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Abstract. A rigorous path integral representation of the solution of the Cauchy
problem for the pure-imaginary-time Schrodinger equation dtψ(t,x} =
— [_H — mc2~]ψ(t,x) is established. H is the quantum Hamiltonian associated,
via the Weyl correspondence, with the classical Hamiltonian \_(cp — eA(x))2 +
w2c4]1/2 + eΦ(x) of a relativistic spinless particle in an electromagnetic field.
The problem is connected with a time homogeneous Lέvy process.

1. Introduction

The Feynman-Kac-Itό formula is an imaginary-time path integral for a non-
relativistic spinless particle in an electromagnetic field representing the solution of
the Cauchy problem for the pure-imaginary-time Schrodinger equation, i.e. the heat
equation (e.g. Simon [27]).

As concerns a relativistic particle, Ichinose-Tamura [13] (cf. [14,15]) have
established a path integral formula for the Dirac particle in 1 + 1 -dimensional
space-time to represent the solution of the Dirac equation. There is constructed a
matrix-valued measure on the space of the Lipschitz-continuous paths. Relevant
problems are also discussed by Gaveau et al. [9 and 8] with Poisson processes.

The aim of the present paper is to give an imaginary-time path integral for a
relativistic spinless particle of mass w > 0 and charge e interacting with an
electromagnetic field which represents the solution ψ(t, x) of the Cauchy problem for
the pure-imaginary-time Schrodinger equation,

\ f > 0 , xEίRd, (1.1)

the dimension d of space Ud being arbitrary. Here H is the quantum Hamiltonian
associated, via the Weyl correspondence, with the classical Hamiltonian

(1.2)

for the particle. A(x) and Φ(x) are respectively the vector and scalar potentials of the



240 T. Ichinose and H. Tamura

field (e.g. Landau-Lifschitz [20]). c is the light velocity. This Hamiltonian may be of
some interest in the region where relativity is of some importance but where
quantum field theoretic effects are not yet important (See [27, p. 221]).

We assume for simplicity that A is in ^([Rd->[Rd) and Φ in Jp2->!R), where
@(Ud -> RN\ N = 1, d, is the Frechet space of the Revalued C°° functions in Ud which
together with their derivatives of all orders are bounded. The definition of H is given
by

(HAg)(x) = (2nΓd f j e**-»*hAp9g(y)dydp (1.3)
O^xR" \ Z /

with (1 .2) for gE^(Ud) (e.g. [1, 10, 12]). The Planck constant h is taken to equal 1. The
integral in (1.3) is an oscillatory integral (e.g. Kumano-go [19]). It is seen that H
maps ^(Ud} into itself, so that it defines a linear operator in L2(Ud). It is shown that H
is essentially selfadjoint on C^((Rd), and its closure, denoted also by the same //, is
bounded from below. It is this selfadjoint operator H that is in (1.1). Notice that
HA differs from the square root of the nonnegative selfadjoint operator ( — cid —
eA(x))2 + m2c4.

Our approach is a rigorous application of the phase space path integral or
Hamiltonian path integral method with the "midpoint" prescription (Mizrahi
[21,22], Garrod [7]). The path space measure used is the probability measure λQ x

on the space of the right-continuous paths X: [0, oo) -> Ud having the left-hand limits
and satisfying A'(O) = x whose characteristic function is

exp{-ί[(c2p2 + mV)1'2 - me2]} = $eip'(X(t)-χ(0»dλθ9X(X). (1.4)

The path X is called a d-dimensional time homogeneous Levy process (e.g. Ikeda-
Watanabe [16], Itό [17]). The formula obtained shows a close analogy with the
Feynman-Kac-Itό formula based on the Wiener measure. Similar treatments will
be possible for ί-dependent vector and scalar potentials A(t,x) and Φ(ί,x).

In Sect. 2 our result is stated. Sections 3 and 4 are devoted to its proof. Section 5 is
concerned with an extension to the case of nonregular and unbounded vector and
scalar potentials. In Sect. 6 our approach is heuristically examined with the phase
space path integral or Hamiltonian path integral method.

In a subsequent paper the nonrelativistic limit problem will be discussed.

2. Path Integral Formula

The main result, summarized in the theorem below, is a path integral representation
of the solution ψ(t, x) of the Cauchy problem for (1.1) with initial data ι//(0, x) — g(x).
Its statement needs some notions on the Levy process, which we shall explain after
the theorem. In Sect. 5 we indicate the extension to the case of nonregular and
unbounded vector and scalar potentials.

Theorem 2.1. Assume that A is in 3$(Rd-+Rd) and Φ in Jf(Rd->R). Then:
(i) Both HA and H, defined by (1.3), are essentially selfadjoint on C%(Ud). Their

closures, denoted by the same HA and H, are bounded from below and have domain
H1'
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(ii) There exists a countably additive probability measure λ0^x on the path space
0o,χ([0»°°)-*lβd) of the right-continuous paths X: |Ό, oo) -> Rd having the left-hand
limits and satisfying X(Q) = x such that whenever A is in &(Ud -» Ud) and Φ in

> R), it holds that

(2.1)

for gεL2(Rd). Here

ί,0;X) = i j J (e/
o ly l^ i

+ /'j j
0 0<|y|<l

+ i } f (e/c) D4(X(s) + y/2) - Λ(X(s))] ' yfi(dsdy) + } eΦ(X(s))ds
θQ<\y\<\ °

'+ J (β/cMWs-) + y/2) yNx(dsdy)
0 i

f ^ ί

+ /J J (e/c)[A(X(s) + y/2) — A(X(s))~]-yN(dsdy) + J e Φ ( X ( s ) ) d s . (2.2)
0|y|>0 0

(iii) Consequently, HA — me2 is nonnegative selfadjoint.
Each of those paths X on which the measure λ0iX is concentrated is called a d-

dimensional time homegeneous Levy process which does not contain the con-
tinuous martingale part. The Levy-Itό theorem states, in fact,

1+ ί yN^dsdy)+l ί

I yNx(dsdy). (2.3)
0 |y|>0

With Bx = {s>0'9X(s)^X(s-)}9 the jump X(s)-X(s-)9 56θx, is a stationary
Poisson point process on Rd\{0}. Nx(dsdy) is a counting measure on (0, oo) x

Nx((ί, ί'] x 17) = #{sE(ί, ί']; JT(5) ̂  Jr(5-), X(s) - X(s-)eU},

where 0 < t < t' and U is a Borel subset of Rd\{0}. Nx(dsdy] is by definition

Nx(dsdy) = Nx(dsdy) - N(dsdy),

where

N(dsdy) = \Nx(dsdy)dλ^x(X} = dsn(dy)

is called the compensator of Nx(dsdy), and n(dy) is the Levy measure. The Levy-
Khinchin formula connects λ0^x with n(dy) as follows

e-(t-*)a(P) = Jeίp wo-^ϊ^λo^ίX), 0 g s g t, pelR^, (2.4)

where

)1/2-^^- J [^-l-Φ^/{M<1}ω>(^) (2.5)
Rd\{0}
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with I{lyl<l}(y)=\ if \y\ < 1, and = 0 if \y\ ̂  1. It is known that the Lέvy measure
n(dy) is a σ-fmite measure on (Rd\{0) such that

f D>2/0+ /)]n(d3θ<°° (2.6)
&Λ{0}

Further we see in our case, since a(p) is analytic in p, applying to both sides of (2.5)
— Δp, the minus Laplacian in the variable p, to the fcth power, fe^ 1, that n(dy)
satisfies

J eip'y\y\2kn(dy) = -(-Δp)
k(c2p2 + m2c4)1/2, (2.7)

tsΛ{0}

if me > 0, and in particular,

J \y\2kn(dy)«x>. (2.8)
Rd\{0}

We note that the second equality in (2.2) as well as (2.3) is due to the fact that

j yn(dy) = 0 because of the rotational symmetry of n(dy).
l y l ^ i

For the Levy process we refer to Ikeda-Watanabe [16] and Itό [17]. Finally
we give a notational comment. In Ikeda-Watanabe [16] the Poisson point process
is denoted by p(s) = X(s) — X(s — ), seO^, and our Nx, Nx and N by Np9 Np and Np.

3. Proof of Theorem 2.1(i)

The following theorem is more precise than Theorem 2.1(i).

Theorem 3.1. (i) There exists a constant C > 0 such that

geS(Ud). (3.1)

(ii) (Gάrding's inequality) There exists a constant C(m,c) > 0 possibly depending
on m > 0 and c> 0 such that

(3.2)

for gE^(Ud). C(m,c) is a constant independent ofm and cifmc^l and c ̂  1.
(iii) Both HA and H, as operators in L2(Rd) with domain CJ(lRd), are essentially

self adjoint. Here \\-\\ s stands for the norm of the Sobolev space Hs(Ud).

Proof, (i) Since A is C°° and bounded, and all its derivatives are bounded, the symbol
hA in (1.2) satisfies that for all multi-indices α,/? there is a constant CΛβ such that

\d p8ζhA{p9x)\ ^ CΛβ(l +/>2)(1-|α|)/2, (p,x)eR' x Rd. (3.3)

Then (3.1) is an immediate consequence of the Calderόn-Vaillancourt theorem
([2,18]).

(ii) We have

h
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with

and

r(x9p9y)= -eA

It follows that h0(p) ^ me2, and for all multi-indices α, β and y, there is a constant
CΛβy > 0 independent of m and c where me ̂  1 and e ̂  1 such that

We have HA = H0 + R, where

#0 = (-c2zi+m2c4)1/2, (3.4)

and

(Rg)(x) = (2πΓd Jf ^"^'M^A^M^P,
R d x R d

It is clear that for ge^(Ud\

(H0g9g) = me2 \\ [-(l/mV)4 + l]1/4£

and the Calderόn-Vaillancourt theorem ([2, 18]) yields

where

C(m, c) = C max max [(p2 + l)/(p2 + m 2

with a constant C which is independent of m and c if me ̂  1 and c ̂  1, so that
C(m,c)^C if me ̂  1 and c^ 1. For r^O, [r] denotes the largest integer that
satisfies [r] ̂  r.

(iii) We follow the argument of Shubin [26]. The pseudo-differential operator H
is formally selfadjoint. It maps ^(Ud) into itself, and &"(R*) into itself. Denote by T
the corresponding operator in L2(Ud) with domain D[T] = C^U*). T is symmetric.
So T is essentially selfadjoint if and only if its deficiency indices (π+ , n_) vanish. To
show n+ = 0, let weL2((Rd) be orthogonal to the range of T+ I If T* is the Hubert
space adjoint of T, it follows that weD[T*] and (T* - ι> = 0 or (H - i)w = 0. Since

H - ί is elliptic as seen from (1.2), we have ueH^U*) = f| Hs(Ud). Then we claim that

(3.5)

To show this, choose a sequence {MW} in C^ίRΌ which converges to u in H1. Then

(Γ*M, M) - lim(Γ*M, MΛ) - l

The inequality (3.1) implies that Tw,, = //uπ is convergent to an element v in L2(
Since Tis closable with closure T*, we have υ = T*w. This proves our claim. From
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(3.5) we conclude u = 0, i.e. n+ = 0, because

- Ϊ(M, M) = (T*u9 M) = (M, T*w) - i(w, w) .

Similarly we can prove n_ = 0, completing the proof of Theorem 3.1.

4. Proof of Theorem 2.1 (ii) and (iii)

We mimic the proof of the Feynman-Kac-Itό formula in [27]. The first three
subsections concern the proof of Theorem 2.1 (ii). First we describe what is our path
space measure λQtX. Next we construct the semigroup solution of the Cauchy
problem for (1.1). Finally we establish the path integral representation (2.1) with
(2.2). In the last subsection the statement (iii) is proved.

4.1. The Path Space Measure λ0^x. Consider the Cauchy problem for the free
equation

) f>0,xe[Rd, (4.1)

to (1.1) with initial data ψ(Q9x) = g(x).

Lemma 4.1. (i) For each t > 0, the function e~ta(p) with a(p) in (2.5) is of positive type in
peRd, and the Lev y-Khinchin formula (2.5) holds.

(ii) I f k 0 ( t , x ) is the fundamental solution of the Cauchy problem for (4.1), then for
w>0,

x t(x2 + c2t2Γ(d+l)/4K(d+1)/2(mc(x2 + c2t2Y'2\ (4.2)

where Kv(τ) is the modified Bessel function of the third kind with order v. In particular,
fe0(ί, x) is positive and

Ik0(t,x)dx=l. (4.3)
Rd

Proof, (i) a(p) is spherically symmetric in p with a(p) ^ a(0) = 0, and

Λa(p) = 2c2(c2p2 4- m2c4)~1/2 + m2cβ(c2p2 + mV)'3/2

is a function of positive type, since, for each t >0, exp[ — tc2p2~\ is a function of
positive type, and so is the function

2 2
(c2p2 + m2c4Γβ = dβ$tβ~1 exp[- t(c2p

o

with β > 0 and a positive constant dβ depending on β. It follows by [27, Theorem
XIII. 54, p. 2 19] that a(p) is conditionally negative definite, and further by [27,
Theorem XIII. 52, p. 214] that for each t >0, e~ta(p) is a function of positive type.

(ii) First we put c = l . Using the spherical coordinates and an integral
representation of the Bessel function Jv [5, Chap. VII, 7.3.2. (3), p. 14] we obtain
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k0(t9x) = (2πΓd J eip'xe~ta(p)dp

_

0

with cd = 21-dπ-(d+1)/2Γ((d-l)/2Γ1 Calculation of the integral in the last
member, i.e. the Hankel transform (use [6, Chap. VIII, 8.6. (19), p. 31, where read
— v/2 — 3/4 instead of — v — 3/4] ) yields (4.2) with c = 1 . For general o 0 replace t
by ct and m by me. This ends the proof of Lemma 4.1.

In connection with Lemma 4.1, it is known that for each xεUd there exists a
countably additive measure λ0ιX on the space D0>JC([0, oo)->[Rd) of the right-
continuous paths X(s) having the left-hand limits and satisfying X(0) = x such that if
φ(X) = F(X(tΌ), . . . , X(tn)) with 0 - ί0 < t, < < tn = t and with F(x(0\ . . . , χ(w>) a
bounded continuous function on [Rd("+1), then

'F(x(0\...,x(n))dx(1)'""dx(n) (4.4)

with x(0) = x. The path X(s) is a d-dimensional time homogeneous Levy process. We
have (2.3), (2.4) and (2.5) (See [16, 17]).

4.2. Semigroup Solution of the Cauchy Problem. We begin with a lemma about the
operator T(τ), τ > 0, defined by

(T(τ)g)(x) = j" k0(τ,x -
\

(4.5)
for geL2(Rd).

Lemma 4.2. If A is in <^([Rd->[Rd) and Φ in J?(lRd->ΪR), then T(τ) defines a bounded
linear operator ofL2(Ud) into itself and \\ T(τ) || ^ eMτ with M = (-MxeRdeΦ(x)) v 0.
Further if g is in D[H] = Hl(Rd), then d,(T(τ)g) approaches -[H-mc2]g in L2

α s τ j O .
The proof of Lemma 4.2, which is rather lengthy, is postponed till the end of this

subsection.
Next we consider the n-times iteration of T(t/n):

(T(t/rifg)(x) =
i

x exp[-Sn(x(0),... ,xw)]0(jc<B))<fec(1) c/x(n) (4.6)

with
n^M\.(χ(j)__χu-^

•In), (4.7)
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for 0eL2(Rd), where t > 0 and x(0) = x.
In Sect. 4.3 we shall see what the right-hand side of (4.6) approaches as n -» oo. In

the following we show that the left-hand side of (4.6) approaches in L2 the solution
(e~t[H~mc2]g)(x) of the Cauchy problem for (1.1) as n -> oo uniformly on compact sets
in t ̂  0, and hence it does for a.e. x in Rd, by taking a subsequence if necessary.

Since /)[//] is dense and the operators T(t/n)n are, by Lemma 4.2, uniformly
bounded by em, we have only to show this for gεD[H~]. So let geD[ίf}. By Lemma
4.2 we have with K = H — me2,

\T(t/n)ng-e-tκg\\ = T(t/rif-l(T(t/n) -

^ nem sup || (T(t/n) - e-(tln)K)e~sKg ||,
O^s^t

which we now show tends to zero uniformly on compact sets in t ̂  0 as n -> oo. To do
so, note that since H is closed, D == /)[//] is a Hubert space equipped with the graph
norm of H. By Lemma 4.2, {n(T(t/n)--e~(tln}K)}*=l is a sequence of bounded
operators of the Hubert space D into L2(Ud). We have for each fixed

\\n(T(t/n)-e-^κ)f\\ = n
tin

Zt sup Hδτ(Γ(τ)-*-'*)/1 (4.8)

Then by Lemma 4.2 again we see the last member of (4.8) tends to zero uniformly on
compact sets in t §; 0 as n -> oo. By the uniform boundedness principle the sequence
{n(T(t/n) _ -(tjn)K )} is, as bounded operators of the Hubert space D into L2(Rd),
uniformly bounded for all n and on every fixed compact set in t ̂  0. Consequently, it
converges to zero uniformly on compact subsets of the Hubert space D. The map
[0, ί]esι— >e~sKgeD is continuous, and so {e~sKg;Q^s ^ t} is a compact subset of
the space D. This proves the convergence of the left-hand side of (4.6) to the solution
of the Cauchy problem for (1.1).

Finally, we prove Lemma 4.2.

Proof of Lemma 4.2. To avoid unnecessary complexity we put c = e = 1. The first
assertion is easy because the integral operator defined with positive kernel fe0(ί, x) is a
contraction. So we come to the second.

Since /c0(τ,x) is the fundamental solution of the Cauchy problem for (4.1), we
have by integration by parts

x\ exp dy

(4-9)
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Here Δy is the Laplacian in the variable y, and

(I2(τ)g)(x)= -Ik0(τ9x-y)-m + φ g ( y ) d y . (4.10)

We shall show that there is a constant C > 0 such that

(4.11),

and

l)/2(Φ + [-m + ΦM(>gC| |<7l l i , (4.11),,

uniformly in 0 < τ < 1 for every gε¥(Ud\ and that for each fixed ge&(Rd)9

11/^)0 + H^llo-'O, (4.12),

and

ll/2(τ)0 + [-w + Φ]0l|0->0 (4.12)π

a s τ l O .

Proof of (4.1 1\ and (4.12\. For the term involving the pseudo-differential operator
( — Δy + m2)112 in (4.9) or (4.10) we have as oscillatory integrals

1/2

2
P~A( 2 )) + I g(y>]dy'dp' (413)

To see (4.13) let χ be a function in £f(Ud) with χ(0) = 1. For every multi-index α there
exists a constant Cα > 0 independent of 0 < ε < 1 such that

|SJχ(εx)| ̂  Cαεσ(l + x2)-^-^, 0 ̂  σ ̂  |α|.

As ε j 0, χ(εx) converges to 1 uniformly on compact sets in Ud and d* χ(εx) with | α ^ 0
converges to zero uniformly in Ud. Then the integral in the second member of (4.13) is
by definition

lim$$eί(y~yr)'pχ(εp)(p2 + w2)1/2

e->0
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By the change of variables p'= p + A(j(x + y*)) and by integration by parts this
equals (with p again instead of p')

ε-»0 V 2

ε->0

ε p-A
\ L ///

Ί l / 2

2

where / is an integer > d/29 and note

Since the derivatives of X(x) are bounded, χ(ε(p — Λ(^(x + y')))) converges to 1
uniformly on compact sets in both p and /, and d*,χ(ε(p — A(^{x + /)))) with |α| + 0
converges to zero uniformly in both p and /. It follows that the last integral above is
equal to

2 '+p2Γ'(l -

+m

'(l - Δy,)'{-}dy'dp

= lim ίSeto-
ε-O I

Here the last equality above is due to integration by parts, and the last member is
nothing but the integral in the last member of (4.13).

On the other hand, (1.3) is invariant under any translation y^-*y + z of the
integration variable, so that

x 4
1/2

It follows that
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{(,-. 1/2

l/2

(4.14)

We use the Schwarz inequality with property (4.3) of fc0(τ, x) to estimate the L2 norm
of (4.14) and make the change of variables x — y = z to get

HAgII2, ϊ (2πΓ2"f <M0(τ,z)J JJe«^>*

x < expM z - Φ

l/2

+ (Q2(Y,Dy,Y';z)(g-g*))(y)\2dy,

where (̂3;) = g(y + z). Q^D^Y' z.τ) and Q2(Y,Dy,Y';z) are the pseudo-
differential operators with multiple symbols (see [19])

Γ . Y j
— PY1Λ I 7 Δ I _— t/Λ L7 I t yT. I

L V

p-A
y -f / + z 2 ηι/2

_ι_ vvι2

p_Λf^±^Vι2^2

and
\ \ 2 HI/2 / ,

JJ +m 2J =^(^p,:
+ y -f 2z

where z and τ are parameters. It is easy to see that for all multi-indices α, β and β'
there are constants C l ι(X^ and C2)0t^, such that

Id^d^O^/ z,!)! ̂  C1>α^,(|z - h τ ) ( l + z + τ) l/J |+l/η(l +p2)(1~ |α|)/2, (4.15)

and

;,p,/;z)| ̂  C2,α/ί/ί,(l •0.

(4.16)
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By the Calderόn-Vaillancourt theorem ([2, 18]) there exist a constant C > 0 and
integers fc, / ̂  0 such that

and

for ge^(Rd). Here

\ql(z,τ)\fl = Cl(\z\ + τ)(l + \z\ + τ)1 with C, = max infC l f β / ϊ / Γ of (4.15),

and

2,α/ϊ/r of (4.16)

is bounded by a constant C2 independent of z (Inspection with [19, Chap. 7,
Theorem 2.4] or [18, Theorem 2.2]) gives that it suffices if /c^4[d/2 + 1] and

Putting all this together we have with some constants C3 and C4

Thus we shall get (4.11), and (4.12),, if the following lemma is shown. We shall
continue to put c = e = 1.

Lemma 4.3. (i) For n a positive integer

$k0(τ,z)\z\2ndz-+Q, as τJO.
Rd

(") J*o(τ,z)||^-^||?^-»0, «5 τ|0,
tr

for geH^R"), where gz(y) = g(y + z).

Proof, (i) We have with (4.2),

1)/2(m(x2

^C(d,n,m)τ, as τ|0,

with constants cd „ depending on d and n and C(d, n, m) depending on d, n and m, but
independent of τ (use formulas for Bessel functions [5, Chap. VII, 7.14.2, (50), p. 95,
and 7.2.6, (40), p. 10]).
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ίii) First we claim that for every ε > 0 there exists a constant R0 > 0 such that for

J fc0(τ, τz)τddz < ε uniformly in 0 < τ < 1. (4.17)
\z\>R

To see this let χ be a nonnegative C°° function such that χ(x)= 1 if |x| ̂  1/2, and
χ(x) = 0 if |x | ̂  1. Put χR(x) = χ(x/R). Then

J /c0(τ, τz)τddz ^ J(l — χκ(z))/c0(τ, τz)τddz
\2\>R

v, (4.18)

where χΛ is the Fourier transform of χR and equal to Rdχ(Rp). It follows that (4.18) is
smaller than or equal to

(2πΓd/2 $Rdχ(Rp)exp{ - [(p2 + mV)1/2 - mτ~]}dp

which tends to zero as # -> oo uniformly in 0 < τ < 1, by the Lebesgue dominated

convergence theorem. Our claim has thus been shown.
We are now in a position to prove the second statement of Lemma 4.3. Let ε > 0.

Choose R0 > 0 such that for R ̂  R0 (4.17) holds uniformly in 0 < τ < 1. Putting

z = τzf (writing z again instead of z') we have

μo(τ,z)\\g-g*\\2dz = $τdk0(τ,τz)\\g-g"\\2dz = f + J .
|z|gΛ 1*1 >K

If Λ ^ #0, the second term above is smaller than or equal to 4ε || g \\ \. The first term
tends to zero as τ j 0, because || g — gτz \\ \ -> 0 as τ \ 0 by the Lebesgue theorem, and
because τd/c0(τ, τz) -> C(d) (z2 + 1 ) " (d + 1 )/2 as τ j 0 with a constant C(d) depending on d,
since Kw + 1 ) / 2(r) - C(ί/)2(d-1)/2π(d+1)/2r-(d+1)/2 + 0(rl~(d+l}/2) as r-^0 as seen from

(4.2) in Lemma 4.1 (use [5, Chap. VII, 7.2.6, (40), p. 10, and 7.2.5, (37), p. 9]). This
proves Lemma 4.3.

Proof of (4.1 l)u and (4J2)U. This case is simpler. We have by the Schwarz inequality
and the property (4.3) of fe0(τ, x),

- >0 m-Φ
y

- y) - Φ

^ f dzk0(τ, z)JI {(m - Φ(y + z/2))exp [MCy + z/2)z
z/2)τ] - (m - Φ(y + z))}g(y)

- Φ(y + z))(g(y) - gz(y))\2dy.
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Then there exists a constant C > 0 such that

The remaining proof proceeds in the same way as the last part of the proof of (4.11),
and (4.12),. This ends the proof of Lemma 4.12.

4,3. The Path Integral Representation (2.1). We shall now investigate what is the
limit of the right-hand side of (4.6) to establish the path integral formula (2.1) with
(2.2).

We do first for g eL2([Rd) which is bounded and continuous. Then we obtain from
(4.6) with (4.7), using the path space measure λ0ίX introduced in Sect. 4.1,

(T(t/nfg)(x) = le-s^g(X(t)}dλ^(X\ (4.19)

= i Σ

Sn2(X) = eΦ&Xϊj-J + X^Mtj ~ tj- 0 (4.20)
;=ι

with tj =jt/n.
As for Sn2(X) in (4.20), it is evident that for each X in D0tX([09 oo)-» ίRd), Sn2(X)

converges to ^QeΦ(X(s))ds as n -> oo. To see the convergence oϊSnl(X), introduce the
functional

Fj(X(s)) = i(e/c)A(±(X(s) + X(t}- J)) (X(s) - X(tj. ,))

of the path X(s) in D0|X([0, oo)->Rd). Note the Levy-Itό theorem (2.3) to apply Itό's
formula [16, Chap. II, 5, Theorem 5.1] to each Fj(X(s)) = Fj(X(s))- F j ( X ( t j _ 1 ) ) .

Then we have with (Rd)x = Rd\{0},

= J J Lnl(s9y9X)Nx(dsdy) + iί J L^y
0

 {RV ° (Rd)χ

+ i j J Ln3(s,y,X)fi(dsdy).
0(R d)x

Here
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Ln2(s,y, X) = I(t._ίtlβ(s)(e/c)ίA&X(s-) + X(t}_ t

Ln3(s,y,X) = /„._,, ̂ (sHe/cK/KiWs) + X(t}- ,) + yIM<l)(y))) (X(s) - X ( t j - ,
=

Now we take n = 2k, so that ί; = 2~kjtJ = 0, 1, . . . , 2k. Then we see for each fixed X in

La3(s, y, X) ̂  (e/c)(A(X(s)

as A: -» oo. It follows that when k -* oo, the three integrals of Lπl , LM2 and Ln3 in 5nl(A")
approach the first three integrals in the second member of (2.2). Therefore an
application of the Lebesgue dominated convergence theorem shows the right-hand
side of (4.19) approaches the right-hand side of (2.1). This was when g is in L2(Ud),
bounded and continuous.

When 0eL2(IRd) in general, there exists a sequence {gn} of bounded continuous
functions in L2(Ud) such that \gn(x)\^\g(x)\, a.e., n= 1, 2,..., and gn-+g in L2(Rd) as
n-+ao. By taking a subsequence if necessary, gn-*g a.e. Then it holds that
§gn(X(t))dλ0ιX(X)= J k0(t,x — y)gn(y)dy, and so, by the Lebesgue dominated con-
vergence theorem, for g in place o f g n . It follows that (2.1) holds for g. This completes
the proof of Theorem 2.1(ii).

4.4. Proof of Theorem 2.1 (in). From the path integral formula (2.1) with Φ = 0 we
have

\)^ \\g\\2

for geL2(Rd). It follows that the selfadjoint operator exp[ — t(HA — me2)] is a
contraction, so that HA — me2 is nonnegative. This ends the proof of Theorem 2.1.

5. Nonregular and Unbounded Vector and Scalar Potentials

In the previous sections we have been assuming regularity and boundedness of both
vector and scalar potentials A and Φ. However, in application nonregular and
unbounded A and Φ appear. For instance, the Coulomb potential Φ(x) has the | x |~ 1

singularity (cf. [1 1, 3, 4]), and the vector potential A(x) of the constant magnetic field
is linear in x.
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If Φ(x) is measurable in Rd, and if eΦ = eΦ + - eΦ- with eΦ+ ^ 0, eΦ_ ^ 0,
where Φ + eLιoc(Rd\G) with G a closed subset of measure zero, and for some
constants 0 < δ < 1 and C ̂  0,

$eΦ_(x)\f(x)\2dx^δ\\(-c2Δ+m2c4)1/4f\\2 + C\\f\\2, (5.1)

for all feH1/2(Rd), then the path integral formula (2.1) with (2.2) for the form
sum H = HA + eΦ will be shown in the same way as [27, Chap. II, Theorem 6.2].
Recall Garding's inequality (3.2).

As far as A is concerned, we have only to assume A(x) has bounded, continuous
derivatives up to sufficiently high order. A further reduction of regularity of A will be
done with the theory of pseudo-differential operators with nonregular symbols
(Nagase [24,23]). It will be also possible to include the unbounded case where A(x)
is an (Revalued function of polynomial growth.

It will suffice to assume, as S(ί, 0; X) in (2.2) suggests, that A is Holder-continuous
of order α, 0 < α ̂  1, i.e. for every jR > 0 there exists a constant C > 0 such that

\A(x + z)-A(x)\£C\z*9 | z |< l , \x\£R. (5.2)

In fact, we see with (2.6) and (2.8) that we may regard \x\2n(dx) as a measure on
R*. Let ε > 0, and β = (d—l)/2 + ε. Apply the pseudo-differential operator ( — Δp)

βto
both sides of (2.7) with k = 1. Then we have for some constant C > 0,

$eip'y\y\2 + 2

ud

which is in Ll(Rd) with respect to p. Therefore there exists a function p(y) in L°°(lRd)
such that |y|2 + 2/?n(ίί;y) = p(y)dy. Since N(dsdy) = dsn(dy\ the condition (5.2) is then
obtained from this and (2.2).

6. Heuristic Remark

In this section we shall heuristically see our method is nothing but a rigorous
application of the phase space path integral or Hamiltonian path integral with the
"midpoint" prescription ([21,22,7]).

Let f,geL2(nd). Then (g,e~itHf) is the transition amplitude that a Weyl
quantized charged particle (with the Hamiltonian h(p,x) in (1.2)) at state/at time 0
will be at state g at time ί. The phase space path integral or Hamiltonian path
integral method assumes that it is given by a formal "integral"

(9,e-itHf) = f 0(*M) eW °* »f(X[0])D(P)D(X), (6.1)

where S(t,Q;P,X) is the action which is defined with (1.2) by

S(f, 0; P, X) = }[P[s] Xls] - Λ(PM, *[s])]<fc, (6.2)

where X\s\ and P[s] are the position and momentum. D(P)D(X) is a formal
"measure" f] (2π)~άdP[s]dX[_s] on the space of the phase space paths

O^s^r
(P[s], ATs]). In this formal phase space path "integral" we first make an analytic
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continuation which replaces t by —it to go from e~ltH to e~tH, and put P(s) = P[— is],
X(s) = X\_ — is]. Using the substitutions ds ^—ids, X\_s] = (dlds)X\_s~\->iX(s\ we
are led to the formal expression

(t ι
(9,e~taf) = ί 9(X(t)) exp < J [ϊ'P(s) X(s) - h(P(s),X(s))]ds V

U J

x Π (2πΓddP(s)dX(s). (6.3)

Next we make the change of variables: X'(s) = X(s), P'(s) = P(s) - (e/c)A(X(s)). Then
we obtain from (6.3) (writing (P(s)9X(s)) again instead oί(P'(s)9X'(s)))

- (c2P(s)2 + m V)1/2 - eΦ(X(s))']dsf(X(0))

• Π (2πΓddP(s)dX(s). (6.4)

O^s^f

We understand that the last member of (6.4) is defined with a time division procedure
and the position-dependent terms are evaluated at the midpoints (see [21]). Then

, £_ C n Γ / γ(j- 1) , γ(j) \ \

(e-<HgJ)= lim J - J $0(xM)ap\ Σ ίίp^^ + ίβ/cμί- ^~
""""R" R 2 d R d U = 1 L \ Z / /

ϋ) _ U-
X - ί . _ ί ._ -c- + m

1) X(Λ), (6.5)
/

where f, =;ί/w>and Pω = p(tj)>χ(J) = ̂ (^J* = 0,1,... ,n. The integrand of the integral
on the right of (6.5) is rewritten as

g(x(n})

( fc- l )

Now multiply it by exp[wΛ] and integrate it with respect to all the pu\ Recall
kQ(t,x) is the fundamental solution of the Cauchy problem for (4.1). Then we have

= lim j" ••• I g(x(nί)k0(t/n, xm - .x(1)) -k0(t/n, x(t>- 1( - x(Π>)

---^"*, (6.6)
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where S* is the complex conjugate of Sn in (4.7). Since / is arbitrary and the kernel
/c0(ί,x) is nonnegative, it follows that

• exp [ - Sn(x(0\ . . . ,xM)]g(xw)dx(» "dx(H\ (6.7)

The integral on the right of (6.7) is the same as that of (4.6), and we have seen in Sect. 4
that its limit has the path integral representation (2.1) with (2.2).
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