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Abstract. We study the behaviour under deformation of holomorphic bundles
of rank 2 over P^C). This is then applied to the description of the moduli space
Mn of framed SU(2) instantons of charge n; Mn is shown to map to (CM, with
equidimensional fibers. We use this to provide a stratification of Mn and
compute the strata explicitly to codimension 4. This then yields π1(Mn) = Z2>
and, for the standard moduli space Mn, πί(Mn) = 0 for n odd, Z 2 for n even.

1. Introduction

By twistor methods, instantons are known to be equivalent to holomorphic vector
bundles on P3(C) [1]; using the monad construction of Horrocks [12], a
description of all solutions was given in [3]. Still, very little is known about the
moduli space of solutions; recent work of Donaldson [6] has, however, reduced
the problem to classifying certain semi-stable bundles of zero first Chern class on
P2=P2(<C).

It is then natural to try to use this to classify instantons. It turns out that a
convenient method for doing this is to restrict the bundle again, to the family of
P^Cys in P 2 through a fixed point, and to study the behaviour of the bundle as
one varies the P t in the family. The purpose of this article is thus twofold: to
examine the behaviour under deformation of holomorphic vector bundles over
Ψ1 = Pi(C), and to apply the information gained to the classification of semi-stable
vector bundles over P 2 ("bundle" is to be taken throughout to mean "holomorphic
bundle"; all the results here concern the classification of holomorphic structures).

We have restricted our attention to bundles of rank two, which correspond to
the gauge group SU(2). We obtain a description of the moduli of SU(2) instantons;
it complements the monad theoretic work of Barth [5] on stable 2-bundles, but is
more geometric in nature; it has the advantage of being concrete enough for us to
compute, for example, the fundamental group.
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Consider then a rank two bundle E over P x with cγ(E) = 0; one has the theorem
of Grothendieck [9], which implies that any such E splits as a sum of line bundles:
E^Θ(k)@Θ( — k), fc^O, k unique \_Θ(j) is the/ h tensor power of the hyperplane
bundle, Θ(—j) its dual]. Consider now a bundle E over Ψ1xU, U open cC"; £
splits over each P x x {x},xeU, as 0(fcx)Θ0(-fcx), fc^O. Let p: Pi x £ 7 - ^ be
the projection, and let &(J) onΨ1xU denote the lift p*Θ(j) of the line bundle on
P x ; set E{j) = E®Θ{j). Then,

Semi-continuity of the /z°'s [10,111 — 12] then shows that the generic kx is the
minimal one; if E is trivial on a P l 5 then it is trivial over an open set. Assume that
this is the case; then, the lines in the family U over which £ φ Θ®Θ are called the
jumping lines of E, and in fact constitute a hypersurface in U.

The problem, thus, is essentially a bifurcative one: to study how a bundle
jumps. It is this question that we attack in Sect. 2; we compute a versal
deformation space, define the multiplicity of a jump, and describe the jumping
hypersurface.

In Sect. 3 the above is applied to the study of the moduli space Mn of framed
SU(2) instantons of charge n. This space, by the work of Donaldson [6], is
equivalent to that of framed S1(2,(C) bundles E over P 2 , with c1(£) = 0, c2(E) = n,
which are trivial along a fixed line. (By a result of Grauert-Mϋlich, they are
semistable.) We pick a point on that line, and blow it up, to obtain a surface P2

ruled by a pencil of lines. E lifted to P2 has n jumping lines (with multiplicity) in this
pencil; we show how E and its S1(2,(C) framing is completely determined by the
choice of these lines, and some extra information "concentrated" at the jumping
lines (3 parameters per jump.) The key idea is that bundles on P 2 correspond to
bundles on P2 trivial over the exceptional divisor C; this triviality can be viewed as
a connection along C, and one is led to classifying local equivalence classes of
(bundles + connections). This description is concrete enough to give us
n±(Mn) = Z 2 ; fr°m this, one deduces for the unframed moduli space of instantons
Mn that π^MJ = 0 if n is odd, Έ2 if n is even. The section ends with a description of
how to extract a monad from our construction, thus linking the two descriptions of
instantons.

2. The Local Geometry of Jumping Lines

This section is devoted to the local geometry of a rank two bundle E over a family
of Pi's parametrised by U open in (C", i.e., over P x x U. Our approach throughout
will be to study an associated transition matrix for E. Let z be a standard affine
coordinate on P l 5 and let x = (xu ...,xΠ) be coordinates on U, such that
{x = 0}eU. E is trivial on {(z,x)eΨ1xU,zφco}9 {(Z,X)GP 1 X t/,zφθ}; we
consider transition matrices from {zφoo} to {zφO}. As in the introduction,
denote by Θ(k) the lift of the line bundle Θ(k) on Ψ1 to Ψ1 x U; note that z~k is a
standard transition function for Θ(k) with respect to our covering. Let Ex be the
restriction of E to P x x {x}; then;
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Proposition 2.1. Let Eo ^ Θ(j)@Θ{ —j)J ^ 0 ; let k ̂ j; then E has a transition matrix,
in a neighbourhood of x = 0, of the form:

fe-1

where pE(x, z) = Σ P&V />(*, z) = 0 if k = 0] and p(0, z) = 0 if k =j.
i= - fc+1

Proof One chooses an embedding, at x = 0, of $( — /c) in E, i.e., a nowhere zero
section of E(k); if fc=j, choose the natural one. We show that this section extends
over a neighbourhood of x = 0. Write P (" } for the nth formal neighbourhood of
Ψ1x{0} in U; one has the exact sequence,

where Sn(N*) is the nth symmetric power of the conformal sheaf of Ψ1 x {0} in
P x x U. This bundle is trivial; as H\ΨU Θ{k-j)@Θ(k +j)) = 0, any section of E(k)
on the (n — l ) t h formal neighbourhood extends to the nth. By Grothendieck's
theorem on formal functions [8], the section extends to an actual neighbourhood
P i x V, and so one has over Ψλ x V: 0^Θ( — k)-+E^>Θ(k)^>0 and, corresponding
to this, a transition matrix:

zk p(x9z)

0 z~k

[p(0, z) = 0 if j = fc]. Pre-multiplying by matrices holomorphic in x, z~ \ and post-
multiplying by matrices holomorphic in x, z (i.e. changing trivialisations) one sees
that one may kill in p all terms of order ^ - I c o r ^k in z.

Corollary 2.3. C 2 k - 1 is α minimal local versal deformation space for a bundle

Proof Let si9 i= —k+ 1, . . . , k - 1 be coordinates on ( C 2 ^ 1 ; define a transition
matrix for a bundle F over P i x C 2 ^ 1 as the TF associated to pF(s, z) = Σsiz

i.
Then, for any bundle E over Ψί x U, if p t (x) are the functions obtained for £ in
Proposition 2.1, map 17 to C 2 * " 1 by x-*(pf(x)).

If p is the corresponding map Ψί x C7—•Pi x C 2 ^ 1 , it is clear that E^p*F.
To see that the dimension (2/c— 1) is minimal, we consider one-parameter

"linear" deformations given by p£(x,z) = xXp iz
I, Pjg(x,z) = x Σ P i z l w ^ h at least

o n e ^ φO. Then one has £ ^ £ i f f 3 c φ θ with (p-k + u ...9pk-1) = c(β-k+u . . .,p f e_ 1).
For suppose that E^E; one then has a nondegenerate section of £ * ® E . Using the
forms (2.2) of the matrices for £, E, one has the matrix for E*(χ)E:

z2 f c

0

0

0

-pEzk

1

0

0

Pεzk

0

1

0

-PEPE\

pέz~k

-pEz~k

z'2k

over x = 0, as PE

 = PE = Q> o u r non-degenerate section over z φ oo is of the form
(0, α, ft, / ( z ) ) Γ , / ( z ) polynomia l of degree ^ 2/c, α φ 0 φ ft, α, b e (C. T h e obst ruct ion
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to the extension of this section to the first formal neighbourhood of x = 0 lies in
H1(Ψ1 x { O } , ^ * ® ^ ) ^ 1 ^ ! , Θ(-2k)) and is precisely z~\apE-bpE) in a stan-
dard representation of the cocycle. As the section does extend, apE = bpE.
Conversely, if pE = cpE, then (0, l,c, 0)τ provides a non-degenerate section of

We now turn to the jumping behaviour of an E with matrix (2.2), but with
p£(0, z) not necessarily zero.

fc-1

Proposition 2.4. Let pE(x, z)= Σ Pi(x)zi Consider the matrix

po(x), P-i(x) ... p_k + 2(x), P-fc+iO

Pl(x) J Pθ(x) *•* P-k + 3(x) > V-k + 2^?"

9k-2\X)> Pk-3\X) ••• PovV •> P-l\X)

\Pk-ι(x), Pk-i(x) ... Pi(x), Po(x)

Then Ex is of type (j, —j) iff ΓE(x) has corank j .

Proof Ex is of type (/, —j) iff Ex(—l) has j independent sections. A section of
Ex( — 1) is a pair /(z) = (/i(z), /2(z))τ, holomorphic in z, such that z 7 (̂x, z) -/(z) is
holomorphic in z~x: this means that [zfe+ 1/1(z) + zp(x, z)/2(z)] and z~k+1f2(z) are
holomorphic in z" 1 .

The second condition forces /2(z) to be a polynomial of degree ^(/c— 1); the
first then demands that p£(x,z) /2(z) have no terms of orders 0, ...,fc-l in z.
Writing the coefficients of f2 as a column vector F9 this is precisely ΓE(x) F = 0,
and the result follows.

For an E with the generic Ex of type (0,0), the jumping lines are given by the
vanishing of a determinant and so form a hypersurface. Our next task is to see that
this vanishing defines the hypersurface with the same multiplicity as that given by
the coordinate free definition of Barth ([4], see also [13, pp. 214-220]). If
Π:ΨίxU^U is the projection, the hypersurface is defined there via the
intermediary of the direct image sheaf R1Π^E(— 1), as follows. One chooses a
resolution

E(-l)^Q (2.5)

with fef<0; projecting, one obtains.

The first two sheaves are locally free, of the same rank. The hypersurface is then
defined by det(ft) = 0. One shows that this hypersurface has a multiplicity which is
independent of the choice of resolution.

We now build a particularly nice resolution of the form (2.5), for an E given by
(2.2).

Lemma 2.6. E has a resolution:
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Proof. Maps Θ( — k)-+E are the same as sections of E{k). Referring to the
trivialisations corresponding to (2.2) we write out, over the z Φ oo trivialisation,
2/c+ 2 maps from line bundles Vθ9 Vl9 Wl9..., W2k all isomorphic to Θ{ — k\ to E:

V V W W W

Λ(*\(<h(-pk

2-A(-Pk-/-Pk-:

2k - 2
w2k

-Pk-iz2k~1-Pk-2z

Similarly, maps Θ( — k— 1 )-•$( — k) are of the form {az + b) in the standard
trivialisations; thus, setting Uί9...9U2k to be line bundles, all isomorphic to
Θ( — k-1), one defines the map

Ut

u2

uL-i
u2k

Vo

0

Pk-i*

Pk-2*

P-k+2Z

P-k+iz

v,
— z

0

0

0

0

wγ
1

— z

0

0

0

w2
0

1

— z

0

0

w3 ...
0 ...

0 ...

1 ...

0 ...

0 ...

W2k-1

0

0

0

1

— z

w2k
0

0
0

0

1

combining, one checks that the composition

is exact.

Proposition 2.7. The two definitions of hyper surface of jumping lines coincide.

Proof. We use the resolution of (2.6), twisted by Θ(— 1). One must consider the
maps induced on cohomology groups by a map Θ{ — k — 2)-»0( — k— 1) given in
standard trivialisations by s-+(az + b)s. Note that H1(ΨU Θ{ — k — 2)) has a
standard basis of Cech cocycles: (z~\ z " 2 , ..., z " / c " 1 ) ; similarly, for
if1 (Pi, O(-k-ί)): (z~\ z " 2 , ..., z~k). With respect to these bases, the induced
map on cohomology j F / 1 ( P i ? ^ ( - f c - 2 ) ) ^ ί / 1 ( P 1 , Θ(-k-\)) has a fcx(fc + l)
matrix α(0, Id) + b(Id,0). Referring now to the explicit maps in (2.6), one obtains
for the map h induced by our resolution a (2/c + 2)fe x 2/c(/c +1) matrix made up of
k x (fc +1) blocks; a tedious but straightforward reduction brings this matrix to a
block diagonal form diag(/^,Id), which proves the result.

The equation det(/^) = 0 then defines a cone C of degree k in the versal
deformation space of G(k)@Θ( — k); one can use this to see the different ways of
obtaining a jumping line of multiplicity k in, say, a one-parameter family: either by
a curve through the origin, transversal to C, or by a line not passing through the
origin, of the appropriate degree of tangency to C. (The multiplicity of a jump
being determined by its embedding in the versal space.) The first case gives a jump
of type (fe, — k); the latter, one type (/, ~/X j<k. We now show that, in an
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appropriate sense, jumps of type (1, — 1) are dense amongst those of multiplicity /c,
for one dimensional deformations.

Proposition 2.8. Let Vj?^(Ei2k~1)n be the space of maps of the nth formal
neighbourhood of the origin in (C into the versal deformation space Vk of
Θ{k)®Θ{ — k) (n-jets). Let ZnCVk

n be the subvariety of those jets which define a
jumping line of multiplicity nat(x = 0) in C; then the subvariety U of Zn of those jets
whose evaluation at x = 0 corresponds to a jump of type (1, — 1) is dense in Zn.

Proof One considers k ̂  2, the case k = 1 being trivial. For a jet J in Vk, let pj(x, z)
correspond to the associated polynomial as in (2.2), and let Γj(x) be the associated
matrix, as in (2.4); write ΓJ(x) = Γ0 + xΓ1 + ... -\-xnΓn. The multiplicity of J is n iff
det(/}) = 0 to order n (n equations); J corresponds to a jump of type (/, —j) iff
corank (Γo) =j. These conditions are projectively invariant, and so one considers
Ψ(Zn) in Ψ(Vk

n). The set Ψ(U) of jumps of type (1,-1) is open in P(ZΠ) furthermore
it is non-empty [consider pJ(x,z) = z-\-xnz~k+1']. Therefore the result follows if
P(Z") is connected; but this follows immediately, as codim(P(Zn)) is n in
P((C(2fe~1)π), and varieties in P m of dimension greater than m/2 are connected.

Remark. As vanishing to order n depends solely on the rc-jets, a similar statement
about density of jumps of type (1, - 1 ) can be made for germs of maps (C->Fk.

We saw in Corollary (2.4) that the dimension of the versal deformation space Vk

was determined simply by considering "linear" deformations E given by pE(x, z)
= χ Σ Pi?1- We now show that any such one parameter deformation can be given
such a linear form, provided that it is transversal to the cone C of jumping lines in
the versal deformation space.

Proposition 2.9. Let E,E be two one parameter deformations of Θ(k)®Θ( — k),
corresponding, as in (2.2) to Laurent polynomials (in z) p^(x,z) = xp1(z), pE(x,z)
= xPl(z) + x2p2(z)+ ..., with pλ(z) = Pί(z). Write Γέ(x) = xΓu Γ^x^xΓ,
+ x2Γ2 + ... and suppose that det(/i) — det (Γx) φ 0. Then E is isomorphic to E near
x = 0.

Proof The idea is to trivialise E, E over x Φ 0 by sections; using these, to identify E
and £ in a natural way; and then to check that this identification extends smoothly
to x = 0.

We first compute sections of E. Write a section of E, over z φ oo, with respect to
the trivialisation corresponding to (2.2), as (oφc, z), β(x, z))Γ. One can write

α(x, z) = Σ θίijx
izj = α t(z)x + α2(z)x2 + ...,

β(x9 z) = Σ βijxV = βo(z) + β,(z)x + ....

From the condition TE(x, z) (oφc, z)9β(x, z)) τ = (holom. in x, z " 1 ) , one deduces
that βt, oίi are polynomial in z, βt of degree ^ k, αf of degree ^ k — 1. One then
computes α, β order by order in x. For example, on the first formal neighbourhood
of x = 0 one obtains:

Γi' (βOii, . ;βo,k)T = (-βo,oPi,i> -βo,oPi,2, •••> -βo,oPi,k-u - < * i , o ) Γ (2.10)

ME (βou...JOk)
τ = (-a1Λ,...,-aUk_1)\ (2.11)
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where (ME)ij = plk_ί+i_p if i^j and zero if i<j. Similarly, the j t h order
neighbourhood yields

•Ί ' (βj-1,1) -->βj-l,k) —(~βj-l,θPl,l' ~βj-l,θPl,2> •••> ~ βj-l,θPl,k-1> ~~aj,ω

+/(lower order terms (in x) of β, α). (2.12)

ME(βj-l,W~,βj-l,k)T = (-<Xj,l,...,<Xj,k)

+ # (lower order terms (in x) of /?, α).

One notes that:
i) As Ji is invertible, fixing arbitrarily all au 0, for i ̂  1, j8if 0, for i ̂  0 then gives

the other terms ( α 0 0 is zero).
ii) Restriction to the j t h order neighbourhood determines αf(z) Vi ^j, and

There are therefore two unique sections s1 = (tx1,β1), s2 = (<x2,β2) such that

(x,0), α2(x,0)\ /x, 0^

One then has, for N(x, z):

0, 0 \ ίoc\(z), t

ίj(z), β2(z)J+X\β\(z), β\{z)j

(One checks that convergence poses no problem.) Now do the same with E,
obtaining s1,s2, JV: one can identify E with E over xΦO by identifying sι with s\
This, in terms of our trivialisations, is just JV~ 1N; therefore one wants N~ 1N to be
holomorphic at x = 0. Note now that the matrix TE(x, z) induces the transition
function 1 for A2E\ as det(JV(x,z)) represents a section of A2(E) in such a
trivialisation, det(N(x, z)) = det(N(x9 0)) = x. Using this, the fact that Pχ(z) = Pi(z)
and remark ii) above, (which implies that αi = θi, ^0 = ̂ 0) one computes that
N~iN = x~ίNadjN is indeed holomorphic, and that

Remark 2.15. By the same type of method, one can show that a one parameter
deformation £ of G(\)®G (—1), of multiplicity /c, can be given pE(x, z) = xk.

Remark. The above suggests the generalisation that the bundle corresponding to a
curve in Vk is determined by its intersection with the first formal neighbourhood C 1

of the cone C in Vk.

3. A Description of Instanton Moduli

A) Preliminary Remarks

The objects of study in this section will be semi-stable rank two bundles E over P 2

with c 1(£) = 0, c2(E) = n. Recall that a locally free sheaf F of rank r over P m is
{semijstable iff for all coherent subsheaves F' of ranks, 0 < s < r ,
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if rank E = 2,E can be tensored by a suitable Θ(J) so that cγ(E) = 0 or — 1 then, E is
stable iff H°(Ψm, E) = 0, and, if c^E) = 0, E is semi-stable iff tf°(Pm, £( -1)) = 0.

A natural operation on a bundle over P m is restriction to a line:

Theorem 3.1 (Grauert-Mulich [7]). A rank two bundle E, with cγ(E) = 0, over P m is
semi-stable iff there is a line over which it is trivial (Iff it is trivial when restricted to
the generic line).

The set of lines over which E is non-trivial is, as we have seen, a hypersurface; in
particular, one has:

Proposition 3.2 (Barth [4]). The set of lines over which a rank two semi-stable bundle
E over P 2 with c1(£) = 0, c2(E) = n is non-trivial is a curve J in Pf of degree n.

Barth also shows that if the jumping type of a line is (j, — j), and its multiplicity
is fe, then; ̂  k; alternatively, this can be deduced here from the results of Sect. 2. In
particular, if J is reduced, then the generic jump is of type (1, -1) .

Finally, the link with instantons is given by the following theorem of
Donaldson, which establishes an equivalence of framed moduli spaces; it is given
here for the case of SU(2).

Theorem 3.3 [6]. Let M(SU(2), ή) be the manifold of isomorphism classes of pairs
(SU(2) instanton bundle F on P 3 of charge n; SU(2) frame on F over a real line l^ in
Ψ3). Fix a P 2 in P 3 containing /«, let OM (SI(2, (C), ή) = Mn be the moduli space of
pairs (holomorphic rank 2 bundle E on P 2 with cγ(E) = 0, c2(E) = n, trivial over l^
trivialisation of E over l^). Then there is a natural isomorphism

M(SU(2), n) - ^ OM(S1(2, (C), n)

given simply by restriction.

The advantage of this isomorphism is that all considerations of reality
disappear from the description of instantons, leaving one only with the task of
classifying complex holomorphic objects.

B) The Moduli Space

i) Consider then a 2-bundle E on P 2 trivial over l^ pick once and for all a point p
of l^, and blow up P 2 at p to obtain P2, with a projection / : JP2->P2. The pencil of
lines through p then lifts to a ruling of P2; the lines in the ruling are parametrised
by their point of intersection with C = / ~ 1 ( p ) , the exceptional divisor. Lifting a
bundle E on P 2 , one obtains a bundle E on P2, trivial over C; conversely, starting
with such an E, one can invert the process (see, e.g. Atiyah [2]) and push down to
obtain a bundle E. As C = Ψί is one dimensional and simply connected, one can
"localise" the triviality of £ over C by making the equivalent statement that E has a
holomorphic connection along C. In a similar fashion, consider a choice of
trivialisation of E over l^; this is equivalent to a choice of trivialisation over p.
Lifting to E, this becomes a trivialisation along C, which simultaneously
determines the connection by being a basis of flat sections. Thus, one has:
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Proposition 3.4. There is an equivalence:

(bundles over P 2 , trivial P (bundles over P 2 , trivial over

over In with a fixed < Γ^uC with a fixed trivialisation

trivialisation there) f* ("framing") along C).

Here Γ̂  is the proper transform of l^. We shall call bundles on P 2 equipped
with a choice of trivialisation along C framed bundles.

The "local" nature of the trivialisation along C suggests that one should first
look at open sets U ζ C; the union of the lines of the ruling through U is an open set
V=Ψγ x U oϊP2. Let E,Ef be two framed bundles over P 2 ; suppose that they are
both trivial along the lines of the ruling in V. Then, there is a unique isomorphism
E^E' preserving the framing: one maps the fixed trivialisations along U to each
other, and, as the bundles are trivial on the lines of the ruling, this map extends
canonically to all of V.

For rank two bundles, (3.2) tells us that there are n jumping lines, counting
multiplicity, in the ruling ("in C"). Suppose that E, Ef have the same jumping lines
in C; then, if the canonical isomorphism defined away from the jumping lines were
to extend to all of P2, one would have an equivalence of framed bundles E ̂  E'. The
problem of moduli is then "localised" around the jumping lines; one must classify
equivalence classes of framed one parameter deformations of jumping lines. More
precisely, define a (rank two) one parameter jump to be a 2-bundle E over P x x U,
open in (C, 0 e U, with E trivial over Ψ1 x {x}, x =f= 0 and E not trivial over Ψ1 x {0}.
The multiplicity of such a jump was defined in Sect. 2. Now pick a point q e P x a
framing of the one parameter jump is the choice of a trivialisation of E along
{q} x U. Two framed jumps will be equivalent iff they are isomorphic by a map
sensing the framing of one into the other. Then:

Theorem 3.5. Let oo be the point in C corresponding to l^ in P 2 . There is a natural
map:

{ oo}) = C".

from Mn into the nth symmetric power of C\{oo}, whose fiber at a point Σ J
ι = l

p feC\{oo}, m^eN, Σ mt = n is the product
ί = l

where Qk is the space of equivalence classes of germs of framed one parameter jumps
of multiplicity k. All of the fibers of Π a r e of complex dimension 3n.

Proof. The map Π J u s t associates to E its divisor of jumping lines in the ruling. As
noted above, if two framed bundles E and E' are isomorphic at all their jumping
lines in C via the mapping derived from the framing, then they are isomorphic; the
framed jumps at pt determine the bundle.

Conversely, suppose given any germs Ei9 i = 1,..., r, of framed one parameter
jumps of multiplicity mb defined over open sets Ψγ x Ui9 p{ e Ut and which jump at
pιl taking in addition a trivial framed bundle Eo over

P2\{union of the jumping lines} ^ P x x Uo, U0 = C\{pί, ...,pr} ,
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one can glue together E{ and E} in a canonical way over Px x {U{n Uj) by using the
framing; one obtains a globally defined E. The fibers of Π are thus as described;
their equidimensionality will be proven once we have given a discription of the Qt.

ii) The Structure of Qx. As we have already remarked, a jump of multiplicity one
must be of type (1, — 1); referring to (2.2), (2.9) such a 2-bundle E can be given a
transition matrix, for the standard covering of Ψx x U, of the form:

z

0 z
(3.6)

where z is an affine coordinate on P l 5 x a coordinate on 17; thus all our multiplicity
one jumps are holomorphically equivalent (without framings). Now suppose that
the point q for the framing is (z = 0). The space of all possible framings is obtained
from the canonical one corresponding to the trivialisation over z φ oo implicit in
(3.6), by the action of the group Gl(2, (C)υ of holomorphic maps l/-»Gl(2, <C). Note
that each such map induces a bundle isomorphism over the non-jumping lines; the
space Q1 will be the quotient of Gl(2, (C)v by the subgroup Hv of those maps which
induce holomorphic isomorphisms even at the jump. One way to express the
property that g(x) belongs to Hυ is as follows: away from x = 0, one has sections of
E given over z Φ oo by (1, - z/x)τ, (0,1)Γ and over z φ 0 by (0, - 1)Γ, (x, l/z)Γ. Using
these, define a trivialisation by sections, away from x = 0. One can form the
diagram of transition matrices: (set W={z + 0}, F={zφoo})

holomorphic trivial-
isation (smooth
at x = 0)

"sections" trivial-
isation (singular
at χ = 0)

sections
trivialisation

holomorphic
trivialisation

F x C

Fx(C

9(x)

Vx(C

/I

(o

(ί

[o

s

o\
lj

°̂lj

\llx 0

β(χ) (3.7)

>Wx<£2

The condition that g(x) e Hv is then that A 1gΛ,B 1gB be holomorphic, non-
singular at x = 0. Writing g(x) = (gff/x)) ij =1,2, one finds that the conditions are:

a r e holomorphic. (3.8)

Let t be the 2 x 2 lower triangular complex matrices, dct be those with
constant diagonals (dίl=d22) Let T,D denote the corresponding groups. Then

2 3 . . . , and so one can truncate

± - Gl(2, <C) + x gl(2, xt (3.9)
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with the convention x2 = 0. One has the commuting diagram of fibrations

(1) Gl(2, <C) + xgl (2, <L)/T+xt G1(2,C)/D (2)

G1(2,(C)/Γ=P1(C) (3)

Consider first the fibering (1) over (3). In (3), the equivalence with P x is given by

mapping A ε G1(2,C) to the line [A ( 1 ) ) . Let Θ{-1) be the tautological bundle

on Ψv Then, A + xB in (1) defines an element of 0 ( 2 ) ^ H o m ( 0 ( - l ) , 0 ( l ) ) : to

υeΘ(-l)\(A(o\\ ,
\ W/

α e C ^ S l ( 2 , C ) M l M β_±

one associates 77^ BA 1(v), where 77^ is the projection (C2->(C2// Al ) ) ; t h e

fibration (l)->(3) is the bundle Θ(2) over P x .
Similarly, (2) over (3) can be written as

'+i o\ „) IWβ o
α ± 1 ,

j α ε (C > is just C2\{0} = (Θ( - 1))°, the tautological bundle minus

the zero section; from this, one can see that (2) over (3) is the "square" of ($( — 1))°,
i.e. (Θ( — 2))°. Using the diagram, one has:

Proposition 3.10. Qι is isomorphic to the fiber product Θ(2)®(Θ( — 2))° over Ψ1. As
Θ( — 2) = Γ * P l 5 Qi is homotopy equivalent to the unit tangent bundle of the sphere,
i.e. SO (3).

(iii) The Structure of Qt. One could proceed similarly and define the space Qt as a
quotient of the set of pairs (/, g) of germs of maps from (C, / into the versal
deformation space ( C 2 ^ 1 of Θ(ϊ)@Θ(-ί), g into G1(2,C), by the natural
equivalence relation. However, we lazily short-circuit this procedure, and note that
Qι is nicely embedded in Mt as 77" 1(0), ensuring for example that Qt is a separated
variety. Instead, we concentrate our attention on 1 β ί , the open subset of Qt

corresponding to jumps of type (1, —1). Then, considering remark (2.15), it is
sufficient to replace x by xι in (3.7), (3.8), and so obtain:

Gl(2,C) + xgl(2,C)+ ... +x 2 *- 1 gl(2,C)
1 D + xd+ ... +xι~1d + xιt+ ... +x 2 ι ~ 1 ί

γQι is a bundle over 1Q ( /_ 1)? with fiber (C3. Remember also that (2.8) told us that any
one parameter jump of multiplicity k was the limit of jumps of multiplicity fe, type
(1, — 1), using the standard trivialisations. The same obviously remains true when
one puts in the framings. Thus:

Proposition (3.11). xQt is a (C 3 ί~ 3 bundle over Qu and is homotopy equivalent to
SO(3); ±Qi is open and dense in Qt.
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The equidimensionality of the fibers Qmi x ... x Qmr of 77 then follows, as this
has dimension Σ 3mf = 3n.

Remarks. 1) One could try to use this procedure to construct the moduli space Rn of
all framed semi-stable 2-bundles E on P 2 with ^(Έ) = 0, c2(E) = n. The problem is
that there are E's which contain in their curves of jumping lines all the lines in our
ruling; however, the variety Vn of such bundles can be seen to be of codimension
^ 3 in Rn for n ̂  2, and of codimension 2 for n = 1, by considering the action of
PG1(3) on P 2

 a n d the fact [5] that the generic curve of jumping lines is smooth. In
fact, as all the lines in the ruling are jumps iff (n+ 1) fixed lines are, a naive
parameter count suggests codim ^ = (w +1). In any case, Rn\Vn fibers over
S"(P1) = PII.

2) One can see that the bundles in Mn which are not stable form a subvariety of
codimension (n — 1), as follows. E is stable iff H 0 ( P 2 , £) = 0 Any non-zero section
of E on P 2 induces a non-zero covariant constant section along C. At the jumping
lines, this section must lie in the O(k), k> 0, summand. This means that the positive
subbundles over the jumping lines must be "all lined up" at their intersection with
C with respect to the connection; there are thus (n— 1) constraints. One then
checks, using the explicit description of β l 5 that for the case of n distinct jumping
lines, these constraints are sufficient. Multiple jumps may impose less constraints,
but this is counterbalanced by the fact that they are themselves rarer.

One could use similar methods to determine which bundles on P 2 have
sections when twisted by Θ(j). One must, however, consider framings over the j t h

formal neighbourhood Cij) of C. E(j), o n c e lifted, has (/+1)0 + 2) independent
sections over C(;); one checks that each jumping line imposes one condition, and so
the £'s with H°(Ψ2,E(j)) non-zero have codimension at most
max(n-0"+l)(/ + 2)+l,0).

3) One could use the method of (3.7), (3.8) to compute the different strata of Q;
corresponding to jumps of type (j, — j), j^ί. This gets quite complicated rather
quickly, though.

Let A be the discriminental variety in S"(C\(oo)) = (Cπ; over U simply connected
in C" — A, Mn is just a product U x (βi)π; as branching around A interchanges the
jumping lines, branching around Π~1(A) interchanges the Q/s. Over A, the fiber
becomes progressively more complicated as one considers jumps of higher
multiplicity.

Finally, note that along the fibers of the map Mn^Mn (i.e., the same instanton
with all its frames) the jumps remain the same; Mn maps to CD". Furthermore, the
fibers of g are given by the diagonal action of SU(2) on the Qm's of (3.5); one
changes the frame simultaneously at all the jumps. Summing up:

Theorem (3.5a). There is a map

ρ:MB-*S»(C\(oo)) = <C",

r

whose fiber at a point Σ miPb PieC\(°°)> ι s ;

QmχQm2χ...χQJSυ(2),
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where the quotient is taken with respect to the diagonal action on the Qm's. All the
fibers of ρ are of real dimension 6n — 3.

C) The Fundamental Group

We have obtained a map Λ?Π->C"^S"((C). Let A be the discriminental variety in
(CM; if U is simply connected and does not intersect A, then Π ~ ι(U) = U x (QxT- Let
Ao be the smooth open dense sub variety of A consisting of those n-tuples in Sn((C)
having only two elements equal: the fibers of Π over Ao are Q2 x (β i ) ( " " 2 ) , and
have an open dense subvariety XQ2 x (βi) ( "~ 2 ) Thus a Qx x Qi "degenerates" into
a 162^ m o r e precisely, let U be a disk transversal to Ao. Choosing appropriate
coordinates, aeU corresponds to a polynomial of the form
(x2 - a) (x - px)... (x - pn - 2 ) , fa distinct, φ 0), whose roots are the rc-tuple in 5"((C).
As in (3.8), (3.9), Π'1(a) is then the "variable" quotient (neglecting the extra Q1

factors):

f o ) } . (3.12)

JJ^^α) is then Qί x Qi for αφO, by evaluation at ±]/α, and is XQ2 for α = 0.
We thus have a good description of M*, the space of J^undles in

77" 1 (((CV) u ^o) w i t n o n l y jumps of type (1, -1) in the ruling. Mn\M^ is^of
complex codimension 2 (real codimension 4) in Mn; therefore, π1(M^) = π 1(Mn),
and π2(Mn

1) = π2(MΠ). We use this to prove:

Theorem (3.13). π 1 ( M B ) = Z 2 .

Proo/ First, note that loops L and their homotopies can be supposed differen-
t i a t e ; transversality arguments then imply that L may be taken so that
LnΠ~1(Δo) = 0, and homotopies of L may chosen to intersect Π~ 1{A0) in discrete
points.

Suppose then that one has a loop L in M^ projecting to <Ln\A. Over <Ln\A, M\ is
locally just a product, and so there one can lift a homotopy in <C\Δ to M*.
Furthermore, in a neighbourhood of Δo, using (3.12), a segment / of L can be lifted
to a map / x £/->Gl(2,(C) and so be "pushed" in a natural way through Π~1(A0):

(3.14)
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One can therefore lift a contraction of Π(L) to M* L can thus be pushed onto a
fiber (Qx)\ π t(Mn) is then a quotient of π1((Q1)") = (Z2γ and H1(Mn,Z) = πί(Mn).
Now remark that branching around A interchanges roots, and so branching
around Π~\Δ) interchanges the Q^s. The loop (1,0, ...,0) in (Z2)

n^π1((QJl) is
therefore homotopic in Mn to the loop (0,0, ...,0,1,0, ...,0). Furthermore,
(1,0,..., 0) is not homotopic to zero, as any homotopy away from Π~ι(A0) cannot
contract it, and pushing it through Π~1(A0) just sends it to a (0,0,..., 1,0, ...,0).
Therefore πx(Mn) = Έ2.

Theorem 3.15. Let Mn be the moduli space of SU(2) ίnstantons of charge n. Then
πί(Mn) = 0 if n is odd, Έ2 if n is even.

Proof The only automorphisms of instanton bundles over P 3 are homotheties
([13], p. 172), and so Mn fibers over Mn with fiber SU(2)/+1 = SO(3). The natural
SU(2) action on Mn is given by the simultaneous standard left action of SU(2)
C Gl(2, <C) on the Q^ of (3.5). In particular, over Π~ \<Ln\Δ\ the fiber of Mn-*Mn is

just the orbit of the diagonal left action of SU(2) on n copies of (3.9). π1(SO(3)) thus
maps to the diagonal Έ2 i n (^2)" = πi((δi)M) a n d so> from the proof of (3.13), onto
zero if n is even, πx(Mn) if n is odd, once one maps to π^M„). The result then follows
from the exact homotopy sequence

Remarks. 1) As π2(Q1) = π2(1Q2) = 0 it is natural to conjecture, similarily to (3.13),
that π2(MM) = 0. This then implies that π2(MM) = 0 if n is odd, Έ2 if n is even.

2) (3.15) concurs with what is known for n= 1,2. Mί is the 5-ball (Atiyah [1])
and M2 is not simply connected (Hartshorne [11]).

3) Le Potier [14] gives a computation of πx of the moduli space of stable
2-bundles over P 2 .

D) Link With Monads

We now show how our geometric picture links up with the more algebraic one of
monads. For simplicity, we will treat only the case of n distinct jumping lines along
the divisor C; our aim is to give ourselves the geometric information correspond-
ing to our picture, and to extract from it a monad.

First, recall that a semi-stable rank 2 bundle E with c1(E) = 0, c2(E) = n can be
represented by a monad [13, 6]

where, if ρ = (X9 Y, W) in homogeneous coordinates, Hp = HxX + HyY+HwW,
Kp = KxX + KyY+KwW, and one has, for all p, KpHp = 0. E, at p, is given by
Ep = kerKp/lmHp. The bundle is trivial along a line pγp2 iff KpiHP2 = — KP2HP1 is
an isomorphism; H°(jp\pl, £)==kerKp inkerKp 2; evaluation of a section at p2 is
just the natural map to ker(Kp2)/Im(i/P2) [13, 6].

Suppose that the bundle is trivial along w = 0; then one can choose bases so
that, decomposing the if's into blocks of n x n, nxn, 2xn, and the K's into
blocks of n x n, nxn, n x 2,

/ω\ /o\ /

Hx=[θ\, Hy=\u\, Hw=ia2]

K = ( - I d , 0 , 0 ) , Kw = (
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with

one has an action of Gl(n, (C) on these, preserving E and a natural framing of E
along W=0:

1, a-*ap~ι, b-*pb, peGl(n, (C).

The line W=0 will correspond to our l^ used previously, and we choose our
point on /^ to be (0,1,0). We are therefore interested in the pencil of lines through
(0,1,0); if one blows up (0,1,0) to obtain C, the coordinates used previously are
given here by x = X/W, z = W/Y; C is (z = 0) and the lines through C are (x = const).
Thus, in accordance with our description of the moduli space, our geometric data
will be the choice of n different jumping lines x = xί5 and, in a neighbourhood of
each xi9 a map into G1(2,(C), #j(x) = g* + (x — Xi)#* + .... It is from these that we
must obtain a monad.

The line (x = x0) i s a l s o ΊhP~2> Pi =(0,1,0), p 2 = (x0,0,1); thus KpιHP2

= (oίί + x0 Id). This is singular if x 0 = xi9 and so, using our Gl(w, (C) freedom, one
can set:

d ( , . . . , x J (3.16)

one still has a (C*)n action fixing this form. From ([α 1 ? α 2

-XjXbάϊij. (3.17)

Suppose that E is lifted to P2, and that the result is again called E. We
investigate maps £| (JC>O)->£| (X>Z). Set (x,z) = q; our first map is the "connection"
map:

FE\ E\

defined over the non-jumping lines (x φ xt). As

F is just:

w->(0, -{a1+x)~1bw,w), considered modff ( Λ f Z-i ί l )(C") = (α2 + z~1) C11.

This map is singular at the jumping lines x = xf however, there is also the map
Fτ over z φ oo induced by any homomorphic trivialisation T of E over z φ oo: one
associates to veE\(Xt0) the weE\(x>z) with the same coordinates. This is non-
singular at x = xb and we look at it near x = xt. In the terminology of (3.7), the
passage in coordinates from the "connection," (or "sections") trivialisation to a
holomorphic trivialisation over z φ oo is given by A~1(x,z)gi(x)~ί. Therefore,

Fτ = glx)A(x, z)FA ~ \x, 0)gr \χ).

As A(x, 0) = Id, setting v = g~1(x)w, one is considering, for the image of Fτ,

(0, - (α i + x)- 'bg^Aix, z)υ, glx)A(x, z)υ)τ, (3.19)

modIm(H ( ; c z -i 1 }). At x = xb (3.19) has a polar part, which must lie in
Im(/ί(JC z-1 1 }), as Fτ is continuous. One then checks that this happens, if and only
if, up to the remaining ((C*)w action,

which, along with (3.16), and (3.17), gives us our monad.
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