Inequalities for the Schatten \boldsymbol{p}-Norm. III

Fuad Kittaneh
Department of Mathematics, United Arab Emirates University, Al-Ain, United Arab Emirates

Abstract

We present some inequalities for the Schatten p-norm of operators on a Hilbert space. It is shown, among other things, that if A is an operator such that $\operatorname{Re} A \geqq a \geqq 0$, then for any operator $X,\left\|A X+X A^{*}\right\|_{p} \geqq 2 a\|X\|_{p}$. Also, for any two operators A and $B,\||A|-|B|\|_{2}^{2}+\left\|\left|A^{*}\right|-\left|B^{*}\right|\right\|_{2}^{2} \leqq 2\|A-B\|_{2}^{2}$.

In their investigation on the quasi-equivalence of quasi-free states of canonical commutation relations, Araki and Yamagami [1] proved that for any two bounded linear operators A and B on a Hilbert space $H,\||A|-|B|\|_{2}$ $\leqq 2^{1 / 2}\|A-B\|_{2}$. Also, in working on the approach to an equilibrium in harmonic chain or the elementary excitation spectrum of a random ferromagnet, as mentioned in [3], one may encounter the following useful inequality due to van Hemmen and Ando [3, Lemma 3.1]. If X is a compact operator and A is an operator such that $A \geqq a \geqq 0$, then $\|A X+X A\|_{p} \geqq 2 a\|X\|_{p}$. This inequality is related to the one proved by the author in [4, Theorem 3]. The inequality in [4, Theorem 3] is equivalent to that $\left\|A X+X A^{*}\right\|_{p} \geqq a\|X\|_{p}$ for any operator X, whenever $\frac{A+A^{*}}{2} \geqq a \geqq 0$. But as seen from the proof if X is assumed to be selfadjoint (or even seminormal), then $\left\|A X+X A^{*}\right\|_{p} \geqq 2 a\|X\|_{p}$.

It is the object of this note to present the best possible extension of this result by removing the restriction on X. We will prove a general theorem which gives the above mentioned inequalities in [3 and 4] as corollaries. The technique developed for this purpose proves to be useful also in extending the Araki and Yamagami result and it is likely to have further applications.

An operator means a bounded linear operator on a separable, complex Hilbert space H. Let $B(H)$ denote the algebra of all bounded linear operators acting on H. Let $K(H)$ denote the ideal of compact operators on H. For any compact operator A, let $s_{1}(A), s_{2}(A), \ldots$ be the eigenvalues of $|A|=\left(A^{*} A\right)^{1 / 2}$ in decreasing order and repeated according to multiplicity. A compact operator A is said to be in the Schatten p-class $C_{p}(1 \leqq p<\infty)$, if $\sum_{i} s_{i}(A)^{p}<\infty$. The Schatten p-norm of A is
defined by $\|A\|_{p}=\left(\sum_{i} s_{i}(A)^{p}\right)^{1 / p}$. This norm makes C_{p} into a Banach space. Hence C_{1} is the trace class and C_{2} is the Hilbert-Schmidt class. It is reasonable to let C_{∞} denote the ideal of compact operators $K(H)$, and $\|\cdot\|_{\infty}$ stand for the usual operator norm.

If $A \in C_{p}(1 \leqq p<\infty)$ and $\left\{e_{i}\right\}$ is any orthonormal set in H, then $\|A\|_{p}^{p}$ $\geqq \sum_{i} \mid\left(A e_{i}, e_{i}\right)^{p}$. More generally, if $\left\{E_{i}\right\}$ is a family of orthogonal projections satisfying $E_{i} E_{j}=\delta_{i j} E_{i}$, then

$$
\|A\|_{p}^{p} \geqq \sum_{i}\left\|E_{i} A E_{i}\right\|_{p}^{p}=\left\|\sum_{i} E_{i} A E_{i}\right\|_{p}^{p},
$$

and for $p>1$ equality will hold if and only if $A=\sum_{i} E_{i} A E_{i}$. Moreover, if $\sum_{i} E_{i}=1$ and $p=2$, then $\|A\|_{2}^{2}=\sum_{i, j}\left\|E_{i} A E_{j}\right\|_{2}^{2}$. We refer to [2] for further properties of the Schatten p-classes.

It has been shown in [5, Theorem 8] that if $A, B \in B(H)$ with $A+B \geqq c \geqq 0$, then for any self-adjoint operator $X,\|A X+X B\|_{p} \geqq c\|X\|_{p}$ for $1 \leqq p \leqq \infty$. This result admits the following considerable generalization. First we need a key lemma.

Lemma. If $A, B \in B(H)$ and $T=\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right)$ is defined on $H \oplus H$, then $|T|=\left(\begin{array}{cc}|B| & 0 \\ 0 & |A|\end{array}\right) . \quad$ Moreover, $\quad\|T\|_{p}^{p}=\|A\|_{p}^{p}+\|B\|_{p}^{p} \quad$ for $\quad 1 \leqq p<\infty \quad$ and $\quad\|T\|$ $=\max (\|A\|,\|B\|)$.
Proof. Since $T^{*} T=\left(\begin{array}{cc}B^{*} B & 0 \\ 0 & A^{*} A\end{array}\right)$, it follows by the uniqueness of the square root of a positive operator that $|T|=\left(\begin{array}{cc}|B| & 0 \\ 0 & |A|\end{array}\right)$. Since $\|T\|_{p}=\||T|\|_{p}(1 \leqq p \leqq \infty)$, the second assertion now follows from the basic properties of the C_{p} norm.

Now we are in a position to prove our main result.
Theorem 1. If $A, B \in B(H)$ with $A+B \geqq c \geqq 0$, then for any $X \in B(H)$,

$$
\|A X+X B\|_{p}^{p}+\left\|A X^{*}+X^{*} B\right\|_{p}^{p} \geqq 2 c^{p}\|X\|_{p}^{p}
$$

for $1 \leqq p<\infty$ and $\max \left(\|A X+X B\|,\left\|A X^{*}+X^{*} B\right\|\right) \geqq c\|X\|$.
Proof. On $H \oplus H$, let $T=\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right), S=\left(\begin{array}{cc}B & 0 \\ 0 & B\end{array}\right)$, and $\mathrm{Y}=\left(\begin{array}{cc}0 & \mathrm{X} \\ \mathrm{X}^{*} & 0\end{array}\right)$. Then $T+S$ $\geqq c \geqq 0$ and Y is self-adjoint. Now

$$
T Y+Y S=\left(\begin{array}{cc}
0 & A X+X B \\
A X^{*}+X^{*} B & 0
\end{array}\right)
$$

and so by the lemma we have

$$
\|T Y+Y S\|_{p}^{p}=\|A X+X B\|_{p}^{p}+\left\|A X^{*}+X^{*} B\right\|_{p}^{p}
$$

for $1 \leqq p<\infty$ and

$$
\|T Y+Y S\|=\max \left(\|A X+X B\|,\left\|A X^{*}+X^{*} B\right\|\right)
$$

Also, $\|Y\|_{p}^{p}=2\|X\|_{p}^{p}$ for $1 \leqq p<\infty$, and $\|Y\|=\|X\|$ since $\left\|X^{*}\right\|_{p}=\|X\|_{p}$ for $1 \leqq p \leqq \infty$. Hence, Theorem 8 in [5] applied to the operators T, S, and Y yields

$$
\|A X+X B\|_{p}^{p}+\left\|A X^{*}+X^{*} B\right\|_{p}^{p} \geqq 2 c^{p}\|X\|_{p}^{p}
$$

for $1 \leqq p<\infty$ and

$$
\max \left(\|A X+X B\|,\left\|A X^{*}+X^{*} B\right\|\right) \geqq c\|X\|
$$

as required.
Corollary 1. Let $A \in B(H)$ with $\operatorname{Re} A=\frac{A+A^{*}}{2} \geqq a \geqq 0$. Then $\left\|A X+X A^{*}\right\|_{p}$ $\geqq 2 a\|X\|_{p}$ for all $X \in B(H)$, and $1 \leqq p \leqq \infty$.

Proof. Since $A+A^{*} \geqq 2 a$, the result follows from Theorem 1 applied to A and A^{*} with the observation that $\left\|A X+X A^{*}\right\|_{p}=\left\|A X^{*}+X^{*} A^{*}\right\|_{p}$ for $1 \leqq p \leqq \infty$. Here $c=2 a$.

It is now obvious that Corollary 1 extends the corresponding inequality of van Hemmen and Ando [3, Lemma 3.2]. Applying Corollary 1 to the operator - iA, gives the following improvement of Theorem 3 in [4].

Corollary 2. Let $A \in B(H)$ with $\operatorname{Im} A=\frac{A-A^{*}}{2 i} \geqq a \geqq 0$. Then $\left\|A X-X A^{*}\right\|_{p}$ $\geqq 2 a\|X\|_{p}$ for all $X \in B(H)$, and $1 \leqq p \leqq \infty$.

Next we consider the Araki-Yamagami inequality. Namely, for $A, B \in B(H)$, $\||A|-|B|\|_{2} \leqq 2^{1 / 2}\|A-B\|_{2}$. It has been remarked in [1] that if A and B are restricted to be self-adjoint operators, then $\||A|-|B|\|_{2} \leqq\|A-B\|_{2}$. This result has been recently generalized by the author to the case where A and B are normal operators [6, Corollary 3].

A considerably briefer proof of a generalized Araki-Yamagami inequality is now presented.

Theorem 2. If $A, B \in B(H)$, then

$$
\||A|-|B|\|_{2}^{2}+\left\|\left|A^{*}\right|-\left|B^{*}\right|\right\|_{2}^{2} \leqq 2\|A-B\|_{2}^{2} .
$$

Proof. On $H \oplus H$, let $T=\left(\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right)$, and $S=\left(\begin{array}{cc}0 & B \\ B^{*} & 0\end{array}\right)$. Then T and S are selfadjoint. Applying the Araki-Yamagami remark to the operators T and S, we obtain that $\||T|\|-|S|\left\|_{2} \leqq\right\| T-S \|_{2}$. But

$$
|T|-|S|=\left(\begin{array}{cc}
\left|A^{*}\right|-\left|B^{*}\right| & 0 \\
0 & |A|-|B|
\end{array}\right)
$$

by the lemma, and

$$
T-S=\left(\begin{array}{cc}
0 & A-B \\
A^{*}-B^{*} & 0
\end{array}\right)
$$

Since

$$
\||T|-|S|\|_{2}^{2}=\||A|-|B|\|_{2}^{2}+\left\|\left|A^{*}\right|-\left|B^{*}\right|\right\|_{2}^{2}
$$

and

$$
\|T-S\|_{2}^{2}=\|A-B\|_{2}^{2}+\left\|A^{*}-B^{*}\right\|_{2}^{2}=2\|A-B\|_{2}^{2}
$$

it follows that

$$
\||A|-|B|\|_{2}^{2}+\left\|\left|A^{*}\right|-\left|B^{*}\right|\right\|_{2}^{2} \leqq 2\|A-B\|_{2}^{2}
$$

as required.
Theorem 2 enables us to provide the following alternative proof of Corollary 3 in [6].

Corollary 3. If $N, M \in B(H)$, are normal, then

$$
\||N|-|M|\|_{2} \leqq\|N-M\|_{2} .
$$

Proof. This follows from Theorem 2 and the fact that for a normal operator N we have $|N|=\left|N^{*}\right|$.

References

1. Araki, H., Yamagami, S.: An inequality for the Hilbert-Schmidt norm. Commun. Math. Phys. 81, 89-96 (1981)
2. Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. Transl. Math. Monogr. 18, Providence, R.I.: Am. Math. Soc. 1969
3. van Hemmen, J.L., Ando, T.: An inequality for trace ideals. Commun. Math. Phys. 76, 143-148 (1980)
4. Kittaneh, F.: Inequalities for the Schatten p-norm. Glasgow Math. J. 26, 141-143 (1985)
5. Kittaneh, F.: Inequalities for the Schatten p-norm. II. Glasgow Math. J. (to appear)
6. Kittaneh, F.: On Lipschitz functions of normal operators. Proc. Am. Math. Soc. 94, 416-418 (1985)

Communicated by H. Araki

Received September 26, 1985

