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Abstract. A rigorous path integral representation of the solution of the Cauchy
problem for the pure-imaginary-time Schrodinger equation d(t, x)=
—[H — mc?]y(t, x) is established. H is the quantum Hamiltonian associated,
via the Weyl correspondence, with the classical Hamiltonian [(cp — eA(x))* +
m2c*]1? + e®(x) of a relativistic spinless particle in an electromagnetic field.
The problem is connected with a time homogeneous Lévy process.

1. Introduction

The Feynman—Kac-Itd formula is an imaginary-time path integral for a non-
relativistic spinless particle in an electromagnetic field representing the solution of
the Cauchy problem for the pure-imaginary-time Schrédinger equation, i.e. the heat
equation (e.g. Simon [27]).

As concerns a relativistic particle, Ichinose—Tamura [13] (cf. [14,15]) have
established a path integral formula for the Dirac particle in 1+ 1-dimensional
space-time to represent the solution of the Dirac equation. There is constructed a
matrix-valued measure on the space of the Lipschitz-continuous paths. Relevant
problems are also discussed by Gaveau et al. [9 and 8] with Poisson processes.

The aim of the present paper is to give an imaginary-time path integral for a
relativistic spinless particle of mass m >0 and charge e interacting with an
electromagnetic field which represents the solution y(t, x) of the Cauchy problem for
the pure-imaginary-time Schrodinger equation,

oWt x) = — [H—mc2W(t,x), t>0, xeR% (1.1)

the dimension d of space R? being arbitrary. Here H is the quantum Hamiltonian
associated, via the Weyl correspondence, with the classical Hamiltonian

h(p, x) = h4(p, x) + e @(x),
hp,x) = [(cp — eA(x))* + m3c*]Y2, peR? xeRY, (1.2)

for the particle. A(x) and @(x) are respectively the vector and scalar potentials of the
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field (e.g. Landau—Lifschitz [20]). ¢ is the light velocity. This Hamiltonian may be of
some interest in the region where relativity is of some importance but where
quantum field theoretic effects are not yet important (See [27, p. 221]).

We assume for simplicity that A4 is in Z(R*->R? and @ in #(R>—R), where
A(R?—> RY), N = 1,d, is the Fréchet space of the R¥-valued C® functions in RY which
together with their derivatives of all orders are bounded. The definition of H is given
by

Hg=[H,+e®]y,

(Hag)x)=2m ff ef‘x‘y"PhA(p,%l)g(y)dydp (1.3
R x R4

with (1.2)for ge (R (e.g. [1, 10, 12]). The Planck constant # is taken to equal 1. The
integral in (1.3) is an oscillatory integral (e.g. Kumano-go [19]). It is seen that H
maps ¥ (R% into itself, so that it defines a linear operator in L2(R?). It is shown that H
is essentially selfadjoint on CP(R?), and its closure, denoted also by the same H, is
bounded from below. It is this selfadjoint operator H that is in (1.1). Notice that
H , differs from the square root of the nonnegative selfadjoint operator (—cid —
eA(x))? + m2c*.

Our approach is a rigorous application of the phase space path integral or
Hamiltonian path integral method with the “midpoint” prescription (Mizrahi
[21,22], Garrod [7]). The path space measure used is the probability measure 4, ,
on the space of the right-continuous paths X: [0, c0) - R having the left-hand limits
and satisfying X(0) = x whose characteristic function is

exp{—t[(c*p?* + m*cH)? —mc?]} = [ XO X (X). (1.4)
The path X is called a d-dimensional time homogeneous Lévy process (e.g. Ikeda—
Watanabe [16], 1t6 [17]). The formula obtained shows a close analogy with the
Feynman-Kac-Itd formula based on the Wiener measure. Similar treatments will
be possible for t-dependent vector and scalar potentials A(t, x) and @(t, x).

In Sect. 2 our result is stated. Sections 3 and 4 are devoted to its proof. Section S is
concerned with an extension to the case of nonregular and unbounded vector and
scalar potentials. In Sect. 6 our approach is heuristically examined with the phase
space path integral or Hamiltonian path integral method.

In a subsequent paper the nonrelativistic limit problem will be discussed.

2. Path Integral Formula

The main result, summarized in the theorem below, is a path integral representation
of the solution y(t, x) of the Cauchy problem for (1.1) with initial data (0, x) = g(x).
Its statement needs some notions on the Lévy process, which we shall explain after
the theorem. In Sect. 5 we indicate the extension to the case of nonregular and
unbounded vector and scalar potentials.

Theorem 2.1. Assume that A is in B(R*— R?) and ® in B(R*— R). Then:

(i) Both H, and H, defined by (1.3), are essentially selfadjoint on CZ(R?). Their
closures, denoted by the same H , and H, are bounded from below and have domain
H'(RY).
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(ii) There exists a countably additive probability measure 1, , on the path space
D, ([0, c0) > RY of the right-continuous paths X:[0, c0)— R? having the left-hand
limits and satisfying X(0) = x such that whenever A is in BR*—>R? and @ in
B(R? - R), it holds that

U(t,%) = (e~ ) (x) = e X (1)) d Ao (X) @.1)
for ge LA(RY). Here
SO X) =i ] | (/) A(X(s—)+ y/2) yNy(dsdy)

0 ylz1

+itf+ [ (e/a)A(X(s—) + y/2) yN y(dsdy)

0 O0<[yl<1

+if | (e/c)[A(X(s)+y/2)—A(X(s))]-yz\?(dsdy)+j)e<1>(X(s>)ds

Oo<lyl<1

i [ (/AKX (s =) + y/2) N x(dsdy)

0 [y>0

+ ij j (e/c)[A(X(s) + y/2) — A(X(s))]- yN(dsdy) + ied’(X(s))ds. (2.2)

Oly>0

(ili) Consequently, H , — mc? is nonnegative selfadjoint.

Each of those paths X on which the measure 4, , is concentrated is called a d-
dimensional time homegeneous Lévy process which does not contain the con-
tinuous martingale part. The Lévy-Itd theorem states, in fact,

XO)=XO+ | { yNydsdy)+ | [ yNy(dsdy)

0 lyl21 0 0<lyi<t

=X(0)+tj+ [ yNy(dsdy). (2.3)

0 |yl>0
With Dy = {s>0; X(s) # X(s—)}, the jump X(s) — X(s—), seDy, is a stationary
Poisson point process on R*\{0}. Ny(dsdy) is a counting measure on (0, o0) X
(RN{0}):
Nx((t,t] x U)=#{se(t,t']; X(s)# X(s—), X(s)—X(s—)eU},
where 0 <t < ¢ and U is a Borel subset of R*\{0}. N y(dsdy) is by definition
N x(dsdy) = N x(dsdy) — N(dsdy),
where
N(dsdy) = | Nx(dsdy)dio (X) = dsn(dy)

is called the compensator of Ny(dsdy), and n(dy) is the Lévy measure. The Lévy—
Khinchin formula connects 4, , with n(dy) as follows

e~ (790 = foirXO=XONg) ) (X), 0=<s=t, peR’ (2.4)

where

ap) = (p* + m*c*)' 2 —mc* = — | [P —1—ip-yly, () Indy) (2.5)
RA{0}
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with I, _,,(y)=11if|y|<1,and =0if |y| = L. It is known that the Lévy measure
n(dy) is a o-finite measure on R%\{0} such that

[ D1+ y*)In(dy) < co. (2:6)
r4{0}

Further we see in our case, since a(p) is analytic in p, applying to both sides of (2.5)
— A, the minus Laplacian in the variable p, to the kth power, k 2 1, that n(dy)
satisfies

j~ eip.ylylzg(n(dy) — _(__Ap)k(clpz +m2c4)”2, (27)

”A\{0}

if mc >0, and in particular,

J

R {0
We note that the second equality in (2.2) as well as (2.3) is due to the fact that
| yn(dy) =0 because of the rotational symmetry of n(dy).

21

For the Lévy process we refer to Ikeda—Watanabe [16] and It6 [17]. Finally
we give a notational comment. In Ikeda—Watanabe [16] the Poisson point process
is denoted by p(s)= X(s)— X(s—), se Dy, and our Ny, Nyand Nby N,, N,and N,,.

|y *n(dy) < 0. (2.8)
)

3. Proof of Theorem 2.1(i)
The following theorem is more precise than Theorem 2.1(i).
Theorem 3.1. (i) There exists a constant C > 0 such that
IHgllo=Cllglly, geSRY). (3.1)

(1) (Gdrding’s inequality) There exists a constant C(m,c) > 0 possibly depending
on m>0 and ¢ > 0 such that

(Hag,9) Zme*||[[ —(1/m*c®)A + 11g (1§ — C(m, o) 19 I3, (3.2

for ge #(RY. C(m,c) is a constant independent of m and c if mc =1 and ¢ = 1.
(i) Both H, and H, as operators in L*(R?) with domain CP(R?), are essentially
selfadjoint. Here | -||, stands for the norm of the Sobolev space H(R?).

Proof. (i) Since 4 is C* and bounded, and all its derivatives are bounded, the symbol
h4 in (1.2) satisfies that for all multi-indices o, § there is a constant C,; such that

0505k 4(p, )| < Cop1 + P ™% (p,x)eR* x R, (33)

Then (3.1) is an immediate consequence of the Calderon—Vaillancourt theorem

([2,18]).
(i) We have

X+
hA(ps —2_y> = hO(p) + r(x’ D y)a
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with
ho(p) = (c*p* + m*c*)'/?,
and

rHx,p,y)= — eA(#)-(Zcp — eA<xzﬂ>>/|:ho(p) + hA<p,xT+y>:|.

It follows that ho(p) = mc?, and for all multi-indices «, # and y, there is a constant
C,s,> 0 independent of m and ¢ where mc =1 and ¢ = 1 such that

|030507r(x, , Y)| £ Cop, (P> + m2c®) ™2, peR?, (x,y)eR?! x RY
We have H, = H, + R, where
Hy=(—c*A + m?c*)!/?, (3.4)

apy

and
(Rg)(x)=(2m)~* df J d = Pr(x, p, y)g(y)dydp, geS(RY).
It is clear that for ge #(RY), o
(Hog, ) = me? || [—(1/m*c?)A+ 11"4g |3,
and the Calderon—Vaillancourt theorem ([2, 18]) yields
[Rgllo < Clm,0)llgllo, geS(RY,

where

C(m,c)=C max max[(p*+ 1)/(p* + m*c?)]*"?
ld<2A[d/2]+1) P

with a constant C which is independent of m and c if mc =1 and ¢ 2 1, so that
C(m,c)<C if mc=1 and ¢=1. For r20, [r] denotes the largest integer that
satisfies [r] <r.

(iii) We follow the argument of Shubin [26]. The pseudo-differential operator H
is formally selfadjoint. It maps #(R?) into itself, and &'(R?) into itself. Denote by T
the corresponding operator in L2(R?) with domain D[T] = C$(R?. T is symmetric.
So T is essentially selfadjoint if and only if its deficiency indices (n,,n_) vanish. To
show n, =0, let ue LA(R% be orthogonal to the range of T+ i. If T* is the Hilbert
space adjoint of T, it follows that ue D[T*] and (T* — i)u = 0 or (H — i)u = 0. Since

H — iiselliptic as seen from (1.2), we have ue H*(R?) = (") H¥(R*). Then we claim that

(T*u, u) = (u, T*u). (3.5)
To show this, choose a sequence {u,} in CF(R?) which converges to u in H*. Then
(T*u,u) = im(T*u, u,) = lim(u, Tu,).

The inequality (3.1) implies that Tu, = Hu, is convergent to an element v in I*(R%).
Since T'is closable with closure T*, we have v = T*u. This proves our claim. From
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(3.5) we conclude u =0, i.e. n, =0, because
—i(u,u) = (T*u,u) = (u, T*u) =i(u, u).

Similarly we can prove n_ =0, completing the proof of Theorem 3.1.

4. Proof of Theorem 2.1 (ii) and (iii)

We mimic the proof of the Feynman—Kac-Itd formula in [27]. The first three
subsections concern the proof of Theorem 2.1 (ii). First we describe what is our path
space measure A, ,. Next we construct the semigroup solution of the Cauchy
problem for (1.1). Finally we establish the path integral representation (2.1) with
(2.2). In the last subsection the statement (iii) is proved.

4.1. The Path Space Measure 1, .. Consider the Cauchy problem for the free
equation
d(t, x) = —[Ho— mc* (e, x)
= —[(—c*A +m*cH? —mc?Y(t,x) t>0, xeR’, 4.1
to (1.1) with initial data y(0, x) = g(x).
Lemma4.1. (i) For each t > 0, the function e ~"*® with a(p) in (2.5) is of positive type in
peRY, and the Lévy—Khinchin formula (2.5) holds.

(i) Ifko(t, x) is the fundamental solution of the Cauchy problem for (4.1), then for
m>0,

Ko(tyx) = 2@~ D/2g =@+ 1012+ 1)/2 ;(d+ 3)/2 gme?t
X t(xz + Cztz)*(“ 1)/4K(d+ 1)/2(mc(x2 + Czt2)1/2)> 4.2)

where K (1) is the modified Bessel function of the third kind with order v. In particular,
ko(t, x) is positive and

Lko(t, x)dx = 1. (4.3)

Proof. (i) a(p) is spherically symmetric in p with a(p) = a(0) =0, and
Aa(p) — 2C2(C2p2 + mzc4)— 1/2 + m26’6(62p2 + mzc4)—3/2

is a function of positive type, since, for each t >0, exp[ —tc?*p?] is a function of
positive type, and so is the function

(p* +m*c*) P =dy [P~ exp[ —t(c?p? + mPc*)]dr
0

with > 0 and a positive constant d; depending on B. It follows by [27, Theorem
XIII. 54, p.219] that a(p) is conditionally negative definite, and further by [27,
Theorem XIIL. 52, p. 214] that for each >0, e "*? is a function of positive type.

(i) First we put c¢=1. Using the spherical coordinates and an integral
representation of the Bessel function J, [5,Chap. VII, 7.3.2. (3), p. 14] we obtain
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ko(t, x) = (2n)~d y eip~xe—ta(p)dp
Rd
oo} T
=c.e™ [exp[—t(p? +m*)"*]p " *dp [ cos(rp cos O)(sin 6)? ~2dO
0 0

= (2m) ™ ¥2emy 4=V [ gD expl —i(p? 4 m?) 21 (rp) T 43y 2(rp)dp
0

with ¢;=2'"9g~@*D2((d—1)/2)" 1. Calculation of the integral in the last
member, i.e. the Hankel transform (use [6, Chap. VIII, 8.6. (19), p. 31, where read
—v/2 — 3/4 instead of —v — 3/4]) yields (4.2) with ¢ = 1. For general ¢ > 0 replace t
by ¢t and m by mc. This ends the proof of Lemma 4.1.

In connection with Lemma 4.1, it is known that for each xeR? there exists a

countably additive measure 4,, on the space D, ([0, 00)— R of the right-
continuous paths X(s) having the left-hand limits and satisfying X(0) = x such that if
o(X)=F(X(ty), ..., X(t,)) with 0=t,<t; <---<t,=t and with F(x'?,...,x") a
bounded continuous function on R** 1 then
fo(X)dio (X) = L Iko(t1 — 10, XV = x W)kt — £y 1, X7 — x™)

R

. F(X(O), . ,x("))dx‘” ..... dx(") (44)
with x(© = x. The path X(s) is a d-dimensional time homogeneous Lévy process. We
have (2.3), (2.4) and (2.5) (See [16, 17]).
4.2. Semigroup Solution of the Cauchy Problem. We begin with a lemma about the
operator T(z), T > 0, defined by

+y
)r]g(y)dy

4.5)

(T@g)x) = [ kolr, x = y)exp[(e/c)A( ;y> (x—y)—ecv("

for ge L%(R?).
Lemma 4.2. If A is in Z(R* > R?) and @ in B(R?— R), then T(z) defines a bounded
linear operator of LA(RY) into itself and || T(z)|| < eM* with M = (—inf _ge®(x)) v 0.
Further if g is in D[H] = H'(R?), then 0(T(z)g) approaches —[H —mc?*]g in L*
as 0.

The proof of Lemma 4.2, which is rather lengthy, is postponed till the end of this

subsection.
Next we consider the n-times iteration of T(t/n):

n

(T(e/n)y'g)(x)="{ -+ | kolt/m, x'@ = x D)o ko(t/n, x* =D — x)

x exp[—S,(x9,...,x")]g(x")dxD-....dx" (4.6)
with

n (G—1) () ]
S,(x@, .., x™ =iy (e/c)A<x__2_+x_>.(xm —xU—D)
=1

n Jj= )
+3 eq;(u)(t/n), (4.7)
j=1 2
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for ge LR, where t >0 and x(@ = x.

In Sect. 4.3 we shall see what the right-hand side of (4.6) approaches asn— 0. In
the following we show that the left-hand side of (4.6) approaches in I? the solution
(e "M ~me*g)(x) of the Cauchy problem for (1.1) as n — oo uniformly on compact sets
in t 20, and hence it does for a.e. x in R? by taking a subsequence if necessary.

Since D[H] is dense and the operators T(t/n)" are, by Lemma 4.2, uniformly
bounded by e™', we have only to show this for ge D[H]. So let ge D[H]. By Lemma
4.2 we have with K = H —mc?,

I T(t/n)"g —e™*gl =

Y. T(t/ny~ Y(T(t/n) — e~ WWK)e~ =Dk
=1

< neM sup |(T(t/n) — e~ “"K)e=Kg|,
0ss<t

which we now show tends to zero uniformly on compact setsint = 0asn— co. Todo
so, note that since H is closed, D = D[ H] is a Hilbert space equipped with the graph
norm of H. By Lemma 4.2, {n(T(t/n)—e~“™¥)}*_ | is a sequence of bounded
operators of the Hilbert space D into L*(R%. We have for each fixed feD,

| H(T(e/n) — e~ ) £ = n|| T 4T () — =X fde

<t sup [0(T(@) = e M)/ |. (48)
0<t<t/n
Then by Lemma 4.2 again we see the last member of (4.8) tends to zero uniformly on
compact sets in ¢t = 0 as n— co. By the uniform boundedness principle the sequence
{n(T(t/n) — e~ “/"X)} is, as bounded operators of the Hilbert space D into L%(R?),
uniformly bounded for all n and on every fixed compact set in t = 0. Consequently, it
converges to zero uniformly on compact subsets of the Hilbert space D. The map
[0,t]es—e*XgeD is continuous, and so {e*¥g;0 < s <t} is a compact subset of
the space D. This proves the convergence of the left-hand side of (4.6) to the solution
of the Cauchy problem for (1.1).
Finally, we prove Lemma 4.2.

Proof of Lemma 4.2. To avoid unnecessary complexity we put ¢ = e = 1. The first
assertion is easy because the integral operator defined with positive kernel ko(t, x) is a
contraction. So we come to the second.

Since k1, x) is the fundamental solution of the Cauchy problem for (4.1), we
have by integration by parts

(0. T()g)(x) = — [ko(t,x — }’)I:(—A +m?)? — m+¢<x;y>]

X <exp[iA(x—;—y>'(x —-)- <D(x ; y)r]g(y)>dy

= (1,(1)9)(x) + (Ix(7)g) (x). (4.9)
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Here 4, is the Laplacian in the variable y, and

(1,(Dg9)(x) = — [ko(t, x ~ y)(— A, + m*)*/?

X <exp|:iA<¥>-(x —y) - (D<x +

y)f]g(y)>dy,

(12(1)g)(x) = — [ ko(T, x — y)[ —m+ <P< i?):’g(y)dy (4.10)
We shall show that there is a constant C > 0 such that
H1(t)g + Hagllo=Clgly, (4.11)
and
I L(Dg+[—m+ @]glo=Cligl,, (4.11),
uniformly in 0 <7 <1 for every ge #(R?), and that for each fixed ge #(R?),
I14()g + Hagll0—0, (4.12),
and
[15(t)g + [—m+ @1gllo—0 (4.12),
as 7]0.

Proof of (4.11); and (4.12);. For the term involving the pseudo-differential operator
(—A,+m?*?% in (4.9) or (4.10) we have as oscillatory integrals

(-4, m2>1/2(exp[m("2—+—y)~(x -9- a>(" - )r]g(y))
= (2m) 4] e (p? 4 m?)12
-exp[iA(x—;—yi)(x -y - 4’<x ; y)t]g(y’)dy’dp
-d iy=y)p i y+y/. _v)— x+y
= (2m)~4ffe" ’exp[zA( 3 >(x ) (D( 3 )r]

’ 2 1/2
X [<p - A<x ; Y >> + mz} g(ydy'dp. (4.13)

To see (4.13) let x be a function in &(R?) with x(0) = 1. For every multi-index « there
exists a constant C, > 0 independent of 0 <& < 1 such that

|0%x(ex)] = Cpe?(1 + x%)~ =92 0 < o <|al.

As ¢ |0, x(ex) converges to 1 uniformly on compact sets in R? and 0% y(ex) with || # 0
converges to zero uniformly in R% Then the integral in the second member of (4.13) is
by definition

’

. i . +y
lim [ [0~ (ep) p? +m?)"2 exp[fA(L o )-(x ~y)- cb(x Y )r]g(y’)dy’dp.



248 T. Ichinose and H. Tamura

By the change of variables p'=p+ A(}(x+)’)) and by integration by parts this
equals (with p again instead of p’)

el ol 5 o1
’ 2 1/2
x |:<p—A<x;y >> +m2] g(y)dy'dp

=lim[[e® =771 + p?) i1 — A,

=0

oAl oo
(A=) o] o

where [ is an integer > d/2, and note
eV P=(14+pH)7H1—A4,) e "
Since the derivatives of A(x) are bounded, y(s(p — A(X(x + y')))) converges to 1

uniformly on compact sets in both p and y’, and 0% y(e(p — A(x + ¥')))) with |a| #0
converges to zero uniformly in both p and y'. It follows that the last integral above is

equal to

jjei(y_y').p(l + pZ)—l(l _ Ay,)‘{exp[iA<x'|2'y,>'(x “)’)" (D(X '|2' yl>f:|

< [(p— A(";y )) +m2]mg(y')}dy'dp

=1lim[[e 0 Py(ep)(1 + p?)~H(1 — A,){---}dy'dp

e—0

= lim”e"‘y_y""’x(ap){exp[iA<x _; y/>'(x —y) — <D<x _; yl>r]g(y’)}dy’dp.

e—=0

Here the last equality above is due to integration by parts, and the last member is
nothing but the integral in the last member of (4.13).

On the other hand, (1.3) is invariant under any translation y—y + z of the
integration variable, so that

’ 2 1/2
(HAg)(x)=(2n)—dj'j'ei(x—-y'—z)~p<(p_A(ii;j)) +m2> g(y'+z)dy’dp.
It follows that

(11(7)g)(x) + (H 49)(x)
=(21) [ ko(t, x — y)dy[[e'® =P
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x < exp| iA4 Xty (x—y)—@ Xty T
2 2
x+\)? 1/2 ,
[(=aC37)) om] o

’ _ 2 1/2
—[(p—A(MZ(X—y)>> +m2] g(y’+(x—y))}dy’dp. (4.14)

We use the Schwarz inequality with property (4.3) of ko(t, x) to estimate the L? norm
of (4.14) and make the change of variables x — y =z to get

Hei(y- y)p

X {exp[iA(y—#E)z— (D<y—+)2/i>r:|
’ 2 1/2
(52T
/ 2 1/2
—[(v—A<&y2+—2Z>> +m2] g(y’+2)}dy’dp

= [dzko(t,2)[|(Q4(Y, D,, Y'; 2, 7)g)(y)
+(Q4(Y,D,, Y';2)(g — 97) () |*dy,

where g*(y)=g(y +2). Q.(Y,D,,Y’;z,7) and Q,(Y,D,,Y’;z) are the pseudo-
differential operators with multiple symbols (see [19])

0,(7)=q,(0.p,y;2,7) = °Xp["A<$>'Z N d)(y +; : Z>T]

g 2 1/2
o[ (a5 ) oo
’ 2 1/2
[ (p-a(5)) o]
2
and

: 2 12 /
qz(z)qu(y,p,y,;Z)=[(p_A(y+y2+2z>> +m2:| =hA(p’y+y2+2z>’

where z and 7 are parameters. It is easy to see that for all multi-indices «, f and B’
there are constants C; .54 and C, ,4p such that

1050505410, 2, ¥'5 2, 0| S Cyggpllz] + (1 + 2] + V(1 + p2)t 2 (4.15)

poy-y

11,(0)g + Haglg < (2m) > [dzko(z, 2)|

2

dy

and

la;afag’,‘h(y, pY 2| = Cyupp(l + p2)t 2 peR?, (y,y)eR? x RY, zeR4, 7> 0.
(4.16)
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By the Calderon—Vaillancourt theorem ([2, 18]) there exist a constant C >0 and
integers k,! =0 such that

10:(Y,D,, Y;z,7)g 0 < Clg,(z, Dl 191,

and

1Q(Y,D,, Y;2)gllo < Clg2(2) 1k 1 915
for ge #(R%. Here
g1z, D)8 =Ci(lz]| + 1)1 +|z|+7) with C;= max infCy 4 of (4.15),

Skl +1B1<!
and
lg,(2)I) = max infC, .4 of (4.16)
o SkJBI+1B1<!

is bounded by a constant C, independent of z (Inspection with [19, Chap. 7,
Theorem 2.4] or [18, Theorem 2.2]) gives that it suffices if k =4[d/2 + 1] and
1Z2[d2+1]4+2[d+1)/2+ 1]

Putting all this together we have with some constants C; and C,
I11,(x)g + H g 13 < Cs fdzko(z, 2)[(I1z] + (A + 2] + 2 gl + g — g*11]°
S Cafko(m, 2)(121> + 7)1 + |2 + 2%)dz | g1}
+2C;[ko(z, 2)Ilg — g7 |1} dz.

Thus we shall get (4.11); and (4.12),, if the following lemma is shown. We shall
continue to put c=e=1.

Lemma 4.3. (i) For n a positive integer

ko(t,2)|z|*"dz—0, as t]O0.
Rd
(]i) j;kO(T’ Z) ”g_gz ”%dZ—)O, as Tlo9
R

for ge H'(R?), where g*(y) = g(y + 2).
Proof. (i) We have with (4.2),

Iko(T, 2)|z|Pdz =27 @~ V2~ @+ 12, @+ 1))2 gy ,f x|m+d=1
IRd Rd
(X2 472t lWK(.H 1)/2(’"(3‘2 +1%)?)dx
= cd’nmllz—nrl/2+neth"_ 1/2(m,[)
=Cd,n,myt, as 1|0,

with constants ¢, , depending on d and n and C(d, n, m) depending on d, n and m, but
independent of 7 (use formulas for Bessel functions [5, Chap. VII, 7.14.2, (50), p. 95,
and 7.2.6, (40), p. 10]).
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(ii) First we claim that for every ¢ > 0 there exists a constant R, > 0 such that for
RZ=R,.

| kolr,12)r%dz <¢ uniformly in 0 <t <1. (4.17)
1z| >R
To see this let y be a nonnegative C* function such that y(x)=1if |x| £ 1/2, and
x(x)=01if |[x] = 1. Put yg(x) = x(x/R). Then

| ko(r,t2)tdz < [(1 — xp(2))ko(t, 12)1%dz
lzI>R
=1-Q2n)" [ ix(p)exp { —<[(p*/r* +m*)'* —m]}dp,  (4.18)

where 7 is the Fourier transform of y and equal to R4(Rp). It follows that (4.18) is
smaller than or equal to

1 —(@2m) "2 [RY(Rp)exp{ — [(p* + m**)'/2 —mt] }dp
=1—n)~ [ yp)exp { —[(p/R)* +m?t*)"2 —m1] }dp,

which tends to zero as R — oo uniformly in 0 < 7 < 1, by the Lebesgue dominated
convergence theorem. Our claim has thus been shown.

We are now in a position to prove the second statement of Lemma 4.3. Let ¢ > 0.
Choose R, > 0 such that for R = R, (4.17) holds uniformly in 0 <7 < 1. Putting
z =17 (writing z again instead of z') we have

Tko(t,2) g — g7 13dz = [t'ko(z,72) g — g7 dz= | + | .
SR lZ>R
If R = R, the second term above is smaller than or equal to 4¢| g || . The first term
tends to zero as 70, because |g — g*?||? = 0 as 7| 0 by the Lebesgue theorem, and
because t%k(t, 1z) = C(d)(z* + 1)~ “* /2 as ¢ | 0 with a constant C(d) depending on d,
since Ky 4 1)2(r) = C(d)2W@™ D12+ Di2p =@+ 1i2 4 O(p! =@+ D/2) a5 r - 0 as seen from
(4.2) in Lemma 4.1 (use [5, Chap. VII, 7.2.6, (40), p. 10, and 7.2.5, (37), p.9]). This
proves Lemma 4.3.

Proof of (4.11),; and (4.12),;. This case is simpler. We have by the Schwarz inequality
and the property (4.3) of k(z, x),

|30 + [—m + @1g3 < defko(r,x—y)l(m— <1><" > y))

x exp[iA(%X)(x - w(";y)r}g(y)

2
—(m— D(x))g(x)| dy
< [dzko(z, 2)[ | {(m — ®@(y + z/2)) exp [iAly + 2/2)z
— ®(y +2/2)t] — (m— D(y + 2) }g(»)
+(m— @y +2))g(y) — g°(y))|*dy.
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Then there exists a constant C > 0 such that
[1,(1)g +[—m+ @1gll3 < Clko(r,2)(|z| + 1)%dz| g1} + C[ko(,2) | g— g7 |1 3dz.

The remaining proof proceeds in the same way as the last part of the proof of (4.11),
and (4.12),. This ends the proof of Lemma 4.12.

4.3. The Path Integral Representation (2.1). We shall now investigate what is the
limit of the right-hand side of (4.6) to establish the path integral formula (2.1) with
(2.2).

We do first for ge L%(R?) which is bounded and continuous. Then we obtain from
(4.6) with (4.7), using the path space measure 4, , introduced in Sect.4.1,

(T(t/n)'g)(x) = [ e~ Dg(X(£))dAo,(X). (4.19)
Here §,(X) = §,,(X) + S,2(X),

—lz (e/Q)AGX(t;- 1) + X () (X(t) — X(t;-1)),

5,200 =Z PUX(ty-1) + Xt~ 1) (4.20)

with t; = jt/n.

As for S,,(X) in (4.20), it is evident that for each X in D, ([0, c0) > R, S,,(X)
converges to [oe®(X(s))ds as n— co. To see the convergence of S,,;(X), introduce the
functional

Fy(X(5)) = ile/e) AG(X(s) + X(t;- )))-(X() — X(t;1))
of the path X(s) in D, ([0, 00)— R?). Note the Lévy-Itd theorem (2.3) to apply Itd’s
formula [16, Chap. II, 5, Theorem 5.1] to each F(X(s)) = F{(X(s)) — F{(X(t;- ).
Then we have with (R?)* = R"\ {0},

Sn(X I ) ZI, O FX (s =)+ 91,0 1 (9) — F(X(s—))IN (dsdy)

(R)x -
+g f Zlu it O TFX (s =)+ ¥, (00) = F(X (s =)V x{dsdy)
(LOEN

+J ) ZI(, A LFX() + Y1,y (0)) = F(X(s))

Omdxi=1

=1y OF(X (s))]N(dsdy)

f f L,.lsy,X)NX(dsdy)+lj [ Ly, y, X)N y(dsdy)
° 0 (méx

+ lj j LnB(S, Vs X)N(dsdy)
0 (@) x
Here

Lyi(s.y, X)=j=il Lo p$)e/)[AGX(s—) + X (t;- 1) + VI, ()

(X(s—)— X(t;- ) + Y 2(0)
—AGX(s =)+ X(t;- 1)) (X(s =) = X(t;-1))],
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L,o(s,y, X Z I(r 1 ,J](s (e/c)[AKX(s—) + X(t;-1) +J’I\m<1}(Y))

(X(S )= Xt 1) + ¥1 <y (0)
— AGX(s—) + X(t;- ) (X(s =)= X(t;- )],

L,y(s,y, X) = Zn:l Ty, ap9)(e/e) {AGX(S) + X (8- 1) + T y0)) (X(s) — X(25-1)
=

+ 91y ()) — AGX () + X(t;-1)) (X () — X(1;- 1)
— Ly L DAGX(S) + X (152 1)) (X(s) = X(1;- 1))

+y AGX(s) + X(5;- )1}

Now we take n = 2%, so that t; =27%jt,j =0, 1,...,2* Then we see for each fixed X in
Dy ([0, o) > RY that

Ly (s,y, X) = (e/c)A(X(s—) + y/2) y1 21y (¥)s
L,y(s,y, X) > (e/c)A(X(s—) + Y/z)'yl(gy|< 1}(,"),
Lys(s, y, X) = (e/c)(A(X(s) + y/2) — A(X(8))]'y1 < 1y(),

as k — oo. It follows that when k — oo, the three integralsof L,,;, L,, and L, in §,,;(X)
approach the first three integrals in the second member of (2.2). Therefore an
application of the Lebesgue dominated convergence theorem shows the right-hand
side of (4.19) approaches the right-hand side of (2.1). This was when g is in L%(R%),
bounded and continuous.

When geI*(RY) in general, there exists a sequence {g,} of bounded continuous
functions in L*(RY) such that |g,(x)| <|g(x)|, a.e, n=1, 2,...,and g,—g in I*(R?) as
n—o00. By taking a subsequence if necessary, g,—g¢g a.e. Then it holds that
Jg,(X(£))dAo (X) = | ko(t,x—)g,(y)dy, and so, by the Lebesgue dominated con-
vergence theorem, for g in place of g,,. It follows that (2.1) holds for g. This completes
the proof of Theorem 2.1(ii).

4.4. Proof of Theorem 2.1(iii). From the path integral formula (2.1) with @ =0 we
have
(exp[—t(H s —mc?)]g,9) = [[19(X()[lg(x) | dAo (X)dx
= (exp[—tHo —mc*)]lgl.1gl) < llgI?

for ge LARY). It follows that the selfadjoint operator exp[—t(H ,—mc?)] is a
contraction, so that H,, — mc? is nonnegative. This ends the proof of Theorem 2.1.

5. Nonregular and Unbounded Vector and Scalar Potentials

In the previous sections we have been assuming regularity and boundedness of both
vector and scalar potentials A and @. However, in application nonregular and
unbounded A4 and @ appear. For instance, the Coulomb potential @(x)has the |x| ™!
singularity (cf. [11, 3,4]), and the vector potential A(x) of the constant magnetic field
is linear in x.
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If @(x) is measurable in R?, and if e®@ =e®, — e®_ with ed, 20, e®_ >0,
where @, eL} (R\G) with G a closed subset of measure zero, and for some
constants 0 <d <1 and C =0,

Je®@_(0]f(0)Pdx < |[(—c*A +m*cH)' A + CIIfI%, (5.1)

for all fe H'*(R%, then the path integral formula (2.1) with (2.2) for the form
sum H = H 4 + e® will be shown in the same way as [27, Chap. II, Theorem 6.2].
Recall Garding’s inequality (3.2).

As far as A is concerned, we have only to assume A(x) has bounded, continuous
derivatives up to sufficiently high order. A further reduction of regularity of 4 will be
done with the theory of pseudo-differential operators with nonregular symbols
(Nagase [24,23]). It will be also possible to include the unbounded case where A(x)
is an R%valued function of polynomial growth.

It will suffice to assume, as S(t, 0; X) in (2.2) suggests, that A is Holder-continuous
of order a, 0 < < 1, i.e. for every R > 0 there exists a constant C > 0 such that

|A(x+2)— ARX)| £ Clzf, |zl<1, |x|<R. (52)

In fact, we see with (2.6) and (2.8) that we may regard | x|*n(dx) as a measure on

R Lete > 0,and f = (d — 1)/2 + &. Apply the pseudo-differential operator (— 4 ,)" to
both sides of (2.7) with k = 1. Then we have for some constant C >0,

[P 1yP* ¥ n(dy)| =1(=4,)" Ac?p? + m?c)' 2| < C(1 +p*) 7172,
R

which is in L'(R?) with respect to p. Therefore there exists a function p(y) in L*(R?)
such that | y|2*2Pn(dy) = p(y)dy. Since N(dsdy) = dsn(dy), the condition (5.2) is then
obtained from this and (2.2).

6. Heuristic Remark

In this section we shall heuristically see our method is nothing but a rigorous
application of the phase space path integral or Hamiltonian path integral with the
“midpoint” prescription ([21,22,7]).

Let f,geL*(R%. Then (g,e "Hf) is the transition amplitude that a Weyl
quantized charged particle (with the Hamiltonian h(p, x) in (1.2)) at state f at time O
will be at state g at time t. The phase space path integral or Hamiltonian path
integral method assumes that it is given by a formal “integral”

(g,e"f) = [g(X[£]) &5“OPXf(X[0])D(P)D(X), (6.1)
where S(t,0; P, X) is the action which is defined with (1.2) by

t
S(t,0; P, X) = [[P[s]- X[s] — h(P[s], X[s])1ds, (6.2)
0
where X[s] and P[s] are the position and momentum. D(P)D(X) is a formal
“measure” || (2n)"“dP[s]dX[s] on the space of the phase space paths
0<s<t

(P[s], X[s]). In this formal phase space path “integral” we first make an analytic
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continuation which replaces t by — it to go from ™ *# to e "M and put P(s) = P[—is],
X(s) = X[ —is]. Using the substitutions ds — —ids, X[s] = (d/ds)X[s]—iX(s), we
are led to the formal expression

(9. f)=[g(X(t)) exp {i [iP(s)- X(s) — h(P(s), X(S))]dS}f(X(O))

x [] @n)~?dP(s)dX(s). (6.3)
0<s<t
Next we make the change of variables: X'(s) = X(s), P'(s) = P(s) — (e/c)A(X(s)). Then
we obtain from (6.3) (writing (P(s), X(s)) again instead of (P'(s), X'(s)))

(e™"g,f)=(g,e"f)={g(X( )CXP{]- [i(P(s) + (e/c) A(X(s))) X (s)
—(c2P(s)* + m2c*)1/? — e(D(X(s))]ds}f(X(O))

1 @m)~%dP(s)dX(s). (6.4)
0<s<t
We understand that the last member of (6.4) is defined with a time division procedure
and the position-dependent terms are evaluated at the midpoints (see [21]). Then

n

""OORZd R

,(x(j)_x(, “)/(tj_'zj—l)—(c (p(j—i))2+m2c4)1/2

e (x(1~1)2+ x(}))J(tj 3 tj_l)}
. f(x(O))<ﬁ (27‘[)_ddp(l_1)dx”—“)dx(n), (65)

1=1
wheret; = jt/n,and p¥ = P(t;),x"” = X(t),j =0, 1,...,n. The integrand of the integral
on the right of (6.5) is rewritten as

90 [T {exp i p ™ Jexp [~ (/e ")+ mic)! ]

n k=1 4 y(0
-exp[—ix‘f'“-p”'“]}exp{i Y (e/c)A<%>
k=1

)(t/n) }f (x().

(x® = xk=D) _ o M
2

Now multiply it by exp[mc?t] and integrate it with respect to all the p". Recall

ko(t, x) is the fundamental solution of the Cauchy problem for (4.1). Then we have
n+1

(e~MH-my £)— lim ﬁg(x‘"’)ko(t/n x© _ x)..... ko(t/n, xn=1) — x()

n—oo R?

-~ exp[—SF(x?,..., x") ] f(x)dxOdxD .. dx®, (6.6)
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where S is the complex conjugate of S, in (4.7). Since f is arbitrary and the kernel
ko(t, x) is nonnegative, it follows that

n
. e N
(e7 ™ mlg)(x) = lim’ [ - [ ko(t/n, x(@ — xV)- . ko(e/n, x" =V — x)
n—oo Rd Rd

- exp[—S,(x9, ..., x")]g(x™)dxD--..-dx™, (6.7)

The integral on the right of (6.7) is the same as that of (4.6), and we have seen in Sect. 4
that its limit has the path integral representation (2.1) with (2.2).
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