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Abstract. One of the central problems in the mathematical theory of turbulence
is that of breakdown of smooth (indefinitely differentiable) solutions to the
equations of motion. In 1934 J. Leray advanced the idea that turbulence may
be related to the spontaneous appearance of singularities in solutions of the
3-D incompressible Navier-Stokes equations. The problem is still open. We
show in this report that breakdown of smooth solutions to the 3-D
incompressible slightly viscous (i.e. corresponding to high Reynolds numbers,
or "highly turbulent") Navier-Stokes equations cannot occur without break-
down in the corresponding solution of the incompressible Euler (ideal fluid)
equation. We prove then that solutions of distorted Euler equations, which are
equations closely related to the Euler equations for short term intervals, do
breakdown.

Introduction

The purpose of this paper is twofold: first to discuss the relationship between the
breakdown of smooth solutions to incompressible three-dimensional Euler and
Navier-Stokes equations; and secondly to present blow-up results for distorted
Euler equations.

Both the Navier-Stokes equations and the Euler equations possess local (in
time) smooth solutions. Moreover, as the viscosity vanishes the solutions to the
Navier-Stokes equations converge uniformly on a short time interval to the
solution of the Euler equation [5,7]. Adapting the method of Kato [5] and using a
very simple ODE lemma, we prove in Sect. 1 that as long as the solution to the
Euler equation is smooth the solutions to slightly viscous Navier-Stokes equations
with the same initial data are smooth.

Sections 2 and 3 are devoted to blow-up results for distorted Euler equations.
Differentiating the Euler equations one obtains a quadratic equation for the
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Jacobian matrix of the velocity vector:

Λ T T

-~-+(u F)(7+ί/2-P,
ot

where u is the velocity vector, U = ( — ̂  I and P = ( - — z — 1 with p the pressure.
\8xjJ \SxidXjJ

One can use the incompressibility condition Tr U = 0 to express P in terms of
U. Passing to Lagrangian coordinates, the differentiated Euler equations become

^+l/2 + £(0(Trl/2) = 0, (0.1)

where R(f) is a matrix of singular integral operators with time varying kernels.
What we call the distorted Euler equations are obtained from the above form of the
genuine Euler equations by replacing R(t) by R(ty:

- + U2 + Λ(0) (Tr U2) = 0 . (0.2)

Although these equations are good short time approximations of the Euler
equations, the blow-up arguments have no direct bearing on the Euler equations.

In Sect. 2 we discuss the periodic case and we show, by a localization argument
reminiscent of the one in [2], that a large class of initial data lead to breakdown of
the solution of (0.2). The conditions on the initial data do not involve any largeness
assumption but exclude Jacobians. Another drawback in the periodic case is the
fact that incompressibility, Trl/ = 0, is not preserved. This fact is due to the
nonvanishing of the mean of Tr I/2, but it is not the major reason for the blow-up.
(One can modify slightly the equations in order to preserve the constraint Tr U = 0
and still prove breakdown.) Moreover, in the whole space case Eqs. (0.2) do
preserve incompressibility. Section 3 treats solutions of the distorted Euler
equations in the whole space. Foias found [4] that if the initial data for (0.2) have
the form

U0(x) = βΌ(\x\)(I-nπ(x))9 (0.3)

ΛcocΛ
where n is the dimension and π(x) = I — l—^ \ij=l9...9n, then this form is retained

\M /
by the solution U(t9 x) of (0.2) and leads to a simple equation for the scalar quantity
β. We generalize slightly his result by allowing 170 to possess an antisymmetric
part, corresponding to the vorticity. We obtain a system of integro-differential
equations for two scalar quantities β(t9r) (corresponding to the size of the
deformation tensor) and y(ί, r) corresponding to the modulus of the vorticity. For
γ = Q we recover the Foias equation. The success of the reduction in the number of
variables and unknowns is due to a covariance property of Eq. (0.2) with respect to
an action of 0(n). We prove breakdown for solutions starting from initial data of
the special form

V0(χ) = j?o(M) (I - 3π(χ)) + y0(M) x .
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If one takes the antisymmetric part of the three-dimensional distorted Euler
equations and if one identifies 3 x 3 antisymmetric matrices J with the vectors
given by J = ω x , one obtains the equation

Sω
— = Uω, (0.4)

which is the analogue of the vorticity equation for incompressible Euler flows.
In [3] the simple one-dimensional model equation for the three-dimensional

vorticity equation

dω

~dt
= ωHω (H = Hubert transform) (0.5)

was suggested. The breakdown of solutions to (0.2) is very similar to that of
solutions to (0.5): The quantity corresponding to the deformation tensor [the
symmetric part of U in the case of (0.2), Hω in the case of (0.5)] becomes infinite in
regions when the quantity corresponding to the vorticity (denoted ω in both cases)
is zero.

1. A Comparison Result

Let us consider a solution v of the incompressible Euler equations

(1.1)

in either R3 or T3 (the three-dimensional torus). In this section we prove that as
long as υ(t, •) is smooth, the solutions to slightly viscous incompressible Navier-
Stokes equations having υ0 as initial data are smooth.

We use the notation Hm for the Sobolev spaces Hm = #m(IR3) [respectively
Hm = Hm(T^ and ( , )m, || ||m for the corresponding scalar products and norms.

(1.2)

(1.3)

Theorem 1.1. Let v = v(t,x) be a solution of (1.1) for O^ί^ T, satisfying

for some m ̂  3 ,

xv\LOodt<co .

/ T \

Then there exists v0 = v0 ( T; || t?o I I m+2 ? ί I ̂  x v\L00dt} such that, for every 0 < v ̂  v0
V o /

the solution to the Navier-Stokes equation

— +(M y)u = vΔu+Fq+f
ot

divw-0 (1.4)
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is smooth on [0, T]. More precisely

sup \\u(t)-v(t)\\mίvγm (1.5)
ίe[0,T]

T

for some ym depending on Γ, ||ι;0||m+2, f |F x r[Lcodί.
o

Let us emphasize here that T is not assumed to be small. Instead it is assumed
that υ(t) belongs to Hm + 2 for t e [0, T]. Indeed, assumption (1.3) was proven by
Beale et al. [1] to be a sufficient condition for higher regularity. Their result can be
stated as follows

r
Theorem 1.2 (Beale et al.). Assume 11F x υ\Loodt < oo. Let s ̂  3, v0 e Hs. There exists

o
T

a constant c depending on Γ, s, f |F x v\L00dt, \\VQ\\S, such that
o

KOL^c for t^T. (1.6)

In order to prove Theorem 1.1 let us consider the difference w = u — v. Then w
will satisfy

r dw _
vzlw + (ϋ F)\v + (w F)u + (w F)w = vΔv+vr

ct

divw-0 (1.7)

We take the scalar product of (1.7) with w in Hm,m^3 and use

|t;||III||w||^ (1.8)

||m+1 | |w^ (1.9)

for vεHm+\ divt; = 0, weH m + 1 , divw-0 (see [5]).
Using the fact that — v(Aw, w)m^0, we obtain

M + cM | |w| |J. (1.10)

Let us multiply (1.10) by exp —c m f ||ι;||m+1ds and consider the quantity
V o

()>=IMIwexρ( -cm\
\ o

We obtain the inequality

(1.11)
3<0) = 0
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with

F(t)=\\Av\\mexp-cmϊ\\υ\\m+1ds (1.12)
o

and

G = cwexpcmί | | t? | |m + 1dί. (1.13)
o

We shall make use now of an elementary lemma:

Lemma 1.3. Let T > 0, G > 0 be given constants and let F(t) be a nonnegative
continuous function on [0, T]. Let v0 be defined by

v0 = ^ . (1.14)

STθ]F(t)dt
o

Then, for every 0<v^v0, every solution y^O of (1.11) is uniformly bounded on
[0, T] and

y(t) £ Min <y ,̂ 12v f F(t)dtl. (1.15)
o

Proof of Lemma. Let us define ε by

dy

We divide (1.11) by ( 1 +]/—3>) :- ,— N ^ ^vF + ε. We integrate between 0
\ ]/ ε ^

and ί:

I := ^|/__ ε Γ_ v j f ( ί ) Λ. (U7)

The choice ε^——2— implies εT^-1/— and, for v^v0 one has v]F(t)dt^-]/—.
4T G 21/ G o 41/ G

Λ \2 i
Indeed, if ε = 16v2G f F(ί)d£ 1 the last inequality is an equality and if ε = 2 ,

\o / 4jί G
it follows from

1

4,

Thus (1.17) becomes — ^ - which implies (1.15).
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We return to the proof of Theorem 1.1.
We apply Lemma 1.3 to (1.11) with F, G defined in (1.12), (1.13). We find v0

T
depending on T, m, J || v \\ m + 2dt such that, if 0 < v rg v0 and as long as w(ί) belongs to

#m+2,£^T, one has

(1.18)

Γ

for some ym depending on Γ, m, j \\v\\m+2dt.
o

Using standard calculus inequalities one can find bounds of the type

o J V o /
(1.19)

Since the validity of (1.18) depends upon w(ί) belonging to Hm+2 but not upon
the size of ||w(ί)||m + 2, one can argue by contradiction and infer that ||w(ί)||m + 2

cannot become infinite for t ̂  T and that (1.18) is true for all t ̂  T. We omit further
details.

2. Distorted Euler Equations

In this section we prove breakdown of smooth solutions of a "semi-Lagrangian"
version of the Euler equations. We start by recalling the Euler equation in R" or Tn

(2.1)

= w0( )

Here dt=—, d,= - — and summation convention is used. )
\ dt J dXj J

Differentiating (2.1) we obtain

dίU + (u ΐ)U+U2 = P
TrL/ = 0 (2.2)

where U is the n x n matrix U = (d uf), i — 1 , . . . , n, j = 1 , . . . , n and P is the Hessian of
the pressure P = (dfjp), ί, j = I , . . . , n. The constraint Tr U = 0 (incompressibility) is
maintained if TrP — Tr U2. This means that p solves Δp = ΎrU2, and therefore the
matrix P can be expressed in terms of U :

j=l, . . . ,n, (2.3)

where Rt are the Riesz transforms defined by

(2.4)
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Let us denote by R the operator acting on n x n matrix valued functions M = (m^ ),
i = l , . . . , w , 7 = l , . . . , n b y

(RM^R^m^. (2.5)

We identify scalar functions / with the matrices /• /, where / is the n x n identity
matrix. The (differentiated) Euler equations can be written as

dtϋ + (u - V)U + U2 + R(Ίr U2) = 0

Trl/ = 0 (2.6)

l/(0, )=ί/o( )

If one passes to Lagrangian coordinates in (2.6), that is, if one uses the change of
<&t

variables αi — > x(ί, α) for x(f, α) solving

dx . Λ— =u(ί,x)

x(0,α) = α,

the Euler equations (2.6) become

TrF-0 (2.8)

where F(ί, α) = I7(ί, x(f , α)) is the pullback of U and JR(f) is the pullback of R
through Φ f:

R(f)M = [JR(M (Φ') " *)] - Φf . (2.9)

More precisely if ktj(x, y) is a kernel for RtRp a kernel for jR(ί)l7 will be

(We used the well-known fact that determinant of Jacobian of Φl is one.) At t = 0
the operator R(t) coincides with the Riesz operators jR(0) = R; this because
x(0, α) = α. The distorted Euler equations are obtained from the genuine Euler
equations (2.8) by freezing R(t) at ί = 0:

Let us note that while (2.10) are valid approximations of (2.8) for a short time, the
blow up arguments that we are going to give have no direct bearing on the Euler
equations.

Equations (2.10) are well-posed in a variety of spaces. For instance we can
YL Yl

consider the Sobolev spaces (Hs)"2 of matrices with entries in Hs, s > - . If s > -
Z^ 2*

Hs are Banach algebras under pointwise multiplication; the operators Rj are
bounded in Hs (for any s, of course). We conclude that, if U is a solution of (2.10),
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and the local existence and uniqueness of solutions of (2.10) follow in standard
manner.

We shall treat first the periodic case; we seek solutions to (2.10) which satisfy
U(x + Let) — U(x) for any e~(0,..., 1, ...,0)f and some L>0. We may assume
L= 1 without loss of generality. Alternately, we shall refer to U as being defined on
the n dimensional torus Tn = JR?/Zn. Let us denote, for a point x in Tn by /J(x) the /th

principal circle passing through x:

jΦi} ; i = l , . . . , π . (2.11)

Let us denote, for a matrix [/, by S and J the symmetric and respectively
antisymmetric parts of U:

U + U* U-U*
S= — J= — , where 17* is the transposed of U.

Theorem 2.1. Let U0 be a smooth nxn matrix valued function on Tn satisfying
(i) Trt70(x) = 0/or allxeTn.

(ii) There exists x 0 e Tn and i.l^i^n such that

supp J0 n I}(x0) = 0 ί J0 = °2 °

and

J t70l ;dXj < 0 (no summation) .

Then the solution of (2.10) having U0 as initial data breaks down in finite time.
More precisely the symmetric part of the solution U(t, x) becomes infinite near
/Xx0) in finite time.

Proof. Let us introduce first some notation. We denote for two matrices M, N by
(M JV) the scalar product

(2.12)

For two matrix valued functions on Tn we denote by <M, JV> the scalar
product

, JV> - 1 (M(x); N(x))dx . (2.13)
Tn

Let us first remark that the operator .R is symmetric:

<jRM,AO> = <M ? JRAT>. (2.14)

Let us break (2.10) into its symmetric and antisymmetric parts:

(2.15)

(2.16)

We deduce from (2.16) that

suρpJ(ί, )CsuppJ0 . (2.17)
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Indeed, we can prove (2.17) by noticing that, for any fixed x e Γ",

l- (J(t, x) J(ί, x)) - Tr (S J2 + JSJ) = 2 Tr S J2 £ 2m(t, x) ( J(ί, x) J(ί, x)) ,

where m(ί, x) is the maximum of the absolute values of the eigenvalues of S(ί, x). It
follows from GronwalΓs inequality that, as long as S(ί,x) is smooth, if J0(x) = 0,
J(ί, x) = 0. Let Φ be an n x n matrix valued smooth function satisfying the following
conditions:

(a) suppΦnsuρpJ0=0,
(b) for every x e Tn, Φ(x) is a symmetric, nonnegative matrix, i.e. Φ(x) = *F(x)2

for some symmetric Ψ(x).
(c) RΦ = 0.
(d) <S0,Φ><0.
Let us postpone for the moment the construction of Φ and proceed with the

proof. Taking the scalar product of (2.15) with Φ we obtain

~ <S, Φ> + <S2, Φ> + < J2, Φ> + <£(Tr U2\ Φ> = 0 . (2.18)
αί

Now <^(Tr[/2),Φ>-<TrC/2,^Φ>-0 because of assumption (c) and of the
symmetry (2.14) oϊ R. Moreover, combining (2.17) and assumption (a), we deduce
<J2

?Φ> = 0. Thus (2.18) becomes

-<S,Φ> + <S2,Φ> = 0. (2.19)

Now

ί Tr(S(x)Φ(x))ώc
Tn Tn

dx

^ I (Ίr(S(x)Ψ(x))(S(x)Ψ(x))*)ί/2(ΎrΨ(x)Ψ(x)y/2dx
Tn

^(ί ΎrS(x)Ψ(x)Ψ(x)S(x)dx\1/2($ TrΦ(x)dx / 2

\Tn J

-<S2,Φ>1 / 2ΠTrΦ(x)dxV / 2.
\τn

It follows from (2.19) that

(2.20)
Tn

We assumed in (d) that <S0, Φ> < 0 and thus we infer that <S(ί, -),Φy must become

- oo for t not larger than T^ = τ"

We are going to show now how one can construct Φ satisfying properties
(a)-(d). Let us take a neighborhood V of x0 such that for y e F, /XjOnsupp J0 = 0.
Since t/oii(x) = SoiiW5 assumption (ii) implies

J ^OiiV^Ol? •••? ^5 •••? XQn)dx
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is negative. We may assume that

ί S0«<0 for all ye V.
Γi(y)

Let φ(x) = φ(x)2 with φ(x) a smooth function defined in Γ", independent of the ιth

variable (that is, constant on circles Γ](z) for any z e Γ") with support in
K=(j I}(y), and identically 1 on a set Kl = (J /Xy) for some x0 6 V± CC K We

define Φ(x) to be the nxn matrix having all entries equal to zero with the
exception of the entry Φ(x)u set to be equal to φ(x). Clearly properties (a), (b), and
(d) are satisfied from construction. Condition (c) is satisfied for a matrix Φ if its
columns are divergence free. In the constructed matrix the only nonzero column
is the ith and d^(x) = 0. This completes the proof of Theorem 2.1.

3. Solutions with Spherical Symmetry

In [4] Foias showed that Eq. (2.10) in the whole space IRM admits solutions of the
form l/(ί, x) = j8(£, |x|)(J — nπ(x)), where / is the identity matrix and π(x) is the
projector on the direction x,

i j=l,. . . ,n. (3.1)

Moreover he obtained a simple equation for the scalar quantity β which blows up.
We shall generalize slightly this result, allowing antisymmetric parts in U(t, x). The
main reason behind our desire to have nontrivial antisymmetric parts in l/(ί, x) is
that they correspond to the vorticity in the case of genuine Euler equations.

Let A be a rotation, A e 0(n). We denote for a scalar function in R", /, by fA the
composed

fA(x)=f(Ax). (3.2)

For a matrix valued function M we denote by MA the matrix with entries (M^)fJ

= (Mtj)A. We define the operations TA and TAonnxn matrix valued function as

TAM=A-*MAA, (3.3)
TAM = (detA)A-lMAA. (3.4)

Finally, for a matrix valued function U we define LA(U) by

), where U = S + J, (3.5)

S=i(l7 + [/*), J=i(l7-l7*). Let us denote by JV(17) the operator giving the
distorted Euler equation in R":

N(U) = dtU + U2 + ̂ (Tr I/2) . (3.6)

Proposition 3.1. For any A e 0(n), JV is covariant with respect to LA:

). (3.7)
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Corollary 3.2. // the initial data U0 is invariant with respect to A, i.e. if LA(UQ) = U09

then the solution U(t9 x) is invariant with respect to A,

Proof of Proposition 3.1. Let us take the symmetric and antisymmetric parts of
N(U),

(3.9)

(3.10)

2

N(U)-N(U)*

2

Applying TA to (3.10) we obtain

In order to check the TA covariance of the symmetric part of N(U) we make use of
the well-known covariance with respect to rotations of the Riesz transforms ([6])

(3.11)
for any scalar function /.

We check now that Ύΐ(LAU)2 = (ΎΐU2)A. Indeed

Tr (LAU)2 = Tτ((TAS + TAJ}2) = Ύr((TAS)2 + (TAJ)2) = Ίτ(TA(S2) + TA(J2))

Applying TA to (3.9) we obtain

TA

This proves the proposition. Corollary (3.2) follows from uniqueness of solutions
of JV(l/) = 0.

Let us restrict our attention for a moment to the case n = 3. Any antisymmetric
matrix J defines uniquely a vector ω e R3 such that Jv = ω x v for any v e R3. Here
ωxv is the vector (ω2v3 — ω3ϋ2, ω3vί — ωiv3, ωίv2 — a)2v1)

t and clearly ω is
determined by ω1=J32, ω2 = Jl^ oj3=J21. The matrix J2 can be computed in
terms of the vector ω:

where πm =
(3.12)

M2 *
We note here that if J(x) is the antisymmetric part of the Jacobian of a function

tφc), i.e. J(x) =^(djUt — d uj), ij = 1,2,3, then ω(x) =^(V x ύ) (x). If J(ί, x) satisfies
the antisymmetric part of (2.10), i.e. if

0, (3.13)
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then forming the quantities ω(ί, x) corresponding to J(£, x), we obtain from (3.13)
the equation

dtω = Sω. (3.14)

This is the analogue of the vorticity equation in the case of Euler equations.
Summarizing, Eq. (2.10) is equivalent in the three-dimensional case to

3tS + S2 + J2 + R(TrS2 + TrJ2) = 0 (3.15)

coupled with (3.14), where J2 is given by (3.12). We can consider the system (3.14),
(3.15) with J2 defined by (3.12) in any number of dimensions: S will be a n x n
symmetric matrix and ω an n vector.

Proposition 3.2. Assume that the initial data for the system

dtω = Sω, (3.16)

S2 + J2y) = 09 (3.17)

where J2=-\ω\2(I-πω), πω= (τ^j/1 i,j=l, ..,n are of the form

(3.18)

SQ(x) = βQ(\x\)(I-nπ(x))9 π(x) given in (3.1) . (3.19)

Then for as long as the solution S(ί, x), ω(ί, x) stays smooth, it has the form

ω(ί,x) = y(ί,M)||, (3.20)

S(t9x) = β(t,\x\)(I-nπ(x)), (3.21)

where y, β are two scalar functions satisfying

s = 0, (3.22),
r o

iyyβ = 0, (3.23)

y(0,r) = 70(r), β(Q,r) = β0(r), (3.24)

y(ί,0) = y(ί,oo) = 0, j8(ί,0) = )8(t,oo) = 0. (3.25)

Remark 1. The equation obtained by Foias is the particular case y(£, r) = 0 arising
from y0 = Q.

Remark 2. In n = 3 initial data of the form (3.18), (3.19) are those which satisfy
LAU0 = U0, for all A 6 0(3), Trl70 = 0.

We start by computing Rf for a radial function.

Lemma 3.3. Let f=f(r) be a smooth function defined for r ̂  0 decaying sufficiently
at infinity (for instance f(\x\)eLlnL2 in ΊR?). Then

Rf=-[jgl + k π ] , (3.26)
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where g and k are radial functions defined by

^)=^}s"-1/(s)ds, (3.27)

k(r)=f(r)-^sn~ίf(S}ds. (3.28)

Proof. Let us use the notation /'= —, r = |x|. Then

On the other hand

4A''
χ,Xj .

Thus dfjf(r) = Δ(g(r)δi]+h(r)xix]) if the system

Ag + 2h = ̂ -, (3.29)

r[Δh+ — ) = [ίQ } is solved. (3.30)
V r J \ r J

Now (3.30) follows from (3.29) if

4^-}, i.e. if (Δg)' = (rhJ + nh'.

n~ 1
This follows i!Δg = (rh)'+ - (rh). So (3.30) is a consequence of (3.29) tig' = rh.

With this choice for g we solve (3.29):

r r

This gives (rnk)f = rnf for k = r2h. We obtain the formula (3.28) for k:

k(r)=f(r)--Jsn-1f(s)ds. (3.31)
r o

Then g'=-k. In order to check (3.27), let us note that

(ng + k-fy=-k + k'-f'=ΰ.

Thus, since all these functions vanish at infinity we obtain

(3.32)
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Therefore (3.31) and (3.32) imply (3.27). We note that (3.32) follows also from the
familiar K^ /= — / (see [6]) by taking the trace in (3.26).

x
Proof of Proposition 3. 2. We shall use the ansatz ω(t,x) = γ(t, |x|)— -, S(ί,x)

|x|
= j8(ί, |x|) (/ - nπ(x)) and check that Eqs. (3.16), (3.17) give consistent equations for
β,γ. Equation (3. 16) becomes dtγ = (l-ή)βγ9 i.e. (3.23). Now S2 = β2(I-nπ)2

= β2(I + (n2-2n)π) because π2 = π. Also J2= -y2(/-π). Indeed πω = π(x)
because x and ω define the same direction. In order to proceed we put /(r)

J2), and compute

(«-l)[«|82-y2] (3.33)

According to Lemma 3.3 it follows that

R(Tr (S2 + J2)) = -(£/ + fcπ) (3.34)

with 0, fe defined by (3.27), (3.28) and / by (3.33). At this point Eq. (3.17) has the
form

y2-k)π^O. (3.35)

The only way in which (3.35) can possibly give a consistent equation for β is if it
factors out (/ — nπ), that is if

+ y2-k=-n(β2-y2-g). (3.36)

But (3.36) is equivalent to

which in view of (3.33) is nothing but (3.32) in disguise. Therefore Eq. (3.35)
becomes

(dtβ + β2-y2-g)(I-nπ) = 0, (3.37)

which is satisfied if β solves (3.22) because (3.27) and (3.33) imply

.
r o

We present now the blow-up argument.

Theorem 3.4. Let us assume that beside the conditions (3.18) and (3.19) of
Proposition 3.2 being fulfilled, the initial data for the system (3.16), (3.17) satisfy
also

y0(r) = 0 for Q^r^R1 for some R^>09 (3.38)

jβ0(r) = 0 for O^r^R for some O^R<R 1 , (3.39)

αjR

ί β0(r)rn~idr<0 for some 1 <α, (oc near I) . (3.40)
R

Then the solution to the distorted Euler equations (3.16), (3.17) having

ω0(x) = 7o(M) , S0(x) =
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for initial data breakdown in finite time. More precisely S breaks down near \x\ = R.

x
Proof. As proven in Proposition (3.2) the solutions are ω(f, χ) = y(t, \x\)— -9 S(ί, x)

\x\
= β(t, \x\)(I-nπ) with γ,ω satisfying (3.22)-(3.25). Since (3.23) can be integrated,

y(ί, r) = y0(r) exp } (1 - n)β(s9 r)ds , (3.41)
o

it follows from (3.38) that

y(ί,r) = 0 for O^r^R,. (3.42)

Therefore, for Q<*r^Ri9 Eq. (3.22) becomes

-ίnβ2(s)ds = (). (3.43).
r o

Now we claim that from (3.43) it follows that property (3.39) is preserved by β(t9 r),
t ̂ 0, as long as both β and 7 are smooth. Indeed multiplying (3.43) by /?(£, r)r"~ 1,
and integrating between 0 and R one obtains

1 Λ R R R R Kit r\
-^-\β2(t,rγ-ldr+\β\t,rγ-ίdr = (n-\)n\β2(t,Q)Qn-ί\^^dr
2, at o o o ρ r

or

1 A R R

o o

Thus

d R ( R

-J^2(ί?r)r"-1dr^2 Max (n(n- 1)J ^^-ds-β(t,ρ) H β
dt Q βe[0,Λ]\

and therefore, as long as β is smooth,

R

Ί
) \dr .
J

n jr I / 1 \ r r^ V ? / 7 n / \ 1 7Max n(n-\)j ds — β(τ,ρ) } d τ ,
0 0 0 ee[0,.~-!

and by (3.39) it follows
R

o ~~

Let us take now α> 1 such that (3.40) is valid and α small enough such that
aR<R1, n(n~l)logα<l. Integrating in (3.43) between .R and αjR we obtain

at

(3.45)
o

Now
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It follows that

d aR n(\ — n(n— 1 Ϊ W f l Λ / α Λ \2

llfe^+°%t -iΓ UW'^'A) SO,

and since

we conclude that J β(t, r)rn ldr becomes — oo for t not larger than
R

One can easily obtain a blow-up argument for Eqs. (3.22), (3.23) at the origin if
one drops the requirement that β0(0) = 0. However, this would lead to functions
S(ί, x) which are not defined at x = 0.
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