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Abstract. Fermion annihilation and creation processes are explicitly realised
in Boson Fock space as functions of the corresponding Boson processes and
second quantisations of reflections. Conversely, Boson annihilation and
creation processes can be constructed from the Fermion processes. The
existence of unitary stochastic evolutions driven by Fermion and gauge noise is
thereby reduced to an equivalent Boson problem, which is then solved.

1. Introduction

In [3] we constructed, out of the Boson field commutation relations, a quantum
stochastic calculus including an Ito product formula. Existence of solutions of a
corresponding class of quantum stochastic differential equations was proved,
leading to unitary operator valued processes which, together with their generalisa-
tions [4], provide a natural method of dilating quantum dynamical semigroups.
In its simplest form the Boson stochastic calculus uses as integrators the Boson
annihilation and creation operators corresponding to the indicator function χ[Ot]

in L2(R+), together with the differential second quantisation of the operator of
multiplication by χ[0>ί], the latter being called the gauge process.

In [1] a partial analog of this theory was given, in which Fermion second
quantisation replaces Boson. The Fermion theory contains that of the Ito-Clifford
integral [2] just as the Boson contains that of classical Brownian motion [3].
However no Fermion analog of the gauge process was used, and the unitary
processes constructed were artificially restricted to being even with respect to the
natural Z2-grading of Fermion Fock space and an assumed Z2-grading of the
initial space. While this work was being prepared we received a preprint [8] which
remedies these deficiencies.

* This work was carried out while both authors were participating in the Symposium on
Stochastic Differential Equations at the University of Warwick. The first author acknowledges
conversations with R. F. Streater during the same Symposium
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The primary purpose of our present work is to show that Fermion annihilation
and creation processes can be realised in Boson Fock space by means of a simple
stochastic integral prescription [see (3.5)], in such a way that the filtrations
generated by the Boson annihilation and creation processes, and by the
corresponding Fermion processes, coincide. In particular a natural identification
is obtained between Boson and Fermion Fock spaces over L2(R+). The gauge
process for Fermions is seen to be identical to that for Bosons. In this connection
we note the recent preprint [6], in which operators bk, k = 1,..., n are constructed
in Fermion Fock space for finitely many degrees of freedom which satisfy an
approximate form of Boson commutation relations. The formula

relating the Fermion operators fk to these approximate Boson operators may be
regarded as a discrete form of our Eq. (3.5). P. A. Meyer informs us that he has a
realisation of Fermion processes in L2(w), where w is Wiener measure [7].

Since completing this work we learned of the works [9] in which Fermion fields
are constructed in Boson Fock space. The stochastic calculus gives a simple
method of effecting such constructions [10]. We are grateful to R. F.Streater for
drawing our attention to this work, and to P. Garbaczewski for correspondence
and the preprint [10].

The construction of Fermionic unitary processes may now be undertaken
profitably from this point of view. In particular the defining stochastic differential
equation reduces to a corresponding Boson equation, for which techniques based
on coherent states are available avoiding the lengthy inductive methods based on
finite-particle Fermion states of [1] (and [8]). The Boson equation requires an
extension of the method of [3], in so far as an operator process which does not lie
entirely in the initial space enters into the driving coefficients (as in [5]). The proof
of unitarity is based on reduction to a system of four coupled ordinary differential
equations, instead of the single equation of [3]. The resulting Fermion unitary
processes are no longer restricted to be even, and incorporate the gauge process as
a driving noise term.

We use the following notational conventions. Hubert space inner products,
denoted by < , > are linear on the right. Operators Γand Tf are said to be mutually
adjoint if (T^φ\, φ2} = i.Φu Tφ2} for arbitrary φι in the domain of T f and φ2 in the

b

domain of T. Sc denotes the complement of a set S. J / means the Lebesgue integral
a

off over [a, fr].F1...Fj...Fn m e a n s F1...Fj- ίFj+ 1...Fn.A s t a t e m e n t involv ing
the symbol # represents the two statements obtained respectively by deleting it
and replacing it by the symbol f. We denote by on the group of permutations of
{1, ...,n}, and by σ(π) the sign of an element πeon. We denote by per C the

n

permanent Σ Π Q«<o °f the n x n matrix C.
π e < j n ΐ = l

2. Review of Boson Stochastic Calculus

Let Jf denote the Boson Fock space over the Hubert space /f = L2(R+). Jf is
characterised as a Hubert space equipped with a total family of exponential vectors
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φ(/), fed satisfying

<ψ(fl V>(flf)> = exp</,ff>, f,geΛ (2.1)

to within unitary equivalence exchanging the exponential vectors. The vacuum is
φ o = φ(0); the n-particle subspace J-fn of Jf is the closed span of the vectors

We denote by $ the dense span of the exponential vectors. The Boson creation and
annihilation operators corresponding to fed, the second quantisation of the unitary
operator U on d, and the differential second quantisation of the self-adjoint
operator T on A are, respectively, the mutually adjoint operators defined on δ by

Kf) Ψ(g) = </, g> φ(g), b\f) xp(g) =j~£ψ(g + β/)| ε = 0, (2.2)

the unitary operator whose action on δ is

Γ(U)ψ(g) = ψ(Ug), (2.3)

and the essentially self-adjoint operator on δ,

dΓ(T)ψ(g)= -i^xp(eχp(iεT)g)\ε=0. (2.4)

The closures of these operators act in the usual way in the J^n.
For each Borel subset Sg]R+ we let Ps denote the operator on A of

multiplication by the indicator function χs of S, by As the range of the projector Ps

and by fs the image of fed under Ps. Corresponding to the natural projective
decomposition d = ds@dsc, we write

Jf = Jfs®jfsc9 ψ(J) = ψ(fs)®ψ(fs<)> s = £s®$s*,

where ® denotes the algebraic tensor product.
Let there be given, once and for all, an initial Hubert space Jf °, and set

Following [4] rather than [1] we define an adapted process as a family
E = (£(0: t e R + ) of operators in # such that

a) for each £ E ] R + , E(i) is the algebraic ampliation to δ[0>t]®S>

(tfO0) of an
operator in ^0,n

 w ^ ^ domain δίOtt];
b) there is a family E f = (Ef(i): t e R + ) also satisfying a) such that each E\t) is

adjoint to E(t).
The Boson annihilation and creation processes and the gauge process are the

mutually adjoint processes B, B* given by

D {1) — 1<£)O U[θ t])

and the symmetric process A given by

= I®dΓ(P[0,t])
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respectively. As in [4] we may define the stochastic integral

first of simple (piecewise constant) processes, in such a way that

M\t) = ί (E\ dΛ + El dB* + E\dB + E\ ds), (2.5)
o

and, for arbitrary u,ve jf?°, f,geA,

<u®ψ(f%M(ήv®ψ(g)) = ί <κ®ψ(/),(JgE1

o
(2.6)

while, if also

M '(ί) = j (E'ι dΛ + E'2 dBi + E'3 dB + E'4 ds),
o

(M(t)u®ψ(f),M'(t)v®ψ(g))

= ί KMu®ψ(f), (JgEΊ +fE'2 + gE'3 + E'4)v®ψ(g))
o

), M'v®ψ(g)}

+ ζfElU®ψ(f), gE'1v®ψ(g)} + (E1u®ψ(f), fE2v®ψ(g))

(2.7)

Setting M'=M, g=f, v = u in (2.7), differentiating and making several uses of
the inequality 2Re<^ 1,^ 2>^ | | ^ 1 | | 2 + \\φ2\\2, we obtain

(2.8)

Using the integrating factor exp< - ί — 3 j |/ | 2> this gives

+ 3\\E2(s)u®ψ(f)\\2 + \\E3(s)u®ψ(f)\\2

+ \\E4(S)u®ψ(f)\\22ds. (2.9)
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From this inequality it is clear, by arguments similar to those of [4], that stochastic
integration extends naturally to processes E1,E2,E3,E4 which, as well as being
weakly measurable, satisfy the local square integrability conditions

S\ns)\2\\E1(s)u®φ(J)\\2ds«x), ]\\Ej(s)u®ψ(f)\\2<π, j = 2,3,4
0 ° (2.10)

for arbitrary t e R + , u e Jf°, fed,in such a way that (2.5),..., (2.9) remain valid for
the extended integral.

For stochastic differentials

dMJ=E{dΛ + EJ

2dBi+E{dB + Eldt, j=l,2

for which the coefficients E{ and the Mj are bounded operator valued processes
satisfying, for all ί>0,

sup max{||M^)i|,| |£ί(5)||?j=l,2,fe=l,2,3,4}<oo,

we obtain from (2.6) and (2.7) the Ito product formula

d(M
1
M
2
) = dM

1
 M

2
 + M

X
 dM

2
 + dM

ί
 dM

2
, (2.11)

where the right-hand side of (2.11) is evaluated by the rule that the basic dif-
ferentials dΛ, dA\ dA, and dt commute with adapted processes, and the
correction term dMt dM2 is evaluated by combining this with extension by
bilinearity of the multiplication table

(2.12)

dΛ

dB^

dB

dt

dΛ

dΛ

0

dB

0

dBr

dB*

0

dt

0

dB

0

0

0

0

dt

0

0

0

0

3. Fermion Fields in Boson Fock Space

In this section we construct Fermion field operators as Boson stochastic integrals
using the Ito formula (2.11). For simplicity we take the initial space to be C so that

We define the reflection process J = J**=(J(t): ί e R + ) by

J(0 = Γ ( - P [ ( M ] + P( ί jOθ)), ί e R + . (3.1)

Clearly J is a self-adjoint, unitary adapted process, and J2 = L

Lemma 3.1. / satisfies

a) J(s)J(ή = J(t)J(s) (s,teR+), (3.2)

b) J(t)ψo = ψo ( ίeR + ), (3.3)

c) dJ=-2JdΛ, J(0) = J. (3.4)
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Proof, a) and b) are immediate consequences of the definition. For c) we note first
t

that since it is unitary, J satisfies the first of conditions (2.10) so that 2 J J dΛ is well
o

defined. From (2.6), for arbitrary t e R + , f,gei,

, ψ(g)) - 2} fg(ψ(f), Jψ(g)}

, ψ(g)> - 2 ί 7(s) g(s) <ψ(/), ψ( - 0[O>5]+g(s,
0

φ(/),()^)> ϋ

Let ^eLfoc(R+). We define the Fermion annihilation and creation processes
of strength φ by

F,(0=i$s^(s)<iB(s), ^(ί)=ί^)J(s)^(5); (3.5)
0 0

since J is a self-adjoint unitary operator φJ satisfies the local square integrability
condition (2.10) and these are well defined mutually adjoint processes.

Lemma 3.2. For arbitrary ίe]R+, ^€1^(111+),

O. (3.6)

Proof. Since S is invariant under J(t) both terms in (3.6) are operators on S. For
arbitrary f,gei, from (2.6),

, (J(t) Fφ(t) + Fφ(t) J(t)) ψ(g)} = < J(ί) ψ(f), Fφ(t) ψ(g))

+ <ψ(f),Fφ(t)J(t)ψ(g)}

) J(s) φ( - g[0,t

o

by (3.2). The second equation of (3.6) is proved similarly. D

Theorem 3.3. The operators Fφ(t) are bounded and satisfy the canonical anti-
commutation relations

{Fφι(t),Fφ2(t)} = 0, (3.7)

{FΦι(t),Fl(t)}=\φiΦ2- (3-8)
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Proof. From (3.5) and the differentiated form of (2.7), for f,ge4 and φ e I2

0C(]R+),

jt {<n(0 V(Λ H® V(?)> + <FΦ(t) Ψ(f), Fφ

= (φ(t)gjtjj(t) Ψ(f), Fl(t) ψ(g)) + <Fj(ί) ψ(f), φ(t)W)J(t) ψ(g)>

+ (φ(t) f(t) J(t) ψ(f), Fφ(t) ψ(g)) + (Fφ(t) ψ(f), ftt) g(t) J(t) ψ(g))

+ (φ(ϊ)J(t)ψ(f),φ(Γ)J(t)ψ(9)y

= \Φ(t)\2<ψ(f)Mg)>,

using (3.6). Thus, since F(0) = 0,

j l φ , Fφ(t) Ψ(g)} = J |^|2 <φ(/), ψ(g)} .

From this it is clear that the operators F$(t) are bounded and satisfy

and

{Fφ(tlFl(t)}=Uφ\2.

Polarising we obtain (3.8). Now we can use Ito's formula to write

by Lemma 3.2. Since F (̂0) = 0 we get Fφ = 0. Polarising gives (3.7). D

4. Identification of Boson and Fermion Fock Space

We denote by F, i7 1 the processes Fφ, F\ when φ = ί. Then

dF* =JdB*, dB* =JdF* . (4.1)

Stochastic integrals against dF* are converted into integrals against dB* using
(4.1). For ^eL2

o c(R+) and ίe!R + let

*t) = b*(φ[0J. (4.2)

Products of the operators Fφ(t) are meaningful since these are bounded operators,
as are products of the Bφ(t) since £ is invariant under these. We define products of
the Bl(t) by adjunction.

Let ί e R + . We denote by A(n, t) the set

Lemma 4.1. Let φl9 ...,φneIi2

oc(lR+). Then

Fl(t)... Fl(t)ψ0 = ί det(^)) dB\st)... dB\sn)ψ0, (4.3)
A(n,t)

BUt).. Bln(t)φΌ = ί p e r ( ^ ) ) dF\Sl)... dF%sn)Ψo. (4.4)
A(n,t)
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Proof. We prove (4.3) by induction on n, the case n=\ being a consequence of (4.1)
and (3.3). Generally, by Ito's formula and Lemma 3.2, we have

and hence, making the inductive assumption that (4.3) holds, for fed,

<ψ(f),Fl(t)...Fl+ι(t)Ψo>

= Uf)J "Σ ( - l)"-^/s,+ 1)Fj1... i%... Fln+ι(sn+ί)dB\sn+1)ψ0)
\ Oj=l /

\ j=i I

J det[^(s,)] u = l f . . .,^
+l,f) /

as is seen by expanding the determinant by its last column. Thus (4.3) holds for all
n. As for (4.4), for fed we have, by (4.2) and (2.2)

(Bφn{t)... Bφl(t)ψ(f)9ψo>=ΠίfΦj
j=io ψj

while on the other hand, using (4.3) and (3.3) repeatedly

' Δ(n,t) l I

= (W),ί ί Σ ΠίW
\ 0 A(n-ί,sn) πe<jnj=l

= ί (ψ(f),f(sjφm(sn) J Σ X ΨnφyopujL- Λ o i ; ... ui Λ 3 B _ i ;
0 \ Δ(n-l,sn) πeon j=ϊ

πeonΔ(n,t) j=l

= Jj)jΦr ( 4 6 )
Comparing (4.5) and (4.6) we see that ψ0 is in the domain of the adjoint of
Bφn(t) ...Bφί(t), and that the action of the adjoint on xp0 is given by (4.4). D

Since it is cyclic for the 5j(ί), we deduce from (4.4) that the vacuum ψ0 is cyclic
for the operators F f(ί), ί e R + , and hence for the Fj(ί), ^e!fo c(R+), ίGR + .
Moreover the operators Fφ(t) annihilate the vacuum. Now the Fock represen-
tation {a*(f),fed} of the canonical commutation relations in Fermion Fock
space is characterised up to unitary equivalence by the existence of a cyclic vacuum
vector annihilated by the annihilation operators a{f). Furthermore the Fermion
second quantisation ΓF(U) of a unitary operator U on A is the unique unitary
operator which leaves the vacuum invariant and satisfies

fed;
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the differential second quantisation is then defined by

ίΓ(ieT)\

We denote by A and A* the canonical Fermion annihilation and creation
processes in Fermion Fock space constructed in [1]. Then we have

Theorem 4.3. There exists a unique unitary transformation Ξ from J f to Fermion
Fock space over L 2 (R + ) such that

a) Ξψ0 is the Fermion Fock vacuum vector
b) ΞF*(t)Ξ~ι = A*{t) ( ί ε R + ) .

Furthermore, for each £eR + ,

β ) . (4.7)

Proof. In view of the above, only (4.7) needs proof. An easy computation shows
that, for arbitrary /,#eL2(]R+), ̂ eI?o c(R+), ί e R + and real θ,

\ Γ(e-ίθP[Oit] + P ( t i ω)) Fφ(t) Γ(eίθP[Oft] + P(t, β ) ) ψ(g)}

= <ψ(Ω,FβieΦ(t)φ(g)>,

and hence that
ΞΓ(eiθP[θ9t] + P ( t t ̂ )Ξ-1 = ΓF (eiθP[0,t] + P ( ί , ^ .

Differentiating with respect to θ at 0 = 0 we obtain (4.7). D

Thus we may identify Fermion and Boson Fock space. From (2.12) and the fact
that J2 = I we immediately construct the corresponding Fermion Ito product
formula, generalising that of [1] by the inclusion of the gauge process,

(4.8)

In the implementation of (4.8) the differentials dF and dF^ commute with even and
anticommute with odd adapted processes where the parity is that of the Z2-graded
structure of the even and odd n-particles subspace of f̂. It is clear from
Lemmas 4.1 and 4.2 that this grading transforms into that used in [1] under the
transformation of Theorem 4.3.

5. Solution of a Stochastic Differential Equation

We consider the stochastic differential equation

4 d 0 ? 1/(0) = 0, (5.1)

dA

dF*

dF

dt

dA

dA

0

dF

0

άF

dFi

0

dt

0

dF

0

0

0

0

dt

0

0

0

0

where the L7- are ampliations of bounded operators (with which we identify them)
on the initial space. Using (4.1) we write this as a Boson equation,

dU = U(LίdA + L2J dB* + L3J dB + L4 dt), 1/(0) = 0. (5.2)
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Necessary conditions for the existence of a unitary solution are obtained as in [4]
by differentiating according to Ito's formula the relations UW = I, UU1f = /; they
are

= 0 , (5.3)

= 0, (5.4)

and (using the fact that J commutes with L2)

L4 + U + l£L2 = 0. (5 5)

From (5.3) we obtain that

where W is unitary. Setting L2 = L, (5.4) implies that L 3 J = -JUW= -UWJ.
From (5.5) we obtain LAr = iH—\UL, where H is self-adjoint. Thus (5.2) becomes

dU = U((W-I)dΛ + LJdB1[-UWJdB + (iH-iUL)dt), U(0) = I. (5.6)

Theorem 5.1. Let W,UHeB(J?°) with W unitary and H self-adjoint. Then Eq.
(5.6) has a unique solution.

Proof. The argument of [3] needs modification because J in (5.6) comprises
operators which are not in the initial space. Thus we define adapted
processes Un inductively by U0(t) = I,

LJdB*-UWJdB + (iH-^UL)ds}.
(5.7)

Clearly U0(W-1) and U0LJ, Uo( - Ώ WJ), U0(iH - \ UL) satisfy the local square
integrability conditions (2.10). Assuming that l//1_1(l^-/) and \Jn-γLJ,
XJn_x(-ΏWJ\ C/n_xO'iϊ- jUL) do likewise so that Un is defined, it follows that
the stochastic integral Un — /, hence Un also, is continuous in the sense [3] that, for
arbitrary wejf0, /e*f, ίh->Un(t)u(g)ψ(f) is continuous, hence locally bounded.
From this it follows that U π ( ^ - J ) a n d UnLJ, Un(-LWJ\ Vn{iH-\LL) satisfy
(2.10) and Un is well defined for all n. We have

2(
0

• {{W-I)dΛ + LJdB"1-UWJdB + (iH-\UL)ds) (5.8)

and

(5.9)
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We apply the estimate (2.9) to (5.8) to obtain

+ 3||([/B_1(s)-t/B_2(S))LJ(s)M®V>(/)l|2

+ \\(Un.1(s)-U^2(s))U WJ(s)u®ψ(f)\\2

+ \\(Un-1(s)-Un-2(s)(iH-iUL)u®ψ(f)\\2}ds

0

•{\\(Un.1(s)-U^2(sMW-I)u®ψ(f)\\2

+ \\(Un-1(s)-Un-2(s))(iH-lίUL)u®ψ(f)\\2}ds, (5.10)

where we use adaptedness of Vn-γ — Un-2 to conclude that

and similarly

We now iterate (5.10) obtaining

A(n,t)

• Π {\f(sj)\2 + l}dSl ...dsn\\u\\2 \\ψ(f)\\2, (5.11)

where M = max{||W-I\\2, \\L\\2, \\ΏW\\2, \\iH-^UL\\2}. Since, as is easily seen
by induction on n,

ί ή{\f(sj)\2 + nds1...dsn=±-(t+\\fιoj
2), (5.12)

A(n,t)j=ί Hi

we see from (5.11) that, for 0<Ξ ί <; T,

k( f TY
^^\\u\\\ (5.13)

where C(/, T), fe(/, T) are positive constants. Thus Σ {Un(t)~ C/n_i(ί))M®φ(/)
« = o

converges, uniformly for ί e [0, T] denote its limit by U(t)u®ψ(f). From (5.9) and
oo

(2.9) we see similarly that Σ (Ul(t) — Όl-X(t))u®ψ{f) converges uniformly for
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t e [0, T], to U\i)u®ψ{f) say. By continuity of the inner product U and ί/1" are
mutually adjoint processes. By uniformity of the convergence we may pass to the
limit on both sides of (5.7) to obtain that (5.6) holds.

To prove uniqueness let V be the difference of two solutions, then from the
adjoint equation of (5.6) we have

o

From (2.9) we obtain that, for arbitrary uetff0, fed, and £e!R

(5.14)
Since Fis a stochastic integral, s-> || V\s)u®ψ(+/) || is continuous hence bounded
on [0,ί]. Thus we may iterate (5.14), using (5.12), to obtain that

Thus F=0 and we have uniqueness. D

6. Unitarity of the Solution

Lemma 6.1. The solution U of (5.6) is coisometric.

Proof. Since

[ds}\ { ( )
o

we have from (2.7) that, for u,ve jf °, f,geA,teΈL+9

= - ί {<u® ψ(f),

), U\t)v®ψ(g)}-(Uϊ(t)u®xp(f\v®ψ(g))

in view of (2.6). Hence

<JjXt)u®\p(J), U\t)υ®xp{g)y = (u®xp(f\ v®ψ(g)) ,

and so l/t(ί) is isometric. D

Since U(t) is coisometric it is bounded, uniformly for t in finite intervals, and so
we can apply (2.11) to write the differential

= dU J+U dJ+dU dJ=U(-(W+I)JdΛ
U iU (6.1)
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Theorem 6.2. The solution U of (5.6) is unitary.

Proof. Again we modify the corresponding arguments of [3,4]. By an extension of
the Hellinger Toeplitz theorem [4] the operators ui-> U(t)u®ψ(f),
u ι-» Ut(t)u®ψ(f) are bounded from Jf ° to $ for each fixed / e A and t e R + . By
adaptedness of U the same is true of ui-> U(t) J(t)u®ψ(f). Hence we can define
bounded operators Kj(f,g)(t) on Jf° for j =1,2,3,4, f,ged and ίe]R+ by

<«,Kiif, g) (t)v) = <C/(ί)M®ψ(/), U(t)v®ψ(g)>

(u, K2(f, g)(ί)»> = <U(i) J(t)u®ψ(f), U(t)v®ψ(g))
\ (6.2)

«, K3(f, g) (t)v) = (U(t)u®ψ(f), l/(ί) J(t)v®ψ(g)}
<«, K 4 (/, g) (ί)ϋ> =

From (2.7) and (2.5) we have that, for arbitrary u, υ e Jf °,

- /) + (iH - \ UL)} + {gϋ - fW^L} K2{f, g)

+ gUK2(f, g)(W-l) + K3(f, g) {jL-gU W}

+nwi-r)K3(J,g)L+UK4tf,g)L]v>. (6.3)

Similarly, using (6.1), we find that

+ UK3(f, g)L+K4(f, g) {fL-gUW} -/(W* + J) K4(f, g)L\v>, (6.4)

jt(u,K3(f,g)v}

= <u,l{MWt-I)-(iH+2-UL)}K3(f,g)+K3(f,g){-fg(W+I)

+UK1(f,g)L+{gU-fW^L}K4(f,g)-gUK4(f,g)(W+I)-]vy, (6.5)

{gU+fW^L}K3(f,g)-gUK3(f,g)(W+I)-]vy. (6.6)
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We regard (6.3), (6.4), (6.5), and (6.6) as simultaneous ordinary differential
equations for the four operator-valued functions K0, g)J = 1,2,3,4. A particular
solution satisfying the initial condition

r t_ )

iif, 9) (0 = W, 9) (0 = exp I ~ 2 f fg + <f,g> j /,

W j=l,2,3,4 (6.7)

is given by

(6.8)

as may be verified by direct substitution. If we restrict / and g to be locally
bounded functions, then the solution with given initial condition is unique. In
particular Kx(f9g) is necessarily given by (6.8), and so

(U(t)u®ψ(f\ U(ήv®ψ(g)} = <κ, v} exp</,g) = <u®ψ(f), v®ψ(g)) (6.9)

for all such / and g, and w, v e J4f°. Since U(t) is bounded, (6.9) must hold without
restriction on / and g. Hence U(t) is isometric. Combining this with Lemma 7.1 we
conclude that U(t) is unitary. •
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