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Abstract. We consider a one-dimensional system consisting of a tagged particle
of mass M surrounded by a gas of unit-mass hard-point particles in thermal
equilibrium. Denoting by Qt the displacement of the tagged particle, we give

Q2

lower and upper bounds - independent of M - for l im£—. It results from the

proof that the correct nontrivial norming of Qt - if any - is j/ί.
1. Introduction

Consider the following one-dimensional system of point-like particles: a particle of
mass M (the "heavy particle") is surrounded by particles of mass 1 ("light
particles") distributed on the line according to a Poisson distribution with density
ρ = l. The velocities of the particles are distributed independently according to
Gaussian laws with mean zero: that of the heavy particle with variance M~1 / 2,
those of the light ones with variances 1 (Maxwellian distributions with inverse
temperature β= 1). No interaction among the light particles exists and the heavy
particle interacts with the light ones through a hard-core potential of radius 0.
That is: they collide elastically. It is well known that the dynamics of this system is
well defined with probability one and the measure as seen from the heavy particle is
stationary. t

Let us denote by Vt the velocity and by Qt = j Vsds the displacement of the
o

heavy particle. It is widely believed that the suitably scaled trajectory of the heavy
particle converges to a Brownian motion, but, at present, there is only partial
progress in this direction. Before describing it, we make two simple remarks.
Remarks. 1. As far as the behaviour of the heavy particle is concerned only, this
system is equivalent with the system of the same particles also assuming elastic
collisions between the light particles.
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2. Other equilibrium velocity distributions are also imaginable (e.g. with a.s.
bounded velocities). Our proofs - mutatis mutandis - work in those cases, too,
replacing the mk-s (to be defined in the next section) with the feth moments of
the light particle velocity distribution.

In his Turan Memorial Lecture held in Budapest in January 1985 Ya. G. Sinai
presented results concerning the problem stated above, obtained jointly
with M. R. Soloveichik (see [3]). He announced two theorems: the first one states
that ί" ( 1 / 2 + ε )Q ί converges in probability to zero, the second one gives an
asymptotic representation of t ~ ll2Qt as the difference of two random variables for

both of which the CLT holds with variance σ2=-^- (though nothing is known

about their dependence, this decomposition implies the stochastic boundedness of
t~ί/2Qt). A corollary of the first theorem was also presented, asserting that with
probability one each light particle collides finitely many times with the heavy one.

The present note can be considered as a comment on Sinai's Turan Memorial
Lecture (and, consequently, the first parts of [3]). In fact, by a - simple but quite
useful - new idea, we can give bounds for the limiting variance of t ~ ί/2Q(t) (see the
theorem of Sect. 5). To do this we should also improve the aforementioned first and
second results in order to obtain the remainder terms in L2 rather than in
convergence in measure. We emphasize throughout that very little information
about the real dynamics of the system is used. The proofs mainly rely on
fluctuation theorems concerning Poisson point processes (some elementary
geometry and probability theory).

Our upper bound is sharp: it is exactly the value of the limiting variance for the
solved case M = 1 (see [1, 4]). We guess that on the contrary, the lower bound is not
sharp, and in fact the limiting variance doesn't depend on M (see the conjecture of
Sect. 5).

Using completely different methods, a third theorem was obtained by Sinai
and Soloveichik (the last theorem of [3]) from which the same lower bound as
ours follows for the limiting variance of t~1/2Qt.

2. General Formalism and Notation

The phase-space of our system is:

(2.1)

where / is a countable infinite index set, Ω the set of infinite, but locally finite point
systems in IR x R. Interpretation: V is the velocity of the heavy particle, (qt, t^) i e /

are the coordinates (relative to the position of the heavy particle) and velocities
(absolute) of the light particles. We say that ω is the environment seen by the heavy
particle. Ω is a Polish space, endowed with the natural σ-algebra #o generated by
counting functions on compact sets. The σ-algebra on X is £F = $ x #0, J* being
the Borel-algebra on R. The equilibrium measure described in the introduction is:

dμ = dFM dμ0, (2.2)
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with μ0 being the Poisson measure on (Ω, ^Q) with intensity dx dF^υ);

dFM{V) = | / ^ e x p ( - ̂ p ) dV, (2.3)

». (2.4)

We shall use (in Sect. 5) the notation:

mk = E\υ\k = I lυUF.iv), (2-5)
— co

m1 = 1 /—, m2 = 1, and m3 = 21 / — will appear I. St: 3£->3£, t e IR is the dynamics of
]/ π ]/ π )

the system determined by the laws of classical mechanics assuming no interaction
among the light particles and with elastic collisions between the light particles and
the heavy one.

The following two facts are assumed to be known:
a) on a set Hf C X of μ-measure 1 the maps St are well defined for any t e IR and

St+s = St°Ss (existence of dynamics);
b) for any t e IR St is μ-measure preserving (stationarity).
Beside this one-parameter group, the following map will have an important

role: τ τ ^ ^

which simply inverts the velocity of each particle. U is measure-preserving (due to
the symmetry of the velocity distributions) and for any t e 1R

UoSt = S-toU. (2.7)

(Let Ss(x), s G [0, ί] be a path of time-length t of the system, S£U ° Stx), s e [0, t] is
the same path observed backwards!)

We shall use the notations

V(x) = V and ω(x) = ω iff x = (V,ω)9 (2.8)

Vt(x) = V(Stx), (2.9)

Qt(*)=!Va(x)ds. (2.10)
o

(Usually, if no confusion may arise we omit the notation of dependence on x.)
The main task is to deduce limit theorems for the random variable Qt defined

on the probability space (3E, !F9 μ) as ί-*oo. The special case M = 1 was solved in
the classical papers of Harris [1] and Spitzer [4], and it was found that

for M = l —p => wσ as α-^oo,
|/α

where => stands for convergence in distribution on C[0, oo) and wσ is a Wiener-
process of dispersion σ2 = m1. We expect the same to hold for M =f= 1, too, but we
are still far from proving it.
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The technical parts of our proofs rely on the following "large deviation
estimates" of elementary probability theory. Let vλ be a random variable with
Poisson-distribution of parameter λ. There are positive constants A, α, and β not
depending on λ such that

Prob(vλ > c λ) < A exρ( - acβ), (2.11)

Prob(|vA -λ\>cγ~λ)<A exp( - α cβ). (2.12)

The rest of notation and formalism will be introduced where motivation arises.

3. "Large Deviation Estimate" for the Trajectory
of the Heavy Particle

In the present section we prove the following:

Lemma 1. For any ε > 0 there exist positive constants A, α, and β depending on β,
such that, for c>0,

(3.1)

Proof. Let us define the following functions on X (α>0, s>0):

± ^qSa andt»0(ι;<0)}, (3.2)

(3.3)

(3.4)

β,(i)}. (3.5)

is the number of light particles situated at t = 0 in the interval [0, α] and having
positive (negative) velocities. Ka s is the number of light particles which, in the free
dynamics, would have passed from the right to the left through the point of
coordinate a in the time interval [0, s]. Cs is the number of light particles coming
from the right which interact with the heavy particle in the time interval [0, s].
Observe that the M's and K's are defined in terms of the free dynamics of the light
particles, and so they are easy to handle. Further, we have the following simple but
very useful relations among the random variables just introduced:

a) For any τ>0 and α>0, if Qτ(x)^a and s '^τ^s, then

b) For any s>0 and α>0, if max βs(3c)^α, then

c) For any s > 0 and x e X

One can convince himself of the truth of these relations by simple inspection.
Let τc denote the first hitting time of the "parabola" y(s) = (c • s) 1 / 2 + ε :

) = min{s>0: Qj® = (c- s) 1 / 2 + ε}, (3.6)
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and put

&cn = {xeX:n<τc(x)-ζn+\}, n = 0,1, (3.7)

We have

0teOck: max Vs^cί/2+ε\, (3.8)
' 1 O ŝ gl j

and, for n ^ l ,

_ I and (C M + 1 ^X ( C M ) i/2+ ε j W + M(CM)i/2+ε) and

min Vs > — (cn)ε\\ u ίat: min Vs ̂  — (cn){

C {3e:Cn+1^X(cn)1/2+ε>n + M (;n ) 1 / 2 + ε}πίae:o <m^

u faε: min Vs ̂  — (cn)εl

d - [ 4 « Π ^ nlU^c n (3-9)

In the first inclusion we have used property a), in the second one the fact that for
0^s^τ c , Qs — Q t c^0 and for τc^sfgw+l, β s — 6 M + i = ~ m i n K- ̂ u t? by

using properties b) and c) consecutively, we find that

)e({7oSB+13E)}. (3.10)

Let us define

/2 + .(ϊ), (3.11)

) e([7oSB + l ϊ). (3.12)

Combining (3.9) and (3.10),

^ c , n C{ϊ :4 , n ^^ π }υ^ c , π

d ^ c > π u^ C i n . (3.13)

By a very simple argument one can show that

max I F ^ c Λ <^ 1exp(-α 1c" 1) (3.14)

for some positive A, ccl9 and βv ί\i relies on the fact that max \V&\ is large iff the

initial velocity of the heavy particle was large or it met a light one with large
velocity: the probability of both events is exponentially smallΛ Hence
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and, using stationarity,

μ{Θc,n) < A, exp( - a^cήf*<ε). (3.16)

ξCtΛ and r\cn are Poissonian random variables (strongly dependent!) with means
n ' (cn)ιl'2+ε n+l

H and - 7 = + (cn)ε respectively. Applying standard large deviation
estimates (2.12) to them, we find

α2 c^.^) (3.17)

with some positive constants A2, ot2> βi> a n < i Ίi- Further, by the last two estimates
and (3.13)

xp(-a3 c^'nyη. (3.18)

From (3.15), (3.18) and similar arguments applied to —Q, the lemma follows.

Remarks. 1. The arguments of the proof are inspired by the proof of Theorem 1 in
[3], suitably adjusted for our different purposes.

2. Note that the only information used about the dynamics were: the relations
a)-c) and large deviation estimates concerning the equilibrium distribution.
Consequently we think that a similar proof can be carried over for systems with
more general interactions, too.

4. The Main Lemma

This section is devoted to the proof of the Main Lemma of our note. It is an
improvement of an argument from the proof of Theorem 2 [3]. Beside the fact that
we improve it suitably to be used in the next section, we also consider that the
exposition is more economic (and hence more transparent).

Let us define four notable collections of light particles:

^0) and q + vt^0(q + vtS0)} , (4.1)

q^0(q^0) and 3se[0,ί] : ί + ι;s = ββ(ϊ)}. (4.2)

For φ: R->]R satisfying

(4-4)
f

Eφ2(υ)= I φ\υ)dF1{v)<^, (4.3)
— co

let
oo

a+=Eφ(v)χ{v>0}= J

aφ =Eφ(v)χ{v<0]= f
- o o

and define the random processes
N}.,= Σ Ψ(v), (4.5)

c * t = Σ φ(v). (4.6)
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The iV's are relatively simply defined by the Poisson field (Ω,«F0), so we can
determine anything we need to know about them.

L e t δ$ιt = C*t±a$&-N*t. (4.7)

Main Lemma. For any φ satisfying (4.3) and ε>0,

> υ

The proof goes through combining Lemma 1 with a statement (Lemma 2
below) concerning the fluctuations of the Poisson point-process ω. No new
information about the dynamics of the system is used!

We are going now to formulate Lemma 2, the proof of which is postponed to
the Appendix.

Let Γt be the set of continuous functions y: [0, ί]->R with y(o) = 0.
Let

For yeΓ0 let

^0(q^0) and 35e [0, t]:q + vs = y(s)} , (4.9)

D*y,t= Σ φ{v), (4.10)
(9t7)6 0 f t

^ , N±,. (4.11)

Lemma 2. JFor <my ε > 0 sufficiently small and φ as above, there are positive
constants B, η, ρ, σ, and 0 SMC/I that

sup \δ*yJ>d t 1 / 4 + ε Π < £ c exp( -η^-£-\. (4.12)

of the Main Lemma. We shall prove that

M{*II^Γ,ίl>d ί1/4+ε})<^4 exp( — ocdβ -tγ), (4.13)

from which both the convergence in probability to zero and the uniform
integrability follow.

Let ε and φ be fixed,

suPπfb<4. ( 4 1 4 )j
(4.15)

sup |«VJ><* ί 1 / 4 + εl. (4.17)
eΛfr,.) j

By definition &d,tr>@c,t£&i,c,r Consequently

dQ • f \

j +2Aexp(-acβ) (4.18)

by Lemmas 1 and 2. Choosing a suitable c we gain exactly (4.13).
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5. Bounds on Correlations and Variances

We introduce special notations for two particular choices of φ:
a) for φ(v)=l,

Nt^N*, Ct^C*, Nt

+-N~=Nt, Ct

+-C~ = Ct, (5.1)

b) for φ(v) = v,

N±t = R±, C±t = P±9 Rt

++Rt=Rt, Pt

+ + Pt~=Pt. (5.2)

The Main Lemma applied to these choices of φ reads

C t

± + i β ί = iVr

±+<5t

±, (5.3)

P? + 'γQt = Rt

±+1?, (5-4)

where δ*/γt and η*f\/t tend to zero in L2 as ί->oo. Further:

Ct + Qt=Nt+δt, (5.5)

t = Rt+ηt. (5.6)

Let Xt stand for any process defined on the path-space of the system. Denote by Xt

the process
Xt(x)=Xt(UoStx). (5.7)

(Vaguely speaking: the same observable taken on the backward path.) We already
know from the third section that

C±=C±, (5.8)

because the number of light particles met by the heavy one on the forward and
reversed trajectories is the same. We also have

. - , Qt=-Qt (5.9)
from simple geometry.

Conservation of momentum implies
Pt + Ft = (yt-V0)M. (5.10)

Equations (5.3), (5.8), and (5.9) imply Theorem 2 of [3]. We go in another direction
and obtain

Theorem. For 0 < M < oo,

^ Π E ^ (5.11)
VYl-S ί->oo t ί->oo t

Proof. U o St is measure-preserving, so from (5.8), (5.9),

E(QrCt) = 0. (5.12)

Hence, by (5.5),

r2 n2 N2

E^+E^=E-±+o{\) = mί+#{\). (5.13)
I L L
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From (5.8), (5.10) by using uniform L2-boundedness of Vt and CJyt,

E{CtPt) = Θ(ft). (5.14)

Hence, by (5.5) and (5.6),

Eφ-Eψ^m. (5,5)
(We have used E(NtQt) = EQf + #(t), which is a consequence of (5.12).) Hence, by
Schwartz's inequality

t m w v 't J I t m 3

The theorem is proved.
Having these bounds we also automatically have

^ ^ y m

? (5.17)

(m3-mίm2)
2 ^ ^

m3

(5.18)

It is interesting to compare these bounds with the values found in the solvable
cases M = 1 (see Harris [1] and Spitzer [4]) and M = oo (trivial):

M = l M = oo 0<M<oo

lower bound upper bound

E&- 0 ^
t m3

C2

£ — 0 ro, 0

m3 — 2m^m2 + mi m3 —
m3

P 2

Observe that the interval of admitted values for E—-(0<M< oo) intersects the

interval determined by the values taken in the two solvable cases in a single point:
the value taken in the case M = 1. Expecting monotonicity in M of the limiting
variances and correlations, we

Conjecture.

lim E — = m1 independently of M. (5.19)
ί-»oo t

From (5.19) 0,-W, ^ 0
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would follow, which would be a strong result. It would mean that the asymptotical
displacement of the heavy particle, normed by ]/ί, does not depend on its mass. As
a consequence the CLT with variance m1 would hold. One could prove (5.19), for
instance, by showing that

εEC2 < E(CtPt) for some ε > 0,

which also seems to be plausible. Physical arguments also seem to support our
conjecture.

Appendix

For the sake of definiteness we will prove Lemma 2 for δ*\ytt with φ(v) = 1. Thus,
for simplicity of notation, we are allowed to drop the upper index + and the lower
index φ inside the Appendix. For other choices of φ one proves the lemma in a
similar way, regarding separately the positive and negative parts of φ.

Let
Nt(x)= φ{(q9v)eω\qS 0 and q + vfeθ} , (A.I)

We have

But

y(s)}, ysΓt, (A.2)

DXtt(x)= Φ{(q9v)eω\q^0 and q + vt^x} 9 x e R . (A.3)

= ^,t-δ2y,t . (A.4)

sup.l<% tl=. sup .., _,> t 2
(A.5)

•v

and, for any ί > 0 , (Nt — DXtt)xem is a Poisson process with expectation —

Consequently, from standard estimates on Poisson processes we have the desired
bound of the form (4.12) for δ2.

Now, let us look at δ1. For keZ, let

jί:[0,ί]->R, yc

k(s) = max(-cs1I2+\k-c(t-s)1/2+ε). (A.6)

For y e Γt

ic'ε\ if y{t) e [k— 1, fe], the following inequalities hold:

JM . (A.7)

(The positivity of the function φ is used. Hence the warning that in case of arbitrary
φ one has to take the positive and negative parts separately.)

From (A.7),

μίk sup δlt>d'tll4+εV\S2c'tίl2+ε max

) . (A.8)

But Dc

k-1)t — Dkt are Poissonian random variables with expectation less than
A c2ί2 ε, for A sufficiently large. (Geometry and absolute continuity of the light
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particle velocity distribution is used.) Applying (2.11) we gain the desired bound
also for δ1. Lemma 2 is proved.
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Notes added

1. Recent simulations done by Dύrr, Omerti, and Ronchetti (manuscript) strongly
suggest dependence on the mass of the limiting variance in contrast to our conjecture.

2. R. Holley [Z. Wahrscheinlichkeitstheor. Verw. Geb. 17, 181 (1971)] had considered a
similar mechanical model for Brownian motion with the essential difference that in his case the
mass of the tagged particle was normed in the same way as the time scale. That is: he considered
the asymptotics, as ε->0, of the random processes ε~ 1 / 2^ (-ϊ t

l μ ) and ε1/2QΪ-1^\ with the superscript
denoting now the mass of the tagged particle. He obtained the famous result that - under our
conditions: ρ = β = m = 1-these processes converge in distribution to the Ornstein-Uhlenbeck
velocity and position processes respectively given by the equations

dVt= -yVtdt + \fDdwt, dQt= Vtdt,

A. r) δ /}

with y= — 1/—, D=—Λ—. Now, performing Holley's limit first and then letting μ->0, the
μ y π μ2 ]/ π

position process converges in distribution to a Wiener process with variance exactly equal to our
lower bound. We consider this fact a heavy argument against our conjecture.
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