
implies (b). Finally we check (c): Lxw is not in the range of L o; here L o is spanned
by w.

Proof. Suppose L1w = Loz; then —w = A'(0)z — λoz. Thus for all υeB, < —w, ι;>
= (A'(0)z — λoz, ι;>, and after integrating by parts,

j vAw— J ί;w= J f'(uo)zv — λo J (Γz)(Ft;),

or

If we set v = w in this last equation, we get

^wAw-f'(uo)zw-λo(Az)w= J w2,

and since w satisfies the linearized equation, we find

J -(Vw)2= j w 2 .

This yields the contradiction w = 0. Hence all of the hypotheses of Theorem 2.2
hold.Thus, from this theorem, we see that if B = [w]©[w] 1 , there is a δ>0 and
functions λ(s), u(s) = s(w + φ(s)), where φe\w']1, φ(0) = 0, λ(0) = λo and f(w(s),
λ{s)) = 0,\s\<δ. It follows that A(u(s)) = λ(s)u(s), so that for all veB, (A(u(s))
-λ(s)u(s),v} = 0. Thus

Thus, if the support of v lies in (D") in t, this last equation yields

ί [/(w + wo) + ^o^wo + ^ w ] t ' = 0. (5.5)
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From this it follows that u is a weak solution to the equation
+ /Uw = 0, so that by the usual regularity theorems, [0], u is a classical solution of
this equation, up to the boundary. It follows that the term in brackets in (5.5)
vanishes in D", so from (5.4) we have for all veB,

(λo-λ(s)) j u(s)v = 0.

If we put v = w, we find

Now since

(λo-λ(s)) f
Sn-l

J w2 = aN(R)2 ί
Sn-ί Sn-1

(5.6)

and ^(0) = 0, we see that for s near 0,

Sn~ί

and thus from (5.6), we find λ(s) = λ0 for 5 near 0. Since f(u + u0) + λ0Au0 + λAu = 0,
we obtain

f(u(s) + u0) + λ0A (u(s) + u0) = 0,

for sufficiently small s. That is, u0 + u(s) is a solution of our original equation, so
that bifurcation actually occurs.

It follows that there is bifurcation at each radial solution w( , pk); in fact, since Tn

is monotone, Proposition 5.1 shows that the bifurcating solutions are asymmetric
ones. But as Eq. (2.1) is O(rc)-invariant, there bifurcates out of each radial solution
u(-,pk), at least an n-dimensional set of asymmetric solutions. This yields the
following theorem.

Theorem 5.7. Let f satisfy hypotheses (4.13)-(4 15), (4.20)-(4 22), and (5 A). Let k0

be the positive integer defined by (4.17). Then

Fig. 4

dim

dim L|<

dim LN

/N + n-2W2N+n-2 \
A N+n-2 /

R=TN(p)
Branch of Monotone
Radial Solutions
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i) There exists an increasing sequence of points {pk: k^ k0} C (0, c), with pk-+c,
and

ii) There exists a corresponding sequence of monotone radial solutions
ίw( > Pk):^ = ̂ o) °f (4-2), (4.3), such that on each solution w( , pk) the following hold:

a) the symmetry breaks,
b) the dimension of the set of bifurcating asymmetric solutions is at least n.

Notice that the kernel of the linearized operator at uk has dimension
fk + n-2\2k + n-2 .
I I — = Lfc, which is considerably larger than n. We conjecture
\ K j K ~τ~ n — z,

that there bifurcates out of each uk an Lrdimensional manifold of asymmetric
solutions. If this were true, then the bifurcation diagram would be as depicted
in the figure above.

Appendix

We give here the proof of Proposition 5.2.
Let Hk denote the homogeneous, harmonic polynomials of degree k in

xu...,xn. It is well-known, (see [4]), that there is an isomorphism r:Hk-^Vk

= {φe C2(Sn~ί):Aφ = λkφ}, given by r(p) = p\Sn-i, and it is easy to see that this map
is O(rc)-equivariant; i.e., r(Ίp) = T(rp), or (p<> T)| s n- 1 = (p|sn-i)o T. It follows that

Thus to prove the proposition, it suffices to show that Hk

in~1} is one-dimensional.
Let Pn denote the space of polynomials in x = (xu ...,xn).

Lemma 5.3. P°{n) = Rlr2'] = polynomials in r2 = x\ +. . . + x2.

Proof By induction on n. If n = 1, and p e P?(1), then p(χ) = p( — x), so p(x) = q(x2)
= q(r2). Now suppose that P^-ϊ υ = R\f2\ where r = x\ +. . . + x2_ x. Let p e P^(ίl);
then p(x) = ao(x) + a1(x)xn+...+ak(x)x%, where x = (xl9 . . . , x π _ 1 ) . But p(x,0)

= ao(x), and since peP°{n\ peP°(n~ι\ so a0 is O(n— l)-invariant. Now given
x = (x l5 ...,xπ), choose TeO(n) such that Tx = (yu y2, ...,yM_1,0). Note that x\
+ . . .+χί = y? + . . .+yί-i . Now

B u t b y o u r i n d u c t i o n h y p o t h e s i s , a^y^ ...,yn_ί) = q(y2

1-\-...+y2_1) =

+.. . + x2), where q is a polynomial. This proves the lemma. D

Lemma 5.4. P?(w~1) = -R[r2,xII]= polynomial ring spanned by r2 = x\ + ... +x2,
and xn.

Proof LetpePζt"-"; then if x = (xu ...,xj,

We claim that each a{ is O(w—1) invariant. To see this, note that p{xu ...,xn_1?0)
= ao(x1, ...^Xn-γ) so as in Lemma 5.3, a0 is O(n— 1) invariant. Thus p — a0 is
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0{n— 1) invariant, and since

we see that xn divides p — αo> and {p — ao)/xn is O(n — 1) invariant. By the argument
in the last lemma, ax is O(n— l)-invariant. Continuing in this way, we see that
each αf is O(n— l)-invariant. Now set r2 = xl + ...+x%^1; then by Lemma 5.3,
each ai(xl9...9xn-1) = bi(f2) = bi(r2 — x%), for some polynomial bt. Thus

k

P = Σ bi(r2 — x2)Xn, i.e., p is a polynomial in r2 and xn. This completes the proof of
ί = O

Lemma 5.3. D

Now let Pn(k) denote the homogeneous polynomials of degree k in (xl9..., xn).

Lemma 5.5. dimEP^V^] = 1 + d i m [ P $ Γ 1>].

Proo/. Let peP^iVi^; then from Lemma 5.4,

where each at is a constant; i.e.,

r>O(n- 1)/«2 pθ(n- 1) _ p θ ( « - 1) _

l + 2 2

where <̂  e P^So" υ ; this yields the desired result. D

Lemma 5.6. A : P%~2j
)-^P%~ υ is surjectίve.

Proof. Let r2hxk

n~
2{b~ι\ b = 0,1,..., , denote an arbitrary basis element of

P$l?+~2)} (cf. Lemma 5.4). Then a computation gives

where α = k — 2(b — 1). From this formula, we see that the matrix which represents
this linear transformation is of the form

* * *
0 * *

0 *
• ! 0 •

0 ό o *

that is, it is upper-triangular, with non-zero entries along the "diagonal." This
shows that A is surjective. D

From the last lemma, it follows that

dimkerzl =dimP%~ »-di



Symmetry-Breaking for Solutions of Elliptic Equations 441

On the other hand, since ker(zl) is H^{n~γ\ we see that dim#£ ( w~ 1 )= 1, and thus
dim V°{n~ υ = 1, in view of (5.5). This completes the proof of Proposition 5.2. D

Remark. There are subgroups H of 0(n), different from 0(n— 1), whose fixed-point
set of the iVth-eigenspace of A with respect to H are 1-dimensional. Thus there
bifurcates out of each u(-,pk) even more solutions than we have described above.
We plan to discuss this, and related topics in a future publication.
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Note added in proof. The application of Theorem 2.2 is not quite correct since H1 functions
need not have normal derivatives on 5"" 1 ; we thank Christoph Pospiech for pointing this out
to us. We remedy this by noting that the existence of infinitesimal symmetry-breaking,
Theorem 4.6, implies that the Conley index of the rest point u( , p) of the parabolic equation
ut = Au + f(u) changes as p goes from pk to ρk + 1.

This means that actual bifurcation must occur (see [10, Chap. 22]).






