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Abstract. Using an improved weight for a scalar field on a random lattice, it is
rigorously proved that the self-propagator, averaged over an ensemble of
random lattices with site density p, is bounded from above in D dimensions

where ωD is the solid angle in D dimensions.

I. Introduction

One of the most intriguing problems in mathematical physics is the ultraviolet
divergence. This problem arises from the uncontrollably vast fluctuation of the field
configuration in the space-time continuum. By renormalization, one can get around
this difficulty in a limited number of field theories. To deal with unrenormalizable
theories, a formulation of discrete mechanics has been developed [1]. The basic
assumption of this theory is: Within a finite space-time domain, say Ω, one can only
perform a finite number, say Jf, of measurements on space time coordinates and field
variables (xn, tn; Φn). The weight of each measurement is exp( — AL), where AL is the
action of the field defined on a random lattice generated by (xn,tn). Physical
observables are obtained by averaging the ensemble of all measurements. Such a
development invites a program of studying the effect in all branches of mathemat-
ical physics due to the discreteness of space-time. In this paper I pick up the simplest
system of a free massless scalar field and focus on the finiteness of its ultraviolet
behavior.

Originally such an attempt was made by Friedberg and Yancopoulos [2]. They
succeeded in figuring out a rigorous upper bound of the scalar self-propagator in
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two dimensions based on the weight given in [3]. Their reasoning depends crucially
upon the fact that the lattice scalar field action in two dimensions can be viewed as a
continuum action with a piecewise linear field configuration plugged in. An
improved definition of the weight proposed recently in [1] renders the above
property true for the lattice action in all dimensions. Thus Friedberg's method can
be generalized to higher dimensions. With some further technical modifications, the
problem of bounding the self-propagator becomes tractable.

This paper is organized as follows: In Sect. II, properties of the improved weight
for a scalar field will be reviewed and the problem will be formulated; in Sect. II, I will
follow a series of steps similar to that in [2] to bound the self-propagator on an
individual lattice; in Sect. IV, the ensemble average of the bound will be calculated.

II. Formulation of the Problem

Let Xi(i = 0,...,Jf— 1) be a set of sites distributed arbitrarily within a D-
dimensional Euclidean volume Ω. Following [4] a unique rotationally invariant
simplicial structure can be linked up by requiring that the inside of the circumsphere
of each simplex be free of other lattice sites. We define a scalar field Φ{ at each site
and the lattice action for the scalar field is given by:

where lu is a link and λu is its weight. To determine λu we fill the inside of each
simplex with a linear function Φ(x) such that Φ{xι) = Φh where xt is a vertex of the
simplex. Then we define the lattice action to be the continuum action evaluated from
this piecewise linear configuration, Φ(x), referred to later as the lattice configuration.
The weight of the link ltj can be shown to be:

and

where V is the volume of S, a D-simplex, and Viμ is the volume, projected normal to
the μ-axis, of the (D — l)-simplex in S opposite to site i. The orientation of Vt is taken
so that

Σ X = o (4)

It can be shown that the weight (2), (3) agrees with the weight defined in [3] in D = 2
only.

A physical observable is given by the following ensemble average:

where J is a Jacobian which has no effect on the continuum limit. The self-
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propagator at p0 is given by

_jΠf=-0

ιdDxiJ$Πf=-0

idΦiexp(-AL)Φ2

0

This expression is, however, not well defined because of the zero mode of AL. To
remove this ambiguity I specify the following boundary condition: Draw a large
closed (D — l)-dimensional surface ^ whose shortest distance to p0 is R and p1/D

R»\. We call a (D — l)-simplex an exterior simplex if its dual is severed by J*. The
union of the exterior simplices forms a piecewise flat boundary J*L of the network.
The potentials at the sites on £8L and outside it are fixed to be zero1. With this
boundary condition we have:

t/2 ' V ' 7

where A'L = \ΦMΦ is the lattice action with the boundary condition plugged in and
/V, determined by the distribution of sites, is the total number of the sites whose
potential are not fixed by the boundary condition. For the sake of simplicity we will
take

(8)

Then Δ0=^^Y\dDXj(Jί-\0. (9)

The continuum limit of the self-propagator is:

which is highly divergent. Intuitively we expect (9) to be finite. However the ensemble
includes some lattices whose density near p0 is very much greater than p and
(J^'^oo wiH t>e correspondingly large, since the system acts like a continuum
roughly down to the lattice spacing. As we shall see later the ensemble integration is
indeed convergent. It follows from the positivity of Jί that \{Ji~l\j\ ^^{Ji~ι)u

+ 0 J r 1 y . Therefore, once the ensemble average of (J(~\o is bounded the
ensemble averages of all other («/#~%(ι Φj) are also bounded.

III. The Bound of the Self-propagator on an Individual Lattice

The lattice scalar field system can be viewed as an electric network in multi-
dimensional space. Φf can be identified as the voltage at each site, A^1 as the
resistance of each link and the action as the total power dissipated.

Let p 0 be the site on which the potential is fixed at Φ o and the boundary

1 One can, of course, choose other boundary conditions. The ultraviolet behavior is not sensitive to the

boundary condition
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condition be as given in the last section. By a variational principle it is easy to show
that the absolute minimum of the power is given by

where

Alternatively, we can also identify the power dissipated in the network as the power
in a continuous conducting medium of unit conductivity evaluated from the lattice
configuration and the boundary condition that Φ = 0 on J* with the potential at p0

being held at Φ(p0) = Φo. We will take this point of view in what follows.

Theorem. For g defined above we have:

gύgι+g2, 03)
where

\ v /max

ωD is the total solid angle in D dimensions, R is the circumradius of a simplex containing
p0 and V is its volume. The minimum is taken among all the sίmplices containing p0.
Proof To prove this theorem we subject the configuration to a series of modific-
ations, each of which can only decrease or leave unchanged the total power
dissipated. In fact most of the strategy follows [2], but some details are different
because of the higher dimensionality.

We first define the intermediate polyhedron. It is the union of all the D-simplices
containing p0. The sites on this polyhedron except p0 are called the intermediate
sites and their potentials are called the intermediate potentials. The total power is
then divided into two parts:

P = Pi + P2, (16)

where P1 is the power dissipated inside the intermediate polyhedron and P2 is the
power dissipated outside the intermediate polyhedron.

1) Let px be the intermediate site with the lowest potential, Φ1 = Φ(pχ\ Vί be the
volume of a simplex Sx containing pop1 and PiSJ the power dissipated in 5X only.
Then:

where

2) We study P2 by first lowering the potential on the intermediate polyhedron to
its minimum Φγ. Then the power is decreased further.
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3) Relax the constraint of the lattice configuration and remove the boundary $.

We have then:

P 2 ^ P C , (18)

where Pc is the power dissipated in a conducting medium of an infinite size, when the
intermediate polyhedron is held at constant potential Φx.

4) Solving the Laplacian equation for a polyhedral boundary is awkward. In [2]
the authors embedded a circle inside this polyhedron. The center of this circle is p0

and the radius of the circle is the minimum altitude dropped from p0 among all the
simplices containing p0. Then they fixed the potential on this circle at Φλ and solved
the Laplacian equation with the circular boundary. However this technique can not
be generalized to dimensionality higher than 3, as we shall see in the next section.
The alternative I use is to pick up a simplex containing p 0 and embed an ellipsoid,
referred to as the inner ellipsoid in what follows, completely inside this simplex. In
Appendix A, we give a definition of such an ellipsoid. The volume of it is:

τ = (D- l)lωDD-D/2(D + \)-&+w F, (19)

where
2πD/2

is the total solid angle in D dimensions and V is the volume of the simplex chosen.
Now the potential on the inner ellipsoid is fixed at Φx. The power remains
unchanged. Then we relax the potentials outside the ellipsoid. The power is
decreased further.

5) In Appendix B we show that the power dissipated in a continuous medium by
an ellipsoidal source at the potential Φλ is given by:

Pc = ^ , (21)

where

κ - 1 dS (22)

and al9...9aD are the half-axes of the ellipsoid, K is a complicated integral and is
bounded from above by:

ωΛι~2ID

where τ is the volume of the ellipsoid. Using (18), (21), (22) and (23), we have:

Φ\
P2^PC^-±9 (24)

with g2 given in (15). In deriving (24) we have used the inequality τ ^ V ^ VSi where
V is the volume of the simplex considered and Vs is the volume of the circumsphere
of the simplex.
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Combining (17) and (24) we obtain:

(φ φ

201 2#2

Minimizing the right-hand side of (25) with respect to Φ l 5 we have

(25)

(26)
2fei + g2)

The theorem is proved.

From (12) we have the upper bound of the self-propagator for the individual

lattice:

M r 1 ) o o ^ 0 i + 0 2 - (27)

Therefore the ensemble average (5) is bounded by:

4 o ^ < 0 i > + <02>. (28)

IV. The Ensemble Average of the Upper Bound

Both g1 and g2 are local quantities. Their ensemble averages can be easily bounded.
Denote by Sa, a = l,...,m the D-simplices containing p0, and by Ra and Va the
circumradius and the volumes of Sa. The probability density of P(#i) can be written
as

^ ( ^ ψ ^ (29)

where < > means the ensemble average over random lattices. Define

"">-(.?,'('•-f)> (30)

Clearly

(31)

(32)

(33)

where ND/0 is the average number of D-simplices containing a common site.
Therefore

<0i > = ϊ ]
0

I 11 /TV. / | v v ^ i 34^
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where
l i fp o , . . . ,p D form a simplex

0 o t h e r w i s e

Let Po,Pi,... ,PD be a D-simplex, pc be its circumcenter, K be its circumradius and V
be its volume. The volume of its circumsphere is v = (ωD/D)RD. Equation (34) can be
written as

^ ^ - mf*- •••**#>-«'--*• (35)

As Jί -> oo with J^ίjΩ = p held fixed, we have

oD 4R2

<gi>=^SdDxr-dDxDe-ov—. (36)

Following (4), let us introduce a dummy point x by inserting into (36) the following
factor:

1 = J d D x δ D ( x - x c ) = j d D x 2 D D \ V δ { R 2

0 - R 2 ) - ' δ { R 2 - R 2

D \ (37)

we have

< d l } = ^ίdDχi'''dDχne-^D)RD^rίdDxδD(x - xc) (38)

= 2D + 2pD\dDx0 " dDxDe^ω^RDR2δ(R2

0 - R2)-δ(R2

0 - R2

D) (39)

where R( = pιpc, and we have replaced dDx by dDx0. Introducing spherical
coordinates dΌxi = R?~1dRidωh we have

[~2/D. (40)
\ UJ

From Eq. (15) we have

Therefore ZT-^ ω /

^-.+-jp-» .42)

If we had used the method indicated in [2] to bound g2, then g2~h2~D with h as
the height of a simplex. However the measure of the ensemble average in (39) is ~h
as h small. Thus the integral would have diverged for D > 3. This is avoided by using
the inner ellipsoid.
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Table I. Numerical bound in various dimensions

The bound

3 1.302 x 10V / 3

4 4.372 x 10V1 / 2

5 2.249 x 10V / 5

6 1.665 x 1 0 V / 3

In Table I we list the numerical values of (42) in a few dimensions. It is not
surprising that the bound is too high since only one of the simplices containing p0

among many of them is picked up in bounding P1 and P2 (in D = 4, say, there are
about 160 simplices on the average containing a common site).

Appendix A. The Inner Ellipsoid of a Z)-Simplex2

Let PO, ,PD f ° r m a ^-simplex, SD, in coordinate space (x 1 ? . . . ,x D ), with 1 0 l as the
links of SD. By a, linear transformation:

i=ί

SD is deformed to a simplex 9D in coordinate space (ζ 1,..., ζD). The links H 0 x , . . . , H 0D

of SfΏ have unit lengths and are perpendicular to each other. Let p'o,... ,p'D form a

regular D-simplex, S'D, in coordinate space (x\,...,x'D) with unit link length. By a

linear transformation similar to (Al):

x ' = £ CfrOi, (A2)

S'D is deformed to the same SfΏ. The combination of (Al) and the inverse of (A2)
deforms SD to S'D. Since the transformation is linear, the volume ratio of two
geometrical objects is invariant under such a deformation. Draw the inscribed
sphere of S'D. The radius of this sphere is

WSVΓΠΪ (A3)

and its volume is
τ'D = 2-Dt2ωDD-Dt2{D + \yDt\ (A4)

The volume of the regular simplex is

( A 5 )

The volume ratio of this sphere and this regular simplex is

V'D

Ό

v = (D - \)\ωDD-DI2(D + 1)-<D + 1>/2. (A6)

2 I would like to thank R. Friedberg for suggesting this method of defining the inner ellipsoid
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When S'D is deformed back to the original simplex, SD, the inscribed sphere is
deformed to an inscribed ellipsoid which we call the inner ellipsoid. From (A6), the
volume of this ellipsoid is

τD = (D- \)\ωDD-D'2{D + 1)~<D+ ^2VD. (A7)

This gives (19) in the text.

Appendix B. Ellipsoidal Coordinates in Arbitrary Dimensions

Consider a family of (D — l)-dimensional quadratic surfaces in D-dimensional
Euclidean space

Σ ^ = l ; ^..^aD, (Bl)

where θ is a parameter. Introduce a Dth-degree polynomial [5],

(B2)

One can readily show that f(θ) has D real roots in the following regions

-afSζt^-af+1 (a2

D+1 = oo), (B3)

and f(θ) = (θ-ζ1)--(θ-ζD). (B4)

Equations (Bl) and (B2) give the transformation rule from the cartesian coordinates
(xu... ,xD) to the ellipsoidal coordinates (ζ1,... ,ζD), i.e.

2 _

(a\ - af) (af-1 - af)(af+ ! - α?) (a2

D - af)'

It can be shown that {ζx, ..,ζD) form a system of orthogonal coordinates and

Σdxf=Σ
i = l ί = 1

where

. _ i ( C i
λί'4

The Laplacian equation in ellipsoidal coordinates is

= 0, (B8)

where 9 = λi ~λD. (B9)

Consider an ellipsoid described by
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at constant potential Φ1, immersed in an infinite medium of unit conductivity. The
potential in the medium will be a function of ξ = ζD only. In this case (B8) becomes

0. (Bll)
ας /

The solution satisfying Φ(0) = Φ1 is

φ , ® ds
Φ(ξ) = ~±j 2 , (B12)

where K is given by

00 ds
K = f = . (B13)

V(αf + s)..-(4 + s)
The total power dissipated in the medium is

(B14)

Finally let us derive an upper bound of K. Let δ be an arbitrary positive number.
Then

Dτ D

~2~

Minimizing the right-hand side of (B16) we obtain

D

f—- (B15)

5 ^ . (B16)

( B 1 7 )
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