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Evaluation of the One Loop String Path Integral
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Abstract. We evaluate Polyakov's path integral for the sum over all closed
surfaces with the topology of a torus, in the critical dimension d = 26. The result
is applied to the partition function and cosmological constant of the free bosonic
string, and to tachyon scattering amplitudes.

In this paper, we evaluate the sum over all closed 2-surfaces with the topology of a
torus. Our starting point is the path integral of Polyakov [1]:

w = J ^ ^ " e x p ( ~ ^ ^ [ j ^ 8 ^ 8 ^ + λ R + "
The integration runs over all Euclidean metrics gab(σ) on a two-surface of given

topology, and all embeddings xμ(σ) of the 2-surface into d-dimensional Euclidean
spacetime. T is the string tension. The λR term is proportional to the Euler number
of the surface, and vanishes for the torus. The action is invariant under changes of the
coordinates σ of the world sheet. Classically, when μ2 — 0, there is a second local
symmetry group, the Weyl transformations

δgab(σ) = λ(σ)gab(σ). (2)

This remains a symmetry of the quantum theory provided d = 26 and provided the
counterterm μ2 is appropriately chosen. We restrict our attention to this case, of
exact Weyl invariance. The volumes of the local symmetry groups, VGC and Vw

respectively, must be divided out of the integration. We show that this can be done in
an unambiguous way, leaving a finite measure; genus 1, the torus, is particularly
simple in this respect. Our result is not new, since the one loop closed string graph
has been evaluated by operator methods [2]. However, it is useful to obtain it
directly from (1). Friedan [3] and Alvarez [4] have given general discussions of the
sums over surfaces with handles. As a check, we calculate the free energy of a gas of
free strings, and also compare with the expression for one loop string graphs as
obtained by operator methods [2]. For the one loop cosmological constant of the
free bosonic string theory we find a surprising result: it is not equal to the sum of the
one loop contributions of the individual particles.

In order to describe a torus, we take xμ and gab to be periodic functions of σ1 and
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σ2:

* V + 1, σ2) = xμ(σ\ σ2 + 1) = x > \ σ2), (3a)

gjσ1 + 1, σ2) = gjσ\ σ2 + 1) = ̂ ( σ 1 , σ2). (3b)

Thus the unit cell is simply 0 < σ 1 < l , 0 < σ 2 < l . Any metric can be brought by a
general coordinate transformation (respecting the periodicity (3)) to the form [5]

ds2 = gabdσadσb = eφ{σ)\dσx 4- τdσ2\2 (4)

with τ a complex number, Im(τ) > 0, referred to as a modular parameter. The metric
(4) is equivalent to a metric gab α δab on a parallelogram whose sides are defined by
the complex numbers 1 and τ. It is more convenient, however, to keep the coordinate
region fixed on the unit square and let τ appear in the metrix. Any small variation of
the metric can be resolved into a Weyl transformation plus a general coordinate
transformation plus a change in τ:

where τlfτ2 = Re(τ), Im(τ). The integral over metrics thus separates into an integral
•over the Weyl group, an integral over the general coordinate group, and an integral
over τ. We wish to determine the Jacobian defined by

dg = (dφdξ)'d2τJ(φ,τ). (6)

The prime denotes the following: the variations

δξa{σ) = ε\ δφ(σ)=-εaδaφ(σ) (7)

for constant εα give δgab — 0. The prime restricts the variations of ξ and φ to be
orthogonal to the zero mode (7). This reflects the fact that Eq. (4) is not a complete
choice of gauge: translations preserve the form (4).

Before defining the measures appearing in (6), let us, following [1], define metrics
for small variations in the fields. The natural metric for small δgab is

II δg | |2 = j d2σ ^/g(gacgbd + Cgabgcd)δgabδgcd (8a)

with C an arbitrary constant. Up to normalization, this is the most general invariant
without derivatives. Similarly, define

(8b)

aδξb, (8c)

x>i. (8d)

For a finite dimensional space, the metric would define a measure, but we cannot
here define a measure explicitly. Instead, we define it implicitly, in terms of the values
of Gaussian integrals:

2 (9a)

(9b)
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-•«•** = 1 , (9c)

- I l r f / 2 = L ( 9 d )

Later, we will discuss the extent to which W depends on our various definitions. In
(9a), δg is not a finite change in the metric, but rather a finite element of the tangent
space to the space of metrics, at a given metric gab. Thus, (9a) defines a measure on the
tangent space; this can be identified with the measure of interest, dg.1 The same
applies to (9b-d). For completeness, we also list

2%
(9e)

where d2δτ is simply dδτιdδτ2.
The integration dφdξ can be separated into

dφdξ = {dφdξ)'dεHε2.

The integrals defining dφ and dξ also separate:

•W)/2f ( 1 0 )

where Qab = j d2σ y/g(daφδbφ + gab). This gives the normalization of {dφdξ)'. To
obtain the Jacobian J(φ, τ), rewrite the integral defining dδg in terms of δφ, δξ, and
δτ:

with

= J(φ,τ)\{dδφdδξ)'d2δτexp - || δg||2/2

δφ

δξ

The matrix J( is conveniently written as a product

1 0 0

-Da K° 0

Ϊ0"9.f,ι 0 t*

(11)

(12)

2 + 4C 0 0
0 2ΔC< -2Deχΐc 0 δά

b

0 0

\b ίnefn
S 29 9ef,j

Llk υe Xkefλl

In (13), Ac

d=-δc

dD2-DdDc + DcD
d and χiab = gab,i-^gabg

cdgcd,i. Note that

1 P. Nelson suggests that this identification can be made precise with a construction based on geodesic
normal coordinates
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det(^) = 1. From (11) and the normalization (9), (10) one has

The upper 2 x 2 block of Jf is precisely as in Polyakov [1].
To carry out the xμ integration, separate the constant pieces

)9 (15)

where xμ'{σ) is orthogonal to the constant; dx = dxdx'. In the same fashion as (10),
one finds

The integral over xμ diverges and can be regulated by putting the system in a
periodic box of dimensions till.. .Ld. Then

/ ^ / ^ j " " ' i / 2 . (17)

The sum over surfaces now takes the form

The volume of Weyl group is just \dφ. The general coordinate group is the
connected component, J dξ, times a group D of disconnected transformations which
leave the boundary conditions (3) unchanged. A choice of gauge in general fixes
some of the discrete transformations and is invariant under a subgroup D. The
Fadeev-Popov determinant contains a factor of order(D)/order(5). The full VGC

contains a factor of order(D). Thus, the final denominator contains a factor of
order (D):

VGCVw->oτdeτ(B)ldξ$dφ. (19)

Two steps are needed before the ξ and φ integrations can be cancelled between the
numerator and denominator. First, the volume of the full and restricted integrations
are related:

f dφdξ = J (dφdξ)' J dε1 j dε2 = f (dφdξ)' (20)
o o

since the range of ε1 and ε2 is 0 to 1. Secondly, the factor <{ } in (18) must be
independent of φ. Any dependence comes about from the conformal anomaly. This
is a local property and so the dependence is the same as calculated by Polyakov [1],
regardless of topology:

A ln{ } = ^ ^ + (^-,V. (21)
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The first term in the integral cannot be cancelled by a local, coordinate invariant
counterterm, but it vanishes in the critical dimension d — 26. In the second term, the
sum of all quantum contributions A 2 can be cancelled by appropriate choice of μ2.
This is natural in the critical dimension, since the Weyl group is then an exact
symmetry. In this case, we can now eliminate the φ and ξ integrations, and also set
φ(σ) = 0 in evaluating (18). Then

= τ 2 , det Qab = τ 2

4 , and

(def Λ0 1 / 2 = (det [2 + 4C]) 1 ' 2 ( d e t / [ - 2 5 c V * δ β 3 J ) 1 / 2 4 .

(def [ - 2δc

dtfbdadb] ) 1 / 2 = def [ - 2 ^ 3 A ]

= idet(2)det'(-flr63Λ),

det' ( - τfq- 'dag
ab ^/gδb) = det' ( - <fdjbb) det (T)/T.

The determinant of — gabdadb requires one counterterm, of the form μ2. The value of
this counterterm is completely fixed by Weyl invariance. The determinant is
evaluated in the Appendix:

det'(-0-»flA) = Π' ( 4 π W ι 6 ) = x2

2e-m»3\f(e2™)\\ (22)
n i , « 2

where

f{e2πiτ)= f[ (1 - e2πinτ). (23)

As will be discussed below Eq. (28), the determinant of a constant is just a
contribution to μ2 and can be neglected.

The diffeomorphisms which respect the orientation, the periodicity (3) and the
gauge condition (4) take the form

σ1-+uσ1 +βσ2, σ2->yσί+δσ2, (24)

with α, β, y, δ integers and aδ — βy = 1. Under (24), the parameter τ undergoes a
modular transformation [2]

Thus, one can fix most of the invariances (24) by requiring τ to remain in a
fundamental region F, e.g.

- i < R e τ < ^ , I m τ > 0 , | τ | > l , (26)

Every τ in the complex upper half plane (except a set of measure zero) can be
obtained uniquely as a modular transformation acting on some τeF. There remains
only a 2-fold gauge invariance,
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so that order(D) = 2. Our final expression for the sum over surfaces is

e4™2 ( 2 π τ 2 Γ 1 2 | / ( e 2 * " ) Γ 4 8 . (27)

The case we are studying, one loop and no external fields (L= 1, Ne = 0), is
particularly simple in that the overall normalization contains no free parameters.
The sum depends on the curvature scalar term in the action (1) as exp[8τd(L — 1)],
and so is ^-independent only at L = 1. For NeΦθ, one has constants from the
normalization of the vertex operators. A related point is the analysis of Weinberg
[6], which shows that there is an arbitrary constant g which cannot be determined
from unitary and which enters as g~2 + 2L+Ne\ L= \, Ne = 0is independent of g. In
fact, the sum over graphs with L = 1, Ne = 0 will be related, below, to the free energy
of a string gas; thus its normalization is fixed. It should therefore be independent of
our various definitions. The sum Wtorus is proportional to the measures dg and dx
and inversely proportional to dξ and dφ, defined in (9). The integration (9a) over all
metrics breaks up into a product of a separate integration at each coordinate point,

μδge-^2'2 = Πίdδgα e~^^2. (28)
σ

The only invariant quantity which is such a product (and therefore does not depend
on derivatives of the metric) is

expJd2σM2,

(M2 ~ (S2(0)). Thus, the integral (28) is equal to 1, up to an adjustment of μ2. The same
is true for the other measures (9b-d). By the same argument, the determinant of a
constant is only a contribution to M 2, and a change in the normalization of the
metrics (8) can be absorbed into μ2. So, there is no ambiguity in the result (27). The
assumption (28), that the measure is local, is the key input that makes it possible to
calculate VFtorus with no uncertainty in the normalization or τ-dependence.

It is a nice check to see that the sum over all surfaces (not necessarily connected)
in the limit L2, L 3,...,L 2 6->oo, L1 = β fixed, reproduces the thermal partition
function for a gas of free strings.2 For the free energy F(β), this is

F ( j 8 ) = « ( Π ^ ) " 1 Connected- (29)
μ

The leading ^-dependence in F(β) comes from tori which wind r times around the
compact 1-direction. The boundary condition (3a) is then modified to

(30)

x"(σ1 + l,σ2) = jc"(σ1,σ2)

gαb{σι + 1, σ2) = gαb(σ\ σ2 + 1) = gjσ\ σ2).

2 Strictly speaking, the τ integral and the Lμ^oo limit both diverge because the theory contains a

tachyon. We take the U-^oo limit formally, dropping surfaces which wind around the 2,... ,26 directions
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It is convenient to separate xμ into a periodic piece and a linear piece,

x»(σ\ σ

2) = yμ{σ\ σ2) + rβσ2δ\. (31)

One has for the action

S(x,g) = S(y,g) + r2β2T/2τ2, (32)

and so

2 J Σ
Note that the condition (30) fixes some of the discrete in variances (24); only (5=1,
y = 0 (thus α = l ) survives. This is reflected in (33). The expression (33) can be
compared with the free energy as calculated from the known spectrum of the free
string. The free energy of a single particle is

„ , £ e - m ^ - ^ / 2 J ) (34)
/J </,/(,; 0 5 r = l

where the latter, "proper time," form is convenient for summing on m2. In terms of
the occupation numbers of the transverse oscillators, Nnh Nni, the spectrum is [7]

m2 = 4πτf - 2 + Σ Σ n(Nm + ̂ nd], (35)
L ί = 1 Λ = 1 J

with the constraint

24 oo

-Nni) = 0. (36)
i = 1 n = 1

Summing (34) over the spectrum (35) exactly reproduces (33). The τ1 integral
enforces (36), while τ2 = sT.

We have found, not surprisingly, that the free energy of the free string gas
reproduces the sum of the free energies of the individual particle states. Now let us
consider the cosmological constant. The one loop contribution from a single particle
is half the r = 0 term in (34):

V(m2)= -\]—{2πsYdl2e-m2sl2. (37)
o 5

Summed over the states (35)—(36), this gives

co^o 1/2

^ i i o o p = - i ί — } dθ(2πsΓ13e*πsT\f{e2πiΘ-2πsT)Γ48. (38)
0 S -1/2

Equation (37) has, as s -* 0, the usual ultraviolet divergences. In Eq. (38) these are not
cancelled, but in fact are worsened by the sum over an infinite number of bosonic
states. This would seem to be a puzzle, since string theories are claimed not to have
ultraviolet divergences. Now consider the direct string calculation of the one loop
cosmological constant. This is just Eq. (27), with a factor of — J^ Lμ divided out.
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Under the identification θΛ-isT-^τ, the integrands of the field and string
expressions, (38) and (27), are the same, but the regions of integration are different. In
the sum over field theories:

-4<*!<i *2>0. (39a)

In the string theory:

- i < τ x < i τ 2 > 0 , | τ | > l . (39b)

The string cosmological constant is different, and ultraviolet finite, since the region
τ2—>0 is excluded! This seems quite surprising, although the result is actually well
known to string experts (see, for example, Rohm [8]). Roughly speaking, what
happens is this. The variable 5 is the proper time for the particle to circle its closed
world line. The ultraviolet divergence is from s->0. For the string world sheet,
however, there is no invariant distinction between this proper time, and the proper
distance along which we define the wavefunction of a string state. The discrete group
(24) interchanges them. Once the proper time is less than the size of a state, the
integration stops, because we would then be double-counting the same surface. We
emphasize that this division by the modular group is not an ad hoc procedure: as
discussed below Eq. (27), there is an unambiguous normalization to the sum over
surfaces. The divergences of the field theory calculation come about because the
region (39a) contains, under the modular group, an infinite number of images of
(39b). The disagreement between Eqs. (39a) and (39b) is still a puzzle, because string
theory might be expected to reduce, in the light cone gauge at least, to a sum of field
theories, and we would then expect the full \ω for every state. Again, this puzzle is
not unknown in string theory. String theory cannot naively reduce to a sum of field
theories because of duality. In a 4-point amplitude s and t exchanges come from the
same string surface, and are not to be added; a field theory would overcount by
including both. Finally, the only surviving divergence in Eq. (38) is an exponential
one as s -> oo, and its source is clear. It comes from the tachyon term in the sum.
Because of the tachyon, long tubular world sheets, whose cross section is the tachyon
wave function, are weighted with a positive exponential of their length.

Thus far, we have considered only oriented surfaces, that is, the extended
Virasoro-Shapiro model. The partition function of the restricted Virasoro-Shapiro
model includes also surfaces with

xμ(σ\σ2 + 1) = xμ(- σ\σ2) + rj8<5μi,

gab(σ1 + lσ2) = gab(σW). (40)

This can be regarded as the insertion of the twist operator Ω: σ1 -> — σ1, into the
oriented path integral. There is an additional factor of 2 in order(D) from the
orientation-changing transformation

so that FRVSM contains a factor of | (1 -ffl) as compared to FEVSM: this precisely
excludes the Ω = - 1 states.
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As a final check, consider the one-loop amplitude for the scattering of M

tachyons of momenta Pi, . . . ,p M [2,7]. Insert

M

Y\κ0μ
2σi^;)e""^ (41)

f = l

into the functional integral. The integration over xμ gives, as Lμ-> oo, (2π)

Then,

)"121 j V π i τ ) Γ 4 81 j V π i τ ) Γ 4 8 exp -

(42)

The term/ = A; is divergent; this is absorbed in a redefinition of κ0. Note that it is not
correct merely to normal order (exclude; = fc), because the constant absorbed into
κ0 would then be τ and topology dependent. Rather define the j = k term by ζ-
function regularization. The double sum in the propagator can be evaluated as in the
Appendix to give

2 ) 2j-σ2

k)
(43)

where vjt = σi

j + τσ2j — σι

k — τσ2

k and the Jacobi ^-function is discussed in [7]. At

3τ, 1 1

4πTί 2πT \ 4 π / 2πT
l n - -

1
-In

0Ί(O|τ)

2πf(e2πiτ)eiπτ/4 (44)

where ί-^0 at the C-function regulator is removed. Using Yjpi = 0,p,2 = 8πT, and
i

defining a renormalized κR to agree with [7],

κR = 8πlim κo(t)e -2γ-l/t

Equation (39) becomes

M

) - 1 2 1 Γ 48

where

χ(v,τ) = 2 π e x p |
-π(Imv) 2

βi(v|τ)

(45)

(46)

(47)

This agrees with the expression found by operator methods, given in refs. [2,7]
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for T = 1/π (except that the factor of 1/2 from order(β) was omitted in [2] and in Eq.
6.3 of [7]; Eq. 6.13 of [7] differs by an additional factor of 2.)

In summary, the path integral of Polyakov is well defined for L = 1, d = 26. The
keys which make it unambiguous are Weyl invariance, which fixes μ2 and the
locality of the measure, Eq. (28). It is also a nice exercise to apply the methods used
here to the reparameterization invariant path integral for the relativistic scalar
propagator. Our observations about the calculations of the cosmological constant
come as a surprise to the field theorist, but are in agreement with string lore.

Appendix

We wish to evaluate

lndet'= £ ' I n \ ~ { n 2 - n , τ ) { n 2 - M ) ~ | , (A.I)

where the prime omits n1 = n2 = 0. The finite part of the μ2 counterterm is fixed by
the requirement that the x-integral be invariant under gab-*eλgab. (-function
regularization, since it has no scale, gives the right finite part without additional
subtraction. Thus, define

, Δ , ,. d _ Γ 4 π 2 ~]
lndet =-lim_£' ~{n2-nιτ){n2-nϊτ)

s->Q uSn{n2 |_ T2 J

= - lira \τ(A-^
m2-*0

(A.2)

The n2 sum is converted to a integral using the Sommerfeld-Watson
transformation:

J Γ / 4 2 \ - s iπz Ί

lndet'= lim - 2 - - ~ \dzY-. I(z-nιτι)
2 + n2

ιτ2

2 + m2ys + h.c.
s-o ds\ \τ2

2J i ~2ίsinπz J
m2-*0

τ 2

Aπ2m2

(A3>

The contour passes above the real axis, from + oo + iε to — oc + iε. The first term in
brackets converges at s = 0 and gives

4 Σ In 11 -e2πiniτ\ + 2\n(2πm) + O{m2). (A.4)
Λj = 1
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The second converges for s > 1:

ds[ cosπs Γ(2 — 2s)

m2->0

Equation (22) follows. The term (A.5) comes from the zero point energies of the string
oscillators, and produces the exponential term in Eq. (27), (33). Thus (cf. (34))

m?achyon = 4πT(Λ-2){(-l) (A.6)

as in ref. [9].
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