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Abstract. We introduce a large class of billiards with convex pieces of the
boundary which have nonvanishing Lyapunov exponents.

0. Introduction

Results of Sinai on dispersing billiards [Sin] and the theorem of Lazutkin [Laz] on
the existence of caustics for billiards in smooth convex domains gave credit to the
idea that reflections in concave boundaries produce exponential instability as
opposed to reflections in convex boundaries which are likely to produce elliptic
(stable) behavior. The picture got more confusing after Bunimovich [Bun] gave
examples of billiards in convex domains (the celebrated stadium) which possess
strong mixing properties brought about by exponential instability. In these
examples the convex pieces of the boundary of the billiard table are allowed to be
only arcs of circles, and they have to be sufficiently far apart (connected by flat or
concave pieces). So these examples have the unsatisfactory feature of imposing a
rigid condition on the shape of the convex pieces of the boundary which would
suggest that small perturbations of these examples will show elliptic behaviour.

In the present paper we show that reflections in convex pieces of the boundary
satisfying certain condition (convex scattering) produce exponential instability. A

curve is convex scattering if -ΓΎ g 0, where r(s) is the radius of curvature as the
as

function of arc length parameter on the curve. The convex scattering condition is
robust in that it allows for small perturbations of the curve (at least when the
inequality is strict). Examples of convex scattering curves include (epi) (hypo)
cycloids.

We are able to formulate the following "principles for the design of billiards
with nonvanishing Lyapunov exponents":

Pί: All convex pieces of the boundary of the billiard table have to be convex
scattering.

P2: Any convex piece of the boundary has to be sufficiently far away from any
other piece of the boundary (convex, flat or concave).
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P 3 : If two smooth pieces of the boundary meet at a vertex then the internal
angle at the vertex has to be bigger than π when both pieces are convex, not less
than π when one piece is convex and another is concave and bigger than § when
one piece is convex and another is flat.

If a billiard table satisfies these conditions then the Lyapunov exponents are
nonzero. This is not a theorem since "sufficiently far away" has only a vague
meaning and we do not attempt to formulate a general theorem along the lines of
these principles. We feel such an attempt would only obscure the underlying ideas.
Instead we consider several classes of examples. In particular the billiard inside a
cardioid has nonvanishing Lyapunov exponents. Moreover this domain can be
perturbed arbitrarily as long as its boundary stays convex scattering, so we get a
large class of examples of this particularly simple shape. It should be noted that the
billiard in a cardioid was studied numerically in [Rob].

Nonvanishing of Lyapunov exponents for a billiard leads automatically to
strong mixing properties: countable number of ergodic components, positive
entropy, Bernoulli property etc. Indeed Pesin theory of nonuniformly hyperbolic
systems [Pes] can be generalized to systems with singularities as was shown in
[Kat-Str]. What is more, it was shown there that plane billiards in particular can
be treated from this point of view. It should be pointed out that ergodicity does not
follow automatically from nonvanishing of Lyapunov exponents. In Appendix C
we give an appropriate example in the class of billiards. Nevertheless we expect
that typically (under some mild conditions) the billiards designed according to the
above principles will be ergodic. It seems that the method of Sinai (see [Bun-Sin])
should apply, but the proof of ergodicity for a general class of billiards would
require a detailed study of singularities which makes it a rather tedious task (for the
billiard in a cardioid type domain the singularities are moderate and the Sinai
proof should go through easily).

The plan of the paper is the following. In Sect. 1 we formulate the citerion
(Theorem 1) for nonvanishing of Lyapunov exponents which was earlier intro-
duced in [Wojt 1]. An important feature of this criterion is that it concerns only the
projective action of the differential. It is interesting that the integral of the positive
Lyapunov exponent (metric entropy) can be actually estimated from below in
projective terms which is done in Theorem 2. This estimate is applied in
Appendix B to the case of the billiard in the stadium close to a disk and it confirms
the numerical results from [Ben-Str] and [Ben]. For the sake of completeness we
include the proofs of Theorems 1 and 2 in Appendix A. It should be pointed out
that these theorems are related to the Hubert projective metric [Birk] which is
made explicit in [Wojt 2].

In Sect. 2 we discuss billiards. We introduce the standard section of the flow
generated by the billiard ball problem. To be able to apply Theorem 1 we describe
the projective action of the differential of the section map in geometric terms
(Lemmas 1 and 2 and Proposition 1). This description is very much in the spirit of
the geometrical optics. We use it to give a simple proof of the theorem on
nonexistence of caustics [Math], and to derive conditions of linear stability of a
periodic billiard orbit (Proposition 3).

In Sect. 3 we define a bundle of sectors to be preserved by the differential of the
standard section map and then we look for billiards that would actually preserve
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this bundle. It turns out that the necessary condition is the convex scattering
property for all convex pieces of the boundary (Definition 2 and Theorem 3). We
formulate the sufficient conditions in a technical manner (not readily applicable)
and then reformulate them heuristically in our three principles.

In Sect. 4 we consider several (classes of) examples and show how the method
developed in Sect. 3 works in proving nonvanishing of Lyapunov exponents.

In Appendix C we discuss examples of billiards with nonvanishing Lyapunov
exponents which do not satisfy our principles. It shows that the game can be played
in other ways. We are also able to construct a billiard with nonvanishing
Lyapunov exponents and at least two ergodic components.

1. The Projective Criterion

Let Φ: M2-^M2 be a piecewise differentiable invertible mapping (not necessarily
continuous) of a two dimensional manifold M2. Let us fix some Riemann metric on
M2. We further assume that Φ preserves a probabilistic measure μ which has

nonvanishing density with respect to the Riemann area element v, i.e., —=f,

/>0, J/dv = l. dV

M2

We restrict the singularities of φ by the following condition:

f log+ | |D ; cΦ
± 1 | |dμ(x)<+oo ? where log+ί = max(logί,0). (1)

M 2

In this setting Oseledec Multiplicative Ergodic Theorem [Osel] applies and we
obtain the existence μ almost everywhere (a.e.) of the Lyapunov exponents λ+, Λ_,
which in our case are equal to

λ+(x)= lim -ln| |D^ n | | and λ.(x)=-λ+(x).
n^ + ooΠ

We are going to formulate a condition on Φ under which λ+ >0 μ a.e.
Let C(x), x e M2 be a measurable bundle of closed sectors in the tangent bundle

of M2 i.e., C(x) is a closed sector in TXM
2 [in appropriate linear coordinates (uuu2)

in TXM
2 C(x) = {(uuu2)\uίu2^0}'] defined μ a.e. and C(x) depends on x

measurably.

Definition 1. We say that the bundle C(x), x e M2 is
a) preserved by φ if DxΦ(C(x)) C C(Φ(x)) μ a.e.,
b) strictly preserved by Φ if it is preserved by Φ and if both boundary lines of

DxΦ(C(x)) are contained strictly inside C(Φ(x)) (μ a.e.),
c) eventually strictly preserved by φ if it is preserved by φ and for μ almost all

x e M2 there is n(x) such that both boundary lines of DxΦ
n(x)(C(x)) are contained

strictly inside C(Φn(x)(x)).

Theorem 1. // there exists a measurable bundle of sectors which is eventually
strictly preserved by Φ satisfying the above properties, then the Lyapunov exponent
λ+ of Φ is positive μ a.e.



394 M. Wojtkowski

This theorem was proved in [Wojt 1]. Note that to check the preservation of
sectors in the above sense we do not need to know DXΦ itself but only how it acts on
lines in TXM

2 passing through the origin, i.e., on the 1-dimensional real projective
space.

It is interesting that the Lyapunov exponent λ+ can be actually estimated
below in projective terms. Indeed let us assume that for (μ almost) every x e M2 we
have chosen a projective coordinate ί, — o o ^ ί ^ + o o , in the 1-dimensional
projective space of lines in TXM

2 [i.e. for appropriate euclidean coordinates (uu u2)
in TxM

2t, — oo<ί<+oo, corresponds to the line u2 = tu1 and t=±co corre-
sponds to the line ux = 0]. Lines in the sector C(x) form a closed interval I(x) in the
projective space, I(x) = {t\ l(x) ̂  ί ̂  r(x)}, where l(x) < r(x). If the bundle of sectors
C(x), x e M2 is preserved by Φ, then the lines in the sector DxΦ(C(x)) form a
subinterval I^x) of I(Φ(x)). If /1(x) = {ί|/1(x)^ί^r1(x)}, I1(x)<r1(x)9 then we
have μa.e. /(Φ(x))^/1(x)<r1(x)^r(Φ(x)). Let N = {xeM2\l(Φ(x))<l1(x) and
rϊ(x)<r(Φ(x))}9 and for xeN let ζ(x) be the cross ratio [^(x), r^x), ί(Φ(x)),
r(Φ(x)y] of the four points i.e.,

rjΦjx))-^) rί(x)-l(Φ(x))

Clearly we have £(x) > 1 for x e N. ζ(x) does not depend on the choice of the
projective coordinate t but only on the sectors C(Φ(x)) and DxΦ(C(x)).

Theorem 2. If a measurable bundle of sectors C(x), x e M2 is preserved under Φ,
then

where N and ζ are defined above.

In his theory of nonuniformly hyperbolic systems Pesin [Pes] established that
nonvanishing of Lyapunov exponents implies automatically strong mixing
properties. Under some technical conditions this theory was extended in
[Kat-Str] to systems with singularities. In particular under these conditions the
metric entropy hμ(Φ) is in the 2-dim setting equal to

hμ(Φ)= j λ+dμ.
M2

More generally whenever hJΦ) is estimated below by J λ+ dμ (for appropriate
M2

conditions see [Led-Str]) Theorem 2 yields an estimate of hμ(Φ).
In the following we will apply Theorem 1 (and 2) to billiards. In general the

theory of nonuniformly hyperbolic systems is applicable, as shown in [Kat-Str], to
plane billiards. Hence if we establish nonvanishing of Lyapunov exponents for a
billiard system, it follows that the system has at most countably many ergodic
components, positive entropy, Bernoullian property on every ergodic component,
etc.

For completeness we include the proof of Theorems 1 and 2 in Appendix A. It
is a variation of the argument given in [Wojt 1].
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2. Billiards

We will be very brief with preliminaries since we can refer the reader to the detailed
introductory discussion of billiards in Chap. 6 of [C-F-S].

Let Q be a connected domain in the plane with a piecewise smooth boundary.
We distinguish three classes of smooth pieces of the boundary dQ: flat - straight
segment, convex - the center of curvature lies on the inside of β, and concave - the
center of curvature lies on the outside of Q. The curvature of dQ receives a sign after
we choose the unit normal vector to point inside g, so that convex pieces of dQ
have positive curvature and concave pieces - negative curvature.

By a billiard in Q we mean the dynamical system arising from the uniform
motion of a point mass inside Q with elastic reflections ("the angle of reflection
equals the angle of incidence") at the boundary. So we have the flow Ψ in the space
TXQ of unit tangent vectors of Q (with obvious identifications) preserving the
Liouville measure (see Chap. 6 of [C-F-S]). Let π: TtQ-*Q denote the natural
projection.

We will deal with the following standard section Φ:S-+SoϊΨ\ rather than the
flow Ψ itself. Let S C Tt Q be the set of unit vectors attached at the boundary dQ and
pointing inside Q. For p e S draw a straight line with the direction of the unit
vector, from the point π(p) in dQ up to the next point of intersection with dQ.
Φ(p) e S is the unit vector attached at this point and symmetric to the direction of
the straight line with respect to the boundary dQ (Fig. 1).

We introduce coordinates (s, α) in S where s is the arc length parameter along
dQ and α is the angle, 0 ̂  α ̂  π, which the unit vector makes with dQ. Φ preserves
the probabilistic measure μ = csinocdsdoc, where c is the normalizing constant.
Typically Φ has singularities (is not defined or is discontinuous or nondifferen-
tiable) but they occur only on a subset of S of measure zero. In particular
the condition (1) is satisfied [Kat-Str].

Since eventually we want to apply Theorem 1 to Φ, we need information about
DΦ. It is possible to express DΦ in the coordinates but we are interested only in the
projective action of DΦ which allows a straightforward geometric description. For
this description we need some elementary differential geometry.

Let us consider a smooth family of rays l(u), \u\ < ε, in the plane i.e., a family of
oriented lines. Its parametric representation is l(u9t) = y(u) + tv(u), where y(u),
\u\<ε, is a parametrized curve such that γ(u)el(u) and v(u) is the unit direction
vector of l(u). Let further t = f(u) be a function such that /(u,/(w)), |u|<ε, is the

Fig.l
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envelope of the family. Equivalently -—l(u,f(u)) is parallel to v(u) i.e.,

m=~W)if <*°> (2)

where ' denotes differentiation with respect to u.
Geometrically l(u, f(u)) is the point on l(u) where our family is focused in linear

approximation around l(u). If v'(u) = 0, then the family is parallel in linear
approximation.

Let us assume that a family of rays is reflected from a smooth curve. Thus
together with our family l(u) we have another family lx(u) of reflected rays. In the
parametric representation of the families we can choose y to be the curve at which
the reflection takes place. We want to find the relation between the envelopes of l(u)
and lx{μ). Without loss of generality we can assume that u = s is the arc length
parameter on y. Let further t(s) and n(s) be the unit tangent and normal vectors of γ
at γ(s)9 where n(s) points to the side of y on which the reflection takes place. After we
have chosen the normal vector n(s) the curvature k{s) of y has a sign.

Let l(s,t) = γ(s) + tv(s) and I1(s,i) = y(s) + tv1(s) and α(s), 0^α(s)^π, be the
angle which vt(s) makes with t(s), so that t;1=cosαt + sinαn. We have then
v = cos at — sin an.

Lemma 1. If t = f(s) is the local envelope of a family of rays I and t = f^s) the local
envelope of the reflected family lu then

1 1 2k
(3)j j1 sinα

Proof. We have
υ' = ( — α/ + /c)sinαt + ( — α' + fcjcosαn,

v[ = — (

From (2), since / = t, we obtain

1 a! — k 1

f sinα ' fγ sinα
D

The formula (3) is well known in geometrical optics as "the mirror equa-
tion."

Let us reformulate Lemma 1 in geometric terms. To this end let us consider an
infinitesimal family of rays /, being reflected from y at y(0) and producing the
reflected infinitesimal family l1. Let Fel(0) and Fx e/^O) be the points where
respectively the families / and lt are focused in linear approximation. / and fγ are
signed distances from y(0) to F and Fx respectively, the sign chosen according to
the orientation of 1(0) and Z^O). Let us further assume that the curvature k of y at

is different from 0 so that we can consider the following three closed disks

tangent to γ at y(0): Dγ - the disk of curvature I with the radius — I, D2 and D4 -

disks with radii — - and —— respectively lying on the same side of γ as Dί. Let d
2\k\ 4|/c|

be the length of the segment of 1(0) [or ^(O)] inside D2.
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Fig. 2

From Lemma 1 we obtain immediately

Lemma 2.
1 1 I D (4)

Proposition 1. FφD2 if and only if F1eintD2. Moreover when k>0, then if
f^-d, then F1eD2\D4, and when k<0, then iff^O, then F1ED4 (Fig. 2).

Proof. Straightforward from Lemma 2. D

Remark. Using Lemmas 1, 2 and Proposition 1 we can draw some conclusions
about the position of a caustic for a billiard problem in a convex domain Q. By a
caustic for a billiard problem in Q we mean a smooth closed curve ξ in Q such that
if one segment of the billiard trajectory is tangent to ξ then any other segment of
this trajectory is also tangent to ξ. For a billiard trajectory tangent to a caustic ξ let
Fb i = 0,1,2,..., be the consecutive points of tangency to ξ and RiedQ,i = l,2,...,
the points at which the trajectory is reflected so that Rt lies between Fi_1 and Ft on
the trajectory. Let D2(ί) and D4(ί) denote the closed disks tangent to dQ at Rt as
defined above. If we consider segments of nearby trajectories tangent to the caustic
ξ, we obtain an infinitesimal family of rays focused in linear approximation at Fo.
The reflected family of rays is focused at Fγ. Hence by Proposition 1 we get that if
Fi-1φD2(ΐ), then Fί6int£>2(0\^4(0 a n d symmetrically if FiφD2{ι), then

This line of thought allows for a very simple proof of the following theorem
which is a weaker form of the theorem first formulated and proved by Mather
[Math]; see also [Douad].

Theorem. If Q is a convex domain and at some point of dQ the curvature is zero, then
there exists no caustic (in the above sense) for the billiard problem in Q.

Proof. Suppose there exists a caustic ξ. Let us consider segments of nearby
trajectories tangent to ξ and reflected in a neighborhood of the flat point of dQ.
They form an infinitesimal family of rays focused in linear approximation at ξ. The
reflected family will be by Lemma 1 focused outside of Q so that it cannot be
focused at ξ contrary to the definition of a caustic. D
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Tί ίs,)

Fig. 3

We are now ready to describe geometrically the projective action of DΦ for a
billiard problem in some domain Q. Let y and γ1 be two smooth pieces of dQ and
1(0) be a line intersecting y and yγ at the points y(s0) and yi(si) respectively, oriented
from y(s0) to y i(si). Let υ0 be the unit direction vector of 1(0). We will consider the
mapping Φ.S^S in the neighborhood of po = (y(so),vo)eS. Let Φ(po) = Pi
= (yi(s1),vί). A tangent vector to S at p 0 is an infinitesimal parametrized curve
passing through po; in (s, α) coordinates in S: α = α(s), 5 = S(M). Such a curve gives
rise to an infinitesimal family of rays /: l(s — s0, t) = y(s) + tυ(s), where v(s) are unit
vectors making the angle α(s) with the tangent to γ(s), in particular u(s0) = v0. The
signed distance / 0 from y(s0) to the point on 1(0), where this family is focused in
linear approximation equals [see (2) and the proof of Lemma 1]

sinα
Jo =

doc '

" d s °

where k0 is the signed curvature of y(s0). So f0 does not depend on the choice of
parameter u on our infinitesimal curve i.e., f0 depends only on the 1-dim subspace
in the tangent space to S at p0, TpoS. Moreover f0 is actually a projective
coordinate in the 1-dim projective space.

Let now f0 and fγ be respectively the projective coordinates of a 1-dim
subspace of Tvβ and its image under DPoΦ in TPίS. Equivalently we consider an
infinitesimal family of rays including 1(0) - f0 is the signed distance from y(s0) to
the point where the family is focused; and the family reflected from 7i at y1(51) - / x

is the signed distance from y^s^ to the point where the reflected family is focused
(in linear approximation) (Fig. 3).

Hence we see that Lemmas 1, 2 and Proposition 1 contain the description of
the action of DΦ on the 1-dim projective space. In particular the corresponding
linear fractional map is given by (3) or (4). More precisely let L be the distance
between y(s0) and y^sj, d be the length of the segment of 1(0) inside the disk D2

constructed for yx at y^s^ and k1 be the signed curvature of yγ at

Proposition 2.

f (

2(sgn/c1)/o-2(sgn/c1)L+d'

Proof. Follows immediately from Lemma 2 after substitution f = fo — L. O
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In Sect. 3 we will use this description of the projective action of DΦ to check the
assumptions of Theorem 1 for a class of billiards. Before that let us use the formula
(5) to derive a criterion of linear stability of a periodic billiard trajectory.

Let 1(0) be orthogonal to the boundary of Q at two consecutive points of
intersection with dQ. The segment of 1(0) between these points supports a periodic
trajectory for the billiard problem. For the section map Φ we get a periodic point of
period 2.

Proposition 3. This periodic trajectory is linearly stable if and only if

Lkoki-ko-kί<0 (6)

and

(7)

where ίc0, k1 are signed curvatures of dQ at the two points and L is the distance
between them (the sign of the curvature is obtained by the choice of the interior unit
normal vector for dQ).

[Note that the condition for linear stability quoted in [Arn, p. 456] is thus only
necessary but not sufficient. Indeed when k0 > 0 and kί > 0, then the conditions (6)
and (7) read

L—ro — rί<0 and ( L - r o ) ( L - r 1 ) > 0 ,

where r0, rγ are the respective radii of curvature.]

Proof. Linear stability of the orbit is equivalent to DΦ2 being elliptic at the
corresponding point. This can be decided from the knowledge of only the
projectivization of DΦ2 which is a linear fractional map readily obtainable from
Proposition 2. In our case the lengths of segments of 1(0) inside the D2 disks at the

points of reflection of our periodic trajectory are equal to —- and —•. By simple

transformations we obtain from (5) that DΦ2 is elliptic if and only if

| t r4 |<2, where Λ =
1 - L

2kγ \-2Lkγ

1 -L

2k0 l-2Lk0

This yields —2<2 — 4Lko — 4Lk1+4L2kokί<2 which is equivalent to (6) and
(7). D

It follows from Proposition 3 that if we move sufficiently far apart the two
pieces of dQ intersecting the line 1(0) perpendicularly, then the resulting periodic
trajectory becomes linearly unstable: when the curvatures ko,k1 have the same
sign, (6) is violated for large L, and when the curvatures kΌ, kγ have the opposite
signs, then (7) is violated for large L.

3. Convex Scattering Property

Let Q be a connected domain in the plane or the flat torus with dQ being the union
of smooth pieces: convex (positive curvature), concave (negative curvature) or flat
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(zero curvature). Let 5 be the set of unit tangent vectors attached at dQ and
pointing inwards and S1cS be part of S over convex and concave pieces. Let
Φ: S^S be the section of the billiard flow as defined in Sect. 2 and let Φx: Sί ->S1?

be the first return map of Φ. We assume that almost every trajectory of the billiard
passes through Sλ (actually we do not know of any nontrivial example in which it
would not be the case). We restrict our attention to Sx and Φγ because the
reflections in flat pieces of dQ are almost irrelevant for the exponential instability
(or its absence) - indeed one can think that the trajectory continues freely into the
reflected domain.

We will now define a bundle of sectors C in the tangent planes of S1 and then
look for conditions on Q under which C is strictly preserved (eventually strictly
preserved) by φ1 so that Theorem 1 applies.

According to the discussion in Sect. 2 a sector in the tangent plane of S1 can be
defined by a condition on the projective coordinate / = the signed distance from
the respective point in dQ to the "focus" of the infinitesimal family of rays
corresponding to a vector tangent to S. Let for any convex piece γ of the boundary
dQ D2(s) be the closed disk tangent to y at y(s) with the radius equal to \ of the
radius of curvature as defined in Sect. 2. For points in S1 over the point y(s) in a
convex piece y the sector C is defined by the condition that the "focus" of the
respective infinitesimal family of rays lies in D2(S); equivalently in the 1-dim
projective space the sector C is defined as {/10 ̂  / ^ d], where d is the length of the
segment of the billiard trajectory inside D2(s). For the points in Sί over a concave
piece of dQ the sector C is defined by the condition that the "focus" of the respective
family of rays lies on the exterior side of the boundary dQ; equivalently in 1-dim
projective space the sector C is defined as {/| — oo ^ / ^ 0 } .

Let us assume that Q is such that C is (strictly) preserved by Φv We want to
reveal what this assumption implies about Q. For this purpose let us consider a
piece of the billiard trajectory starting at y(s0) in a nonflat piece y of dQ and ending
at y ^ ) in another nonflat piece yx (we do not exclude that y = yx) and having in
between an arbitrary number of reflections at the flat pieces. By Proposition 1 we
obtain

Case 1. γ and yx are concave.
The preservation of C by Φ1 [along the billiard trajectory from y(s0) to y ^ ) ]

imposes no conditions whatsoever on γ and γv What is more the preservation of C
is automatically strict. Note that if dQ has no convex pieces then the bundle of
sectors C is strictly preserved, and by Theorem 1 the mapping Φ l 5 and hence also Φ
have nonvanishing Lyapunov exponents. This is the celebrated class of Sinai
dispersing billiards, [Sin].

Case 2. y is convex and y1 is concave.
The preservation of C by φγ implies that drgL, where L is the length of the

trajectory from y(s0) to γ^Sy) and d is the length of the appropriate segment in the
D2 disk at y(s0) (as in the definition of C) (Fig. 4). Strict preservation is equivalent
to d<L.

Case 3. y is concave and yx is convex. Analogous to Case 2.

Case 4. y and y1 are convex.
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Fig. 5

The preservation of C implies that d + dx^L, where L is the length of the
trajectory from y(s0) to y^s^) and d, dγ are the lengths of the segments inside the
respective D2 disks at y(s0) and y(sί) (d, dγ appear in the definition of the respective
sectors C) (Fig. 5). The strict preservation of C is equivalent to d + dί<L.

We see that the preservation of the bundle of sectors C can be always arranged
by moving the nonflat pieces of dQ sufficiently far apart, except for the Case 4,
y = y i - the preservation of C in this case imposes a severe restriction on y. Our next
goal is to describe this restriction in more explicit terms.

Let y be a smooth curve with nonvanishing curvature. At every point y(s) of y
we consider the closed disk D2(s) tangent to y at y(s) with the radius equal to \ of the
radius of curvature and lying on the same side of y as the disk of curvature.

Definition 2. A smooth curve y is (strictly) convex scattering if for every segment
[y(so)> y( si)] 5 y(so) + 7(5i)> s u c h that the arc of y between y(s0) and γ(sί) lies entirely
on one side of the straight line passing through y(s0) and y ^ ) , we have that

contains at most one point (is empty).
Clearly the (strict) preservation of C in Case 4, γ = y1 is equivalent to y being

(strictly) convex scattering. That is why the following theorem is crucial in our
approach to billiards.

Theorem 3. A smooth curve y is (strictly) convex scattering if and only if the radius
of curvature r(s) is a (strictly) concave function of the arc length parameter s, i.e.,

d2r<
ds

—j < 0 for an open dense set of s
ds
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Proof. Let γ(s0) and y(s1) be two arbitrary points on y such that the arc of y
between y(s0) and y(sί) lies entirely on one side of the straight line passing through
y(s0) and y(Si). We choose cartesian coordinates (x, y) in such a way that y(s0) is the
beginning of coordinates, yis^) lies on the positive x-axis and the arc of y between
y(s0) and y ^ ) lies below the x-axis. Let y(s) = (x(s),y(s)) be the arc length

άy άy
parametrization of y and φ(s) be the angle which — makes with the x-axis i.e., —

as as
ds

= (cosφ, sinφ). By r(s) we denote the radius of curvature of y at y(s) i.e., r = -rj. Let
α0

the length of the segment [y(s0), y ^ ) ] be equal to L and the lengths of the segments
[7(s0),7(51)]nD2(s ί) be equal to db z = 0,1 i.e., do= — r(so)smφ(so) and
rf1 = φ 1 ) s i n ^ ( 5 1 ) . We have

L= j —-ds= J cosφ(s)ds= j — — τ τ r f s =

«S αS rf00 s 0 CIS

si ^Γ

o )— \ smφ — ds.
ί5so

Hence

7 . dr sϊdy dr dr , ,dr
j — d^ — dγ— — J smφ — ds = — J —j--r-ds= ~y{Sι) — {s1

s 0 CIS so βS $S βS

J 2r ,

So

A2r
since y(so) = y(s1) = 0. But y(s)^O for s^s^s^ so that if —^ ^0 for s o ^ s ^ s l 9ds

then do + d1^L. This proves that if —-̂  ̂ 0 on y then y is convex scattering. If on

the contrary—^ >0 at some point y(s), then if we choose s0, st sufficiently close to

s, we obtain do + d1>L. The strict convex scattering version of the theorem is
obtained in the same way. D

Examples of convex scattering curves:
1. An arc of a circle; more generally an arc of a logarithmic spiral: r(s)

= as + b for some a, b (nonstrict convex scattering property).
2. An arc of a cardiod; more generally of any epi or hypocycloid including the

limit case of a cycloid: r2(s)= —a2s2 + b2, \a\<\ - epicycloid, \a\ = l - cycloid,
\a\ > 1 - hypocycloid (strict convex scattering property).

2 2
X V /—

3. The two arcs of an ellipse -^ + -y = l ,α>b>0, on which |x| ̂  α/1/2. Indeed
a b v

if the ellipse is parameterized by y(t) = (acost,bήnt), then — = ;—sin2ί
ds 2 ab

(strict convex scattering property).
Note that the strict convex scattering property is an open condition i.e., it is

preserved under small (in C4 topology) perturbation of the curve.
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The necessary and sufficient conditions for the preservation of the bundle of
sectors C which we have formulated so far do not seem to be readily applicable.
Nevertheless we will not attempt to formulate simpler sufficient conditions.
Instead in the next section we will consider some specific shapes of Q and show that
our conditions can be actually verified.

We can summarize the above results into the following somewhat vague
principles for the design of billiards with nonvanishing Lyapunov exponents:

Pί: All the convex pieces of dQ have to be convex scattering.
P2: Any convex piece of dQ has to be sufficiently far away from any other piece

of the boundary.
P3: If two smooth pieces of dQ meet at a vertex, then the interval angle at the

vertex has to be bigger than π when both pieces are convex, not less than π when
one piece is convex and the other concave and bigger than § when one piece is
convex and the other flat.

The meaning of "sufficiently far away" in P2 is described in terms of the D2

disks in Cases 2, 3, and 4 above. The condition in P 3 arises naturally from the
consideration of trajectories reflecting at dQ in the neighborhood of the vertex. We
skip the details of the geometrical analysis leading to this condition.

4. Examples

1. Q bounded by the cardioid (Fig. 6).
dQ is not smooth but has only one convex smooth piece which is strictly convex

scattering, so that the sector bundle C is strictly preserved by Φ. By Theorem 1 Φ
has nonvanishing Lyapunov exponents.

Since the strict convex scattering property is robust, we get a whole class of
examples by perturbing Q. There is no convex domain Q with only one smooth
piece of dQ which is strictly convex scattering, but if we take Q bounded by the
cardioid and consider its convex hull Q we get a convex example of a billiard with
nonvanishing Lyapunov exponents. Indeed dQ contains two pieces, one convex-
strictly convex scattering, another flat. The D2 disks for the convex piece lie entirely
in Q so that the sector bundle C is preserved also on trajectories reflecting at the flat
piece.

2. Q bounded by an epicycloid e.g., nephroid (Fig. 7).
The smooth pieces of the boundary of an epicycloid are strictly convex

scattering. To establish strict preservation of the sector bundle C we have yet to
check that a segment connecting two different smooth pieces is not contained in

Fig. 6 Fig. 7
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the union of the respective D2 disks. This follows immediately from the following
geometric property of (epi) (hypo) cycloids.

Proposition 4. (a) The D2 disks of an epi- or hypocycloid, obtained by rolling a
circle upon the fixed circle K, intersect K orthogonally.

(b) Let y be the maximal smooth arc of the epi- or hypocycloid and let y be the
inversion of y with respect to K; then y is the envelope of the family of D2 disks of y.

Proposition 4 holds also for a cycloid if we replace the circle K by a straight line
and the inversion by the symmetry with respect to the line.

Proof. Since a circle orthogonal to K is invariant under inversion with respect to
K, part (b) follows immediately from part (a). To establish (a) let us assume that K
is the unit circle with the center at the beginning of coordinates and the x-axis
bisects the smooth arc y between two successive cusps. We have

χ(t) = (1 + w) COS t ± W COS ( 1 + — I t,

y(t) = (1 + w) sin t ± w sin ί 1 ± — J t,

where w is the radius of the circle rolled upon K, £, — πw < t < πw, has clear
geometric meaning, and we take + for an epicycloid and — for a hypocycloid. In
case of a hypocycloid we further assume that 2w < 1 which does not reduce the
generality because the rolling circles with radii w and 1 — w generate the same
hypocycloid (Daniel Bernoulli 1725). By straightforward computation we find the
radius of curvature r(t) and the unit normal vector η(t) of y at y(t):

/ λ 4w(2 + w) 1

y + \ rη is the center of the D2 disk so we have to check that (y + \ rη)2 — ^ r2 = 1,
which is the condition for orthogonality. It is equivalent to γ2 + (γ, rη) = l, which
can be readily verified. D

3 Qa = {(x, y)εR2\ \x\ ^ ϊ \y\ S i \x\2/3 + \y\2/3 ̂  a2/3} i.e., Qa is a square with a
hole in the shape of an astroid (four cusped hypocycloid).

We are going to establish that if α^|/2/4 then the billiard in Qa has
nonvanishing Lyapunov exponents. Reflecting Qa in its sides we obtain the domain
Qa (Fig. 8). We identify the sides of Qa in the usual way and obtain the torus with
four holes. The billiard in Qa is equivalent to the billiard in this toral domain, where
reflections take place only at the smooth pieces of the hypocycloids 1,2,3,4. These
pieces being strictly convex scattering, we have only to check that they are

1/2
sufficiently far apart. Using Proposition 4 it is easy to establish that a <]L—- is

equivalent to the fact that the unions of D2 disks of hypocycloids 1 and 3 in Fig. 8
do not intersect. This condition is not sufficient for the unions of D2 disks of
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Fig. 8

X ϊ
Qα Qα

Fig. 9

hypocycloids 1 and 2 to be disjoint, but this is not necessary for our purpose. We
have only to check that under this condition any segment connecting the
hypocycloids 1 and 2 is not contained in the union of the respective D2 disks. This
is a cumbersome task which is significantly facilitated by the following general
observation.

Let us consider two curves y1 and y2 and a family of parallel segments Iv \t\ <ε
connecting yx and y2, parameterized by the distance from the segment I o (Fig. 9).
Let us introduce arc length parameterizations y^s) and y2(s) in such a way that the

ds1

~dt ^"~"~ at
the length of It and dγ{t), d2{t) be the lengths of the intersections of It with D2 disks
of respectively y1 at y^s^i)) and y2 at y2(

s2(0) \ w e assume yί and y2 are curved in
such a way that the disks are on the side of the segments.

segment It has end points y i(si(0) a n d y2(52(0) a n < i ~r~ < 0 a n d 2 >0.LetL(ί)be

Proposition 5.

j t (L(ί) - - d2(t)) = - (s2(ή),

where r^s) is the radius of curvature of yt at yt(s), i=l,2.

Proof. Without loss of generality we can assume that γx and y2 are arcs of one
smooth curve. Let us choose cartesian coordinates so that /0 lies on the x-axis and
It lies on the line y = t. If we denote by r(s) the radius of curvature of y as the
function of the arc length and by φ(s) the angle which the tangent vector of y makes
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with the x-axis then as was shown in the proof of Theorem 3

s2(t) dr

L(t)-dί(t)-d2(t)=- J sinψ — ds,
asSl(t) as

so

j t {Lit) - dt(t) - d2(ή) = - smφ(s2(ή) j s (52(0) ^

But^ = J-ancφ = ̂ -
dt smφ dt smφ

D

Proposition 5 allows to pick easily from a family of parallel segments the
segment for which L — d1—d2 has minimal value. Our task is to show that
L — d1 — d2 > 0 for all segments connecting two pieces of the hypocycloids 1 and 2.

l/2
Now it is much easier to establish that indeed the condition a < *-— is sufficient for
this. 4

4. Stadium-like Q. Let Q be the domain bounded by two convex scattering
pieces yl9 γ2 and two flat pieces y + , y_. In coordinates: y+ = { — α ^ x ^ α , y= ± w},
α^O, w>0. yx connects ( — a,w) with ( —α, — w) and y2 is symmetric to y! with
respect to the y-axis. For simplicity we assume that y1 and y2 are symmetric with
respect to the x-axis (Fig. 10).

It is clear that for given shapes of yί9 y2 there is a0 such that if a > a0 then the
billiard in the domain Q described above has nonvanishing Lyapunov exponents.
Proposition 5 is very useful for finding minimal a0. In particular the segment of
x-axis in Q supports a periodic orbit which becomes linearly unstable if L — 2r > 0,
where L is the length of the segment and r is the radius of curvature of dQ at the
endpoints (Proposition 3). It looks plausible that if this orbit is linearly unstable
then the pieces γ1 and y2 are already sufficiently far apart, but it turns out not to be
true in general - still it is true sometimes e.g., if γί9 y2 are convex scattering arcs of

Fig. 10
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an ellipse, or if yuy2 are smooth arcs of a cycloid (which incidentally follows
without any computations from the cycloid version of Proposition 4).

5. Bunimovich billiards, [Bun]. In this class of billiards the convex pieces of
the boundary have to be only arcs of circles which (in the simplest version) must be
contained inside the billiard table. So clearly for such billiards the bundle of sectors
C as defined in Sect, 3 is preserved. These billiards were already treated in [Wojt 1]
from the point of view of the projective criterion, using a different bundle of sectors.
Bunimovich announced in [Bun] that these billiards are actually ergodic.

Appendix A. The Proofs of Theorems 1 and 2

Let us choose a basis {e1(x),e2(x)} in TXM
2 such that eγ(x)^ e2(x) belong to the

boundary lines of C(x) and

Moreover we require that the area defined by the Riemann metric of the

parallelogram spanned by eγ(x), e2(x) is equal to , where / is the density of the
J \X)

invariant measure μ with respect to the Riemann area element. Clearly we can
make the choice so that ex(x) and e2(x) depend on x measurably.

The choice of bases leads to the identification of all XLM with the standard

plane IR2 and DXΦ is described then by a matrix A(x) =
a(x) b(x)

. In terms of
c(x) d{x)

these matrices preservation of the bundle C(x) means that entries of A(x) are either
all nonnegative or all nonpositive and invariance of the measure μ means that the
determinant of A(x) is equal to +1. Strict preservation of C(x) by DXΦ implies that
A(x) has no zero entries. The cross ratio ζ(x) is then equal to the cross ratio

[ c(x) d(x)l Γ d(x) c(x)~]

0, +oo,-^4, y^~ if det,40c) = l and the cross ratio 0, +oo, —--, -~- if
a(x) b(x)j I b(x) a(x)_\

detA(x) = - 1 , i.e.,

ττvτ\ if d e t ^ ) = 1

b(x)c(x)
ζ(x) = <

b(x)c(x) . . . . . . . .
-if Γ1PT Jί V I — Ί

a(x) d(x)
So by the above choice of bases we have reduced our problem to a question

about growth of products of 2 x 2 matrices with all nonnegative or all nonpositive
entries. We shall now prove several lemmas in this direction.

Let 0 = {(w1,w2)elR2|wiW2^0} and F:0->IR, F(u) = u1u2 if u = (uuu2). Let
further P = {A e GL(2, 1R) |^0C0} and SF = {A e P | |deU| = 1}. For A e P we set

ίF(Au)\1/2

ρ(A) = sup ~^rrv~ II' II denotes the euclidean norm in R 2 and the corre-
weintO \ F(U) )

sponding matrix norm.
Lemma A.I. If ueθ9 then \\ u \\ ^ j/2 |/F(w). D
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Lemma A.2. If A,BeP, then ρ(AB)^ρ{A)ρ(B).

Proof. Since BeF £ i n t θ c i n t θ , so that if weintO, then F(Bu) + 0. We have

•

Lemma A.3. If AeF, then \\A\\^ρ(A).

Proof Let 1 =(1,1). Then

. If A=\a e P , then ρ(A) = ]/ad + ]/bc. In particular if AeSFLemma A.4 f , ρ()

and it has all nonzero entries, then ρ(A) = * . , where

f if
be

ζ = \ h
—Λ if d e U = - l .

Proof. Straightforward computation. D

Equipped with these lemmas we go back to our mapping Φ. We have λ+(x)

= lim -In | |DXΦ"||, where the norm of DXΦ" is defined by the Riemann metric

/note that the condition (1) implies that J λ+dμ< H-ooY Let us consider the

V M2 /
family of norms || || x, x e M2, in R 2 induced from the Riemann metric on M2 by
the identification of TXM

2 with IR2. The norms || | |x are equivalent to the standard
euclidean norm || || for all x, so that we have ot(x) \\ | |x =^ || || ^β(x) || \\x9 where
β(x) ^ oc(x) > 0, but oc(x) and β(x) are in general only measurable functions of x. Let
for d > 0 Md = {x E M2 \ α(x) ̂  d ~ι and β{x) ^ d}. We have clearly lim μ(Md) = 1.
For almost all x eMd there are infinitely many nk,k = ί,2,... such that Φ"kx eMd

(actually Φ" return to Md with positive frequency). If x e Md and Φn

x e Md9 then

||D Φ»H = s u p II^C^""1^) - ^W^llφa ^ 1 \\A(Φ>-1x)...A(x)u\\
«ΦO || M L ~d2

UΦo \\u\\
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So we get for x e Md, using Lemma A.3,

λ+(x)= lim -ln\\DxΦ
n\\= lim — ln\\DxΦ

nk

^ lim sup—In

H + oo «ϋ

^ lim sup —

Let h(x) = lnρ(Λ(x)). A priori we do not know if f hdμ< + 00, so for m ^ l we
M 2

introduce the "cut off" function ftm(x) = min(ft(x),m), and its ergodic mean Λ*(x)

= lim -(Λm(x) +.. . + hm(Φn~ίx)). From the above inequality we get for any

fixed m that

( / ( ) Λ(Φ" f c- 1)) Λ*()

Since the right-hand side does not depend on the choice of d we obtain that for a.e.
xeM2 λ+(x)^h*(x). Integrating we get J λ+ dμ^ J h*dμ= J hmdμ (the last

M2 M2 M2

equality is one of the conclusions of the Birkhoff ergodic theorem). Since this
inequality is valid for all m we get finally that

ί λ+dμ^ f hdμ
M2 M2

by t h e way we see t h a t actual ly J h dμ < + oo V Clearly we have for (almost) all
M2 J

x £ M2 h(x) ̂  0 and N = {xe M2 \ h(x) > 0}. By Lemma A.4 we obtain immediately
Theorem 2.

To prove Theorem 1 let us note that Λ+(x)^/i*(x), where
1 »-i

Applying the Birkhoff ergodic theorem to the subset {x e M21 /ι*(x) = 0} and the
function h9 we get that on this subset h = 0 a.e. So we get that λ+(x)>0 except
possibly on the set where ρ(A(x)) = 1 i.e., where A(x) has some zero entries. The
Lyapunov exponent for Φn is equal to nλ+ and applying the above agreement to Φn

we get that nλ+>0, except possibly on the set where ρ(A(Φn~ίx)... A(x)) = l.
Since Φ eventually strictly preserves C, then this last set is smaller and smaller as
n-> + oo so that finally we can conclude that λ+(x)>0 for a.e. x£M 2 .
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Appendix B

Let us consider the billiard in the stadium Q i.e., a special case of the class of
billiards considered in Example 4, Sect. 4 in which γί9y2 are half-circles with radius
r and y± = { — a^x^a,y= ±r},so that the domain Q depends on two parameters
a and r. This billiard was originally studied by Bunimovich [Bun], who in
particular announced that the system is actually ergodic (for α>0). If this is the
case the Lyapunov exponent λ+ for the corresponding section map Φ is constant
a.e. (and thus it is equal to the metric entropy of Φ). In [Ben-Str] λ+ was

investigated numerically as a function of ε = - at a fixed value (= 4 + π) of the area

of Q. Their results indicate that for ε small λ + grows with ε faster than linearly (note
that for ε = 0 we get the billiard in the disk which is integrable so that λ + = 0). The
actual asymptotics was found numerically by Benettin [Ben] to be j/ε" and he gave
a good explanation for it. Using Theorem 2 we are able to support this fact

rigorously. More precisely we will show that for sufficiently small ελ+ ^constj/7.
Let as in Sect. 3 Sx be the part of S over the convex pieces γ1 and γ2 i.e., π ^ )

= y1κjy2, where π: TXQ^Q is the natural projection. The bundle of sectors C
defined in Sect. 3 is preserved by Φ and on Sc = {xe Sί |π(x) and π(Φx) belong to
different pieces yl9y2} the preservation is strict. A convenient parameterization of
Sc is obtained in the following way. For xeSc consider the segment of the billiard
trajectory with endpoints π(x) and π(Φx): let s be the j -coordinate of the point of
intersection of the segment with the j-axis and let α be the angle which the segment
makes with the y-axis. Clearly (s, α) are smooth coordinates in Sc and the invariant
probability measure in S has in (5, α) coordinates the form const |sinα| ds doc. Sc is in
(s, α) coordinates a subset of the rectangle .Ro = [ —r, r] x [0,2π], which fills the
rectangle as ε->0 [the explicit description of Sc in (s, α) coordinates is unacceptably
involved].

By Proposition 2 the projectivization of DXΦ at x e Sc has in the appropriate
coordinates the form

J1 r\ r Λ Γ i J '

and it maps the sector C(x) = {/o |0^/o^do} strictly into the sector C{Φx)
= {/1 |0^/1^d1} [L is the length of the segment between π(x) and
π{Φx)~\. By straightforward computation we obtain that ζ from Theorem 2 is
equal to

and
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where

ω

dodx

By elementary geometry we get

L — d0—dί=2a\smoc\=2s\sinoc\r.

(Note that by Proposition 5 L — do — dί should depend only on α.)
Furthermore

dOf 1 = ]/r2 — (5 sin α + a cos α)2 .

By Theorem 2 we have

We would like to use the approximation ln(]/l + ω + j / ω ) « j / ω which is valid for
small ω. The trouble is that actually ω is always unbounded on Sc. Nevertheless if
we fix a rectangle Rδ = {(s, α ) | — r+δ^s^r— δ, |sinα| ^ δ} for small £ > 0, then for
sufficiently small ε, RδCSc and ω converges uniformly to zero on Rδ as ε->0. Thus
for sufficiently small ε we get

J ln(l/l + ω + l/ω)dμ« J l/ωdμ gconst |/ε.

So finally A+ ^ const ]/ε for sufficiently small ε.
It is interesting that when ε is far from zero one can get estimates of λ+ better

than that of Theorem 2, using some norm to measure the expansion of vectors in
the sector C(x) under the action oϊDxΦ. But as it turns out for ε->0 they would give
only the linear estimate (const ε) so that Theorem 2 seems to yield the best
asymptotic estimate.

Appendix C

Let us consider the billiard in a stadium-like domain Q of the Example 4 in Sect. 4,
where y1,y2 are two halves of an ellipse cut along the longer axis so that in
particular the longer axis of the ellipse is equal to 2w. Let the shorter axis be equal
to 2w. The domain Q depends thus on three parameters: α, u, and w. We will show

1 1
w — u

that if a ̂  then the billiard in Q has nonvanishing Lyapunov exponents.

This is exactly the condition under which the periodic orbit supported by the
segment of the x-axis inside Q is no longer a linearly stable orbit (the pieces γ1 and
γ2 are sufficiently far apart - Proposition 3). In this example yί and y2 are not
convex scattering so that the bundle of sectors defined in Sect. 3 is not preserved. It
turns out that another bundle of sectors is preserved.

Let Φ: S^>S be the standard section of the billiard flow and S1 be the part of S
over the convex pieces γ± and γ2. As in Sect. 3 we consider the first return map



412 M. Wojtkowski

Let us consider the bundle of sectors C(x) = {f\0^f^d(x)}, x e S1? as defined
in Sect. 3. If π(x) e γ1 2 and π(Φx) e y2 l 5 then it can be shown by straightforward

7 w2-u2\
calculation that DxΦ(C(x)) C C(Φx) I provided a ̂  ]. Indeed we need to

show that d(x) + d(Φx) is not bigger than the length of the segment between π(x)
and π(Φx). This can be done quite simply using Proposition 5.

If for xeSu π(Φx) belongs to a flat piece, then again DΦ^Cipc)) C C(Φxx). This
can be established purely geometrically if we think about reflection at a flat piece as
merely passing freely into the reflected domain.

Let us consider a subset S2cSx consisting of XGS1 such that the segment
between π(x) and π(Φx) intersects the segment between the foci of yt if π(x) e yh

i = ί,2. For x G SΛS2 the segment between π(x) and π(Φx) is tangent to some ellipse
confocal with yt if π(x) eyi9i = l,2. Let for x e SX\S2 e(x) be the distance between
π(x) and the point of tangency.

Now we define another bundle of sectors D(x), xeSί by

y } \{f\0ίfίe(x)} if

if xeS2

Φx preserves D(x), xeSί. Indeed if x e SX\S2 and Φx e SX\S2, then the preservation
follows from the fact that confocal ellipses form a family of caustics for the billiard
in the ellipse and from Proposition 1. When x e Sι\S2 and ΦxeS2, it is not difficult
to show that e(x) ̂  d(x), so that D(x) C C(x) and the preservation of D follows from
the preservation of C. The case x e S2 and Φx e S^S^ is similar [now e(Φx) ^ d(Φx)
so that D(ΦX)DC(ΦX)]. The remaining cases [π(Φx) belongs to a flat piece] are
easy to consider using the reflected domains and we omit the details.

Thus D(x), x G St is eventually strictly preserved by Φ1? so that by Theorem 1
the billiard in Q has nonvanishing Lyapunov exponents.

This example shows that the convex scattering property of convex pieces is not
necessary for nonvanishing of Lyapunov exponents. But it should be pointed out
that in this example we used heavily the fact that the billiard in an ellipse is
integrable which allowed us to control trajectories which have very many
reflections at one half of the ellipse before crossing the billiard table to the other
half. So it may well turn out that typically the convex scattering property is in some
sense a necessary condition for nonvanishing of Lyapunov exponents.

We can use the above example to construct a billiard with Lyapunov
exponents nonvanishing almost everywhere and with at least two ergodic
components. For that purpose let Qί be the domain obtained from Q by removing
interiors of two rectangles as shown in Fig. 11, where Fu F2 are foci of γ1 and F3,
F4 are foci of y2. In the limit when the width of the rectangles shrinks to zero we
obtain a billiard in Q in which additionally the trajectory is reflected at two
segments connecting Fu F3 and F2, F 4 , respectively.

The bundle of sectors D(x), xeSx defined above will be preserved also by the
new Φv There are many cases one has to consider to check this. We omit the
details, but let us note that in the new billiard we will have extra reflections only at
the sides of the rectangles which are flat pieces of the boundary of Qί9 and generally
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Fig. 11
r-

we can expect the reflections at flat pieces only to improve the preservation of the
sectors (see Sect. 3).

S2 is an invariant subset for the new Φl9 and clearly S2 does not have full
measure in S l 5 so that the billiard in Qγ has at least two ergodic components.

The above construction could be repeated if y1 and y2 would be pieces of an
ellipse bigger than a half and could not be repeated if they would be smaller.
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