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An Example of Absence of Turbulence
for any Reynolds Number
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Abstract. We consider a viscous incompressible fluid moving in a two-
dimensional flat torus. We show a particular external force f0 for which there is
a globally attractive stationary state for any Reynolds number R. Moreover,
for any fixed R, this stability property holds also for a neighbourhood of/0.

We consider a viscous incompressible fluid moving in a two-dimensional flat torus.
The Navier-Stokes equations governing the motion are

γt + (u V)u = - Vp + / + vΔu, M(0) = u0, (1)

^ + ̂ = 0 , (2)
dx dy

$udx = 0, J fdx = 0, (3)

T2 = [0,2π] x [0,2π], X Ξ ( X , y ) = XQl + yc2 e T 2 ,

where u(x,i) is the velocity, p(x9ί)eR the pressure, v>0 the viscosity, f(x) the
external force. All functions involved are periodic in x, y of period 2π.

In our problem we fix a time scale and we assume as a reasonable Reynolds
number

Λ=sup|/(x)|/v.
xeT2 ~

In general the behavior of the solutions depends on R: if R is small there exists a
stationary state stable and attractive. When R increases this state loses its stability
and, for large R, the motion becomes chaotic. This fact is related with the
turbulence. (On this subject there is a lot of literature: see for instance [1].)

In this paper we want to show particular forces /0(x) for which the stationary
state remains attractive for every Reynolds number R. These forces are not
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completely exceptional in the sense that they have a neighbourhood (depending on
R) for which this stability property holds.

We assume / smooth

f=fo+Λ, (4)
where

/ 0 = Cj[v(Aj cosy + A2 siny) + {A3 cosx + A4 sinx) ( - Aγ sin3; + A2 cosy)]

+ c2[v(^3 cosx + v44 sinx) + {At cosy + A2 siny) (—A3 sinx + A4 cosx)] ,

AltA2,A3,A*eK (5)

We define

, (6)

r1 = hf1\
2/v2dx, (7)

r2=\F\ly1dx, (8)

where

Fi = 8JltX-dyfUx. (9)

The result of this paper is stated in the following theorem:

Theorem. For any Ro, there exist ε1(JRo)>0, ε2(R0)>0 such that for any r 1 < ε 1 ,
r2 < s2 there is a stable stationary state which attracts exponentially each solution.

More precisely we put

(10)

where ΰ is the stationary state.
Then

E(t) = \ \ v v dx —^—• 0 exponentially. (11)

Proof. For sake of simplicity we first give the proof for fγ = 0. Then we consider the
general case.

When the external force reduces to f0 the stationary state is

ΰ = uo = c1(A1 cosy + Λ2 siny) + c2(A3 cosx + AA sinx),
(12)

p = const.

We introduce the vorticity

ω = dxuy-dyux. (13)

Equation (1) becomes

^+(uV)ω = F + vAω9 (14)
at
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where

F = dJy-dyfx. (15)

For the stationary state ΰ,

ώ = ωo= — A3 sinx + A4cosx + Aλ sinj/ — A2cosy (16)

We define

N=±$ δ2dx, (17)

T2

where

δ = ω-ώ. (18)

We study the variation in time of E and N. By a direct computation we have

d r . Γ ί γ 7 o j

- - ^vxvy isiny 2cosy 3sinx 4cosx x v^ _y x9^
dN c , A . . Λ . Λ w f / I y , , 2 ,
— = —J o v ( ~ ^ i sin3; + A2cosy — A3 smx + A4cosx)dx — v J (Kό) ax.
dt 72 y τ2

Hence

^-(N-E)= -v j [(P(S)2-(Fί;)2]ώc. (21)

We study the right-hand side of (21) and we show that

ί HVδ)2-{Vy)2~\dx^A{N-E). (22)
T2

To prove this inequality, we develop vx9 vy in Fourier series

00 00 00 00

v= Σ Σ amncosrnxcosny+ Σ Σ bmncosmxsinny
m = 0 « = 0 m = 0 n=ί

00 00 00 00

+ Σ Σ £wnsinmxcosrcy+ Σ Σ dmnsmmxsinny. (23)
m = l n = 0 m = l n = l

Condition (3) and Eq. (2) give

_ * ' " "'m"' ^m" "'""' (24)
'M^x, mn Jy, mn ? " ^ x , m« fϊβ^? m n .

Hence

oo oo

Σ K2mo + c2mo) + π 2 Σ « o « + *ί.o«) (25)
m = 1 « = 1
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In a similar way we compute the other term in (22),

π2 oo oo

N= — Σ Σ \(mav mn + ndΎ m n ) 2

r\ i—i Λ-^ L\ yttnn • x,τnn/
I m=ί n=l

+ ( - mbyt mn + ncx> m n ) 2 + (mcyt mn - nbx, m n ) 2

00

m = l y ' m y ' m

00

+ π 2 Σ n2(al0n + bl0n)
2, (26)

ί (Vv)2dx = 2N, (27)
T 2

00 00

. . . ix = π2 Σ Σ(m2 + n2){(may,
T2 m=ί n=l

f mnf + (mcyi mn - nbXi m n ) 2

(28)
J

Hence, using (2), we have

jτ-2 oo oo

ί ί(Vδ)2-{YvfΛάx = - Σ Σ (™2 + n2-1)
Γ 2 2 m = l n = l

2 1
V x,mn ι̂  Λ, wiM '^ Λ,/WW ^^ x,tnnJ I

+ 2π2 Σ ί " V - l ) « m o + c L o ) + Σ n V - l ) « o » + ̂ 2,ofl)|- (29)
| _ m = l M = 1

and

π 2 oo oo ( Γ / n\2 Ί

- £ = ^ Γ Σ Σ { i m + - - 1 (α2,mn + fc2

^ m=l n = l (.L \ »ί/ J

^ J - 1 \(aimn + bimn + C2

Xιmn

ϊ Σ (m2-l)(a2,mO
[_m=l

+ π2ϊ Σ (m2-l)(a2,mO + clmO)+ £ (»2-l)(α2,on + ̂ ,oΠ)] (30)

A comparison between (29) and (30) gives inequality (22).
We put (22) in (21), we observe that N-E^O, and we obtain

(NE)^4v(NE). (31)
at
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A second inequality can be obtained by (19) controlling its right-hand side. We
have

f {Vυfdx^lE. (32)
T2

We write

vx = aXt01cosy + bXt01smy + φ(x9y),

Vy = ay,10 C0SX + Cy,10 ̂ n X + ψ(*> jθ >

where

J (p2dx^2(N-E), (34)
T2
J

T2

j ψ2dx^2(N-E). (35)
τ2

Ψ2dxY'2(S v2

xdxV>2 + (S φ2dxY'2(S v2dxY'2]

J \2 J \ 2 ) τ2 ) \

j
τ2

Hence

ESRo\($ Ψ2dxY(S vxdxV + (S

- E)1/2E1/2 -2vE. (36)

Differential inequality (31) and (36) are linear in (N — E)ί/2 and £ 1 / 2 , can be
easily solved, and give the statement of the theorem.

General Case. First we discuss the stationary state. We prove that

sup\u\ = H1<ao, (37)
xeT2

j \ύ\2dx = H2<oo, (38)
T2

sup |ώ| = sup \dxΰy - dyiix\ =H3<oo . (39)
xeT2 xeT2

In fact

ί ώ [ - ( g V)ώ + F + vAώ]dx = 0, (40)
τ2

hence

v ί {Vωfdx = J ώFdx^c1H3Γj F 2 d x \ ί / 2 . (41)
r 2 τ 2 |_τ2 J

By the Cauchy- Schwartz inequality

j {Vώfdx ^c2ί\\ Vώ\dx\2 ^ c3H
2 . (42)

T2 \j2 J

So

^ j F / v r f x V . (43)
2 )

From now on we indicate with ct a numerical constant.
Equation (37) is a consequence of (43) and (27). Equation (38) can be proved in a

similar way using (1).
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Now we put

ΰ = uo + uί; u^Uo + u, (44)

where u0 is defined in (12).

We consider the Fourier development of uv u0 is given by the first terms of the
form

U0 = g10cosx + g01cosy + b01siny + cί0smx,
(45)

ivwo = 0,

and u contains all remaining terms.
We note that

sup \diύ0j\ = G<oo , (46)
xeT2,i,j

as we can see by (38) and the explicit form of u0.
Moreover

sup \u\ = Dl9 (47)

sup \ή\ = sup \dxύy - dyύx\ = D2, (48)
xeT2 xeT2

and Dί9D2 go to zero when rί,r2 vanish.
We prove (48).

Hence

ί uί'l-(u V)ΰ+f+vAu]dx = 0. (49)
τ 2

v ί (VUl)
2dx= J Ul Άdx- ί lu^iu, V)uo]dx. (50)

T2 T2 ~ T2

For the vorticity we obtain

ί *?[~~(w V)ώ + F + vAω]dx = 0, (51)

T2

where

η = dxuly-dyuίx. (52)

Hence

v J (Vη)2dx = - J η(uί F)ω0 rfx + J r\Fι dx. (53)

γ2 j 2 J 2

We subtract (50) from (53):

v ί ί(Vη)2-(VUl)
2ldx= J [i/Fi-Ui Λ

Γ2 Γ2

hence

f ( Γ ^ x ^ c ^ Λ o + G + ̂ ί r P + rl/2), (55)
r 2
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and then

105

(56)

So (48) is proved. Equation (47) is a consequence of (56) and (27).
We consider now the non equilibrium problem. By a direct computation

dE
— = - J υ (v V)udx-v ί (Vy)2dx,
at τ2 τ2

dN
-T- = ~ ί δ(v - V)ω dx - v J {Vδfdx.
dt τ2 τ2

(57)

(58)

Hence

^(N-E) = - J [δfe F
dt τ2 j

τ2

= j 2 ίή(v • V)δ - ύx(vxdxυx + υydyvx)

-uy(vxdxvy + vydyvy)-]dx -v ί2 l(Vδ)2 -{Vυ)2-]dx.

Using (47), (48), (27), and (22), we have

^ + c9D1E
1/2Nll2-4(v-c8D2)(N-E)

(59)

dt

ί
τ2

x]J
(Vδ)2dx + 2c8D2N

Sclo(D1+D2)N-4(v-c8D2)(N-E).

We divide υ as in (44),

(60)

ί δ(v V) (ω0
Γ 2

ί vxvyτ2

ί u (S F) (w0 + wo)dx
2

Hence
dN

-v J (F
r 2

(61)

(62)

When DUD2 are small enough differential inequalities, (60) and (62) imply
ΛΓ->0 and (N — E)^0 exponentially. For a proof we note that the more difficult
case is realized when the equality is reached. We combine the two equations so
obtained,

- 2(v - c8D2) [N + 2α(iV - (63)
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We can choose α > 0 such that 3 y > 0 ,

at
for

v > c8D2 (64)

For Dί9D2 small enough the theorem is proved. D

In conclusion, we have proved that this model has no turbulence for a

particular force / 0 . Moreover, for any fixed R, the stability property remains valid

for a neighborhood of f0. Of course this does not exclude that for fixed / Φ / o

and large R chaotic motion may appear. For instance, for truncated Navier-Stokes

equation numerical studies proved that our model with a convenient force,

although simple and without boundary, can produce a rich phenomenology [2].

Remark. The same result of Theorem 1 can be obtained in an asymmetric flat torus

[0,L] x [0,2π] when L^2π and f=cxv (Ax cosy + A2 siny) Al9A2s'R. The proof

is similar to the previous one. Note that with our technique the condition L ̂  2π is

essential for the nonnegative defmiteness of N — E.
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Note added in proof. For L < 2π it is possible to show a set of attractive stationary states of size
and radius of attraction independent of R. The proof will be given elsewhere.




