Hyper-Kähler Metrics and Harmonic Superspace

A. Galperin ${ }^{1}$, E. Ivanov ${ }^{2}$, V. Ogievetsky ${ }^{2}$, and E. Sokatchev ${ }^{3}$
${ }^{1}$ Institute of Nuclear Physics, Tashkent, USSR
${ }^{2}$ Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, USSR
${ }^{3}$ Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

Abstract

The most general unconstrained superfield action for self-interacting $N=2$ matter hypermultiplets in analytic $N=2$ superspace is argued to produce a most general $N=2$ hyper-Kähler σ-model after eliminating an infinite set of auxiliary fields. This suggests a new possibility of classifying hyper-Kähler metrics according to the $N=2$ analytic superfield self-interactions and provides an effective tool to compute these metrics explicitly. As the simplest example the $\mathrm{U}(2)$-invariant quartic self-coupling of a single q-hypermultiplet is analyzed and is shown to yield the familiar Taub-NUT metric. To see the geometric pattern directly in terms of $N=2$ superfields we introduce a new onshell representation of q-hypermultiplets in $N=2$ harmonic superspace similar to the τ-description of $N=2$ gauge theories. For the $\mathrm{U}(2)$-example this formulation is checked to coincide with that by Sierra and Townsend.

1. Introduction

Supersymmetry severely restricts a form of matter self-couplings. The scalar fields of any supersymmetric matter theory ${ }^{1}$ in four dimensions are described by nonlinear σ-models, Kählerian in the $N=1$ case [1], hyper-Kählerian in the rigid $N=2$ case [2] and quaternionic in the local one [3]. These remarkable geometric properties are to be revealed most transparently within manifestly supersymmetric formulations based on unconstrained off-shell superfields. Indeed, any admissible superfield self-interactions should necessarily lead to the above-mentioned σ-models.

There is an exhaustive description of the Kähler geometry of $N=1$ matter in superspace $[1,4]$. The bosonic manifold metric was shown to be related in a simple way to the superfield Lagrangian. These results were successfully used in phenomenological applications in $N=1$ supersymmetric GUT's [5]. Now attempts of utilization of $N=2$ supersymmetry getting started (see e.g. [6]). Until the last year $N=2$ matter Lagrangians have been constructed either at the

[^0]component level [2,3,7] or in terms of $N=1$ superfields [8] with at most one manifest supersymmetry. In the latter case an off-shell formulation was achieved for some hyper-Kählerian σ-models, and some new hyper-Kählerian metrics were found. However, $N=0$ and $N=1$ formulations give no recipes how to write down general $N=2$ supersymmetric Lagrangians so as to automatically get hyper-Kählerian metrics for scalar fields. Therefore it is highly desirable to have a complete $N=2$ superspace description both having in mind future phenomenological applications and purely mathematical reasons. Indeed, manifest $N=2$ supersymmetry opens a way to explicitly construct hyper-Kählerian metrics (even for the simplest, 4-dimensional manifolds metrics are not known in a number of important cases, including the famous K_{3}-manifold).

In [9] we have developed a manifestly $N=2$ supersymmetric off-shell description of self-interacting $N=2$ matter 2 (q and ω-hypermultiplets) in harmonic superspace in terms of unconstrained analytic $N=2$ superfields. Thus, listing all the possible hypermultiplet self-couplings we may, in principle, list all possible hyper-Kählerian metrics and find their explicit form.

In the present paper we do the first steps in this direction and compute the metric for the simplest $\mathrm{U}(2)$ invariant quartic self-interaction of a q-hypermultiplet. The problem of finding the metric amounts to eliminating an infinite number of auxiliary fields. In the case under consideration we obtain the known hyperKählerian Taub-NUT metric. Details of computation are given in Sects. 2, 3. To make closer contact with the hyper-Kähler geometry we pass in Sect. 4 to another equivalent representation of self-interacting q-hypermultiplet which reveals unexpected analogies with the τ-description of $N=2$ Yang-Mills theory [9, 10]. For the $\mathrm{U}(2)$-example we recover in this way the on-shell constrained $N=2$ superfield formulation of supersymmetric hyper-Kählerian σ-models given by Sierra and Townsend [11] within which the hyper-Kahler properties are manifest (Sect. 5). Section 6 contains a discussion of the most general self-coupling of hypermultiplets based on the dimensionality and analyticity considerations. We conjecture that action is an analytic superspace integral of arbitrary analytic Lagrange density. Finally, the appendix treats a general harmonic conservation law which may be of use in future calculations of bosonic metrics for more complicated hypermultiplet self-couplings.

2

In the present section we compute the bosonic metric associated with the $\mathrm{U}(2)$ invariant self-coupling of a single q-hypermultiplet. The harmonic superspace action and the corresponding equations of motion are [9]:

$$
\begin{gather*}
S=\int d z_{A}^{(-4)} d u\left[\stackrel{\stackrel{\rightharpoonup}{q}}{ }_{+} D^{++} q^{+}+\frac{\lambda}{2}\left(q^{+}\right)^{2}\left(\stackrel{\stackrel{\rightharpoonup}{q}}{ }^{+}\right)^{2}\right], \tag{2.1}\\
\left.D^{++} q^{+}+\lambda\left(q^{+} \stackrel{*}{q}^{+}\right) q^{+}=0, \quad D^{++} \frac{\tilde{q}^{+}}{}+\lambda\left(q^{+} \stackrel{*}{q}^{+}\right)\right)^{\frac{*}{q}}=0 . \tag{2.2}
\end{gather*}
$$

[^1]Here $^{3} q^{+}$is a complex unconstrained $N=2$ superfield defined on the analytic $N=2$ superspace $\left\{z_{A}, u_{i}^{ \pm}\right\}=\left\{x_{A}^{\alpha \dot{\alpha}}, \theta_{\alpha}^{+}, \bar{\theta}_{\dot{\alpha}}^{+}, u_{i}^{ \pm}\right\}, q^{+}=q^{+}\left(z_{A}, u\right),{ }^{*}$ is the analyticity preserving conjugation $\left(\left(\stackrel{\rightharpoonup}{q}^{+}\right)^{\frac{*}{*}}=-q^{+}\right)$, and D^{++}is the harmonic derivative in the analytic basis:

$$
\begin{equation*}
D^{++}=\partial^{++}-2 i \theta^{+} \sigma^{a} \bar{\theta}^{+} \partial_{a}, \quad \partial^{++} \equiv u^{+i} \frac{\partial}{\partial u^{-i}} . \tag{2.3}
\end{equation*}
$$

Besides the standard $\mathrm{SU}(2)$ invariance realized in $N=2$ superspace [9], this model has $\mathrm{U}(1)$ invariance,

$$
\begin{equation*}
q^{+^{\prime}}=e^{i \alpha} q^{+}, \quad \stackrel{*}{\bar{q}}^{+\prime}=e^{-i \alpha \frac{\tilde{q}^{+}}{}}, \tag{2.4}
\end{equation*}
$$

leading to the conserved Noether current j^{++},

$$
\begin{equation*}
D^{++} j^{++}=0, \quad j^{++}=i q^{+} \stackrel{*}{q}^{+} . \tag{2.5}
\end{equation*}
$$

This $\mathrm{U}(1)$ invariance will substantially simplify the computation of metric.
Since we are interested in the pure bosonic part of the action, we may omit the fermions in the $\theta^{+}, \bar{\theta}^{+}$expansion of q^{+},

$$
\begin{align*}
q^{+}\left(z_{A}, u\right)= & F^{+}\left(x_{A}, u\right)+i \theta^{+} \sigma^{a} \bar{\theta}^{+} A_{a}^{-}\left(x_{A}, u\right)+\theta^{+} \theta^{+} M^{-}\left(x_{A}, u\right) \\
& +\bar{\theta}^{+} \bar{\theta}^{+} N^{-}\left(x_{A}, u\right)+\theta^{+} \theta^{+} \bar{\theta}^{+} \bar{\theta}^{+} P^{(-3)}\left(x_{A}, u\right) . \tag{2.6}
\end{align*}
$$

Substituting this into (2.2), one gets the equations of motion in (x_{A}, u) space:

$$
\begin{align*}
& \partial^{++} F^{+}+\lambda\left(F^{+} \bar{F}^{+}\right) F^{+}=0, \tag{2.7a}\\
& \partial^{++} A_{a}^{-}-2 \partial_{a} F^{+}+\lambda F^{+} \stackrel{*}{F}^{+} A_{a}^{-}+\lambda\left(F^{+}\right)^{2} \stackrel{\frac{*}{A}}{a}=0, \tag{2.7b}\\
& \partial^{++} M^{-}+\lambda\left(F^{+}\right)^{2} \stackrel{*}{N}{ }^{-}+2 \lambda F^{+} \stackrel{*}{F}^{+} M^{-}=0, \tag{2.7c}\\
& \partial^{++} N^{-}+\lambda\left(F^{+}\right)^{2} \stackrel{*}{M}^{-}+2 \lambda F^{+} \stackrel{*}{F}^{+} N^{-}=0, \tag{2.7d}\\
& \partial^{++} P^{(-3)}+\partial^{a} A_{a}^{-}+\lambda\left(F^{+}\right)^{2} \bar{P}^{(-3)}+2 \lambda F^{+\frac{*}{F}} P^{(-3)}-\frac{\lambda}{2} A^{-a} A_{a}^{-} \stackrel{*}{F}^{+} \\
& -\lambda A^{-a} \stackrel{\frac{*}{A}}{a} F^{+}+2 \lambda \stackrel{*}{F}^{+} M^{-} N^{-}+2 \lambda F^{+}\left(M^{-} \stackrel{*_{M}^{-}}{M}+N^{-} \stackrel{*}{N}^{-}\right)=0 . \tag{2.7e}
\end{align*}
$$

All these equations except (2.7e) are kinematical and serve to eliminate an infinite tail of auxiliary fields appearing in harmonic expansion with respect to $u_{i}^{ \pm}$. The last equation contains dynamics and hence will not be used in what follows.

Now we integrate in (2.1) over $\theta^{+}, \bar{\theta}^{+}$using Eqs. (2.6), (2.7a-d). Contributions proportional to M^{-}, N^{-}, and $P^{(-3)}$ drop out, and the bosonic action reduces to

$$
\begin{equation*}
S_{B}=\frac{1}{2} \int d^{4} x d u\left(\frac{*}{A_{a}^{-}} \partial^{a} F^{+}-A_{a}^{-} \partial^{a} \stackrel{\rightharpoonup}{F}^{+}\right), \tag{2.8}
\end{equation*}
$$

where $F^{+}(x, u)$ and $A_{a}^{-}(x, u)$ obey Eqs. (2.7a, b). The latter are easily solved due to $\mathrm{U}(1)$ invariance (2.4). Indeed the conservation law (2.5) implies $\partial^{++}\left(F^{+} \bar{F}^{+}\right)=0$. Whence

$$
\begin{gather*}
\left.F^{+}(x, u)\right)^{\frac{*}{F}}(x, u)=C^{(i j)}(x) u_{i}^{+} u_{j}^{+}, \\
\left(F^{+} \frac{\stackrel{*}{F}}{}{ }^{+}\right)^{\frac{ \pm}{2}}=-F^{+\frac{+}{F^{+}} \Rightarrow \overline{C^{(i j)}}=-\varepsilon_{i i} \varepsilon_{j n} C^{(\ell n)} .} . \tag{2.9}
\end{gather*}
$$

This suggests the following change of variables

$$
\begin{equation*}
F^{+}(x, u)=f^{+}(x, u) e^{\lambda \varphi}, \quad \varphi(x, u)=-C^{(i j)}(x) u_{i}^{+} u_{j}^{-}=-\stackrel{*}{\varphi}(x, u), \tag{2.10}
\end{equation*}
$$

3 For the notation and details concerning harmonic superspace, see [9, 10]
which reduces (2.7a) to the linear equation

$$
\begin{equation*}
\partial^{++} f^{+}(x, u)=0 \Rightarrow f^{+}(x, u)=f^{i}(x) u_{i}^{+} . \tag{2.11}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
F^{+} \stackrel{*}{F}^{+}=f^{+\frac{*}{f}} \Rightarrow C^{(i j)}(x)=-f^{(i}(x) \bar{f}^{j)}(x), \tag{2.12}
\end{equation*}
$$

where $\bar{f}^{i}=\varepsilon^{i} \bar{f}_{j}, \overline{f_{j}} \equiv\left(\overline{f^{j}}\right)$, we obtain the general solution of (2.7a) in the form

$$
\begin{equation*}
\left.F^{+}(x, u)=f^{i}(x) u_{i}^{+} \cdot e^{\lambda \varphi}=f^{i}(x) u_{i}^{+} \exp \left(\lambda f^{(j}(x) \bar{f}^{k}\right)(x) u_{j}^{+} u_{\kappa}^{-}\right) . \tag{2.13}
\end{equation*}
$$

Thus, all the components in the $u_{i}^{ \pm}$-expansion of $F^{+}(x, u)$ are expressed in terms of $f^{i}(x)$ which is the physical bosonic field.

The remaining Eq. (2.7b) is simplified by the substitution $A_{a}^{-}(x, u)$ $=B_{a}^{-}(x, u) e^{\lambda \varphi}$. Equation (2.7b) implies that harmonic expansion of B_{a}^{-}contains only linear $\left(\sim u^{-}\right)$and trilinear $\left(\sim u^{-} u^{-} u^{+}\right)$terms. Finally,

$$
\begin{align*}
A_{a}^{-}= & e^{\lambda \varphi}\left\{2 \lambda f^{i} u_{i}^{+} \partial_{a}\left(f^{\left(k \bar{f}^{j}\right)} u_{k}^{-} u_{j}^{-}\right)+2 \partial_{a} f^{i} u_{i}^{-}\right. \\
& \left.+\frac{\lambda f^{i} u_{i}^{-}}{1+\lambda f \bar{f}}\left(f^{j} \partial_{a} \bar{f}_{j}-\bar{f}_{j} \partial_{a} f^{j}\right)\right\} \tag{2.14}
\end{align*}
$$

Let us emphasize once more that this simple form of the solution is due to $U(2)$ invariance of the action (2.1). More general self-couplings lead to much more complicated equations (see Sect. 4).

To find the action in terms of $f^{i}(x)$, we integrate (2.8) over $u_{i}^{ \pm}$using (2.13), (2.14), the reduction identities [9]

$$
\begin{gathered}
u_{i}^{+} u_{\left(j_{1}\right.}^{+} \ldots u_{j_{n}}^{+} u_{k_{1}}^{-} \ldots u_{\left.k_{m}\right)}^{-}=u_{(i}^{+} u_{j_{1}}^{+} \ldots u_{\left.k_{m}\right)}^{-}+\frac{m}{m+n+1} \varepsilon_{i\left(k_{1}\right.} u_{j_{1}}^{+} \ldots u_{j_{n}}^{+} u_{k_{2}}^{-} \ldots u_{\left.k_{m}\right)}^{-} \\
u_{i}^{-} u_{\left(j_{1}\right.}^{+} \ldots u_{j_{n}}^{+} u_{k_{1}}^{-} \ldots u_{\left.k_{m}\right)}^{-}=u_{(i}^{-} u_{j_{1}}^{+} \ldots u_{\left.k_{m}\right)}^{-}-\frac{n}{m+n+1} \varepsilon_{i\left(j_{1}\right.} u_{j_{2}}^{+} \ldots u_{\left.k_{m}\right)}^{-}
\end{gathered}
$$

and the $u_{i}^{ \pm}$integration rules [9]

$$
\begin{gathered}
\int d u\left(u^{+}\right)^{(m}\left(u^{-}\right)^{n)}\left(u^{+}\right)_{(k}\left(u^{-}\right)_{\ell)}=\left\{\begin{array}{cc}
\frac{(-1)^{n} m!n!}{(m+n+1)!} \delta_{\left(j_{1}\right.}^{\left(i_{1}\right.} \ldots \delta_{j_{k+l}}^{\left.i_{m+n}\right)} & \text { if } \begin{array}{c}
m=\ell \\
n=k \\
0
\end{array} \\
\left(u^{+}\right)^{(m}\left(u^{-}\right)^{n} \equiv u^{+\left(i_{1}\right.} \ldots u^{+i_{m}} u^{-j_{1}} \ldots u^{\left.-j_{n}\right)} .
\end{array}\right.
\end{gathered}
$$

As a result, we arrive at the following bosonic action

$$
\begin{equation*}
S_{B}=-\frac{1}{2} \int d^{4} x\left(g_{i j} \partial_{a} f^{i} \partial^{a} f^{j}+\bar{g}^{i j} \partial_{a} \bar{f}_{i} \partial^{a} \bar{f}_{j}+2 h_{j}^{i} \partial_{a} f^{j} \partial^{a} \overline{f_{i}}\right) \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{i j}=\frac{\lambda(2+\lambda \overline{f f})}{2(1+\lambda \overline{f f})} \bar{f}_{i} \bar{f}_{j}, \quad \bar{g}^{i j}=\frac{\lambda(2+\lambda \bar{f} \bar{f})}{2(1+\lambda \bar{f})} f^{i} f^{j} \tag{2.16}\\
& h_{j}^{i}=\delta_{j}^{i}(1+\lambda \overline{f f})-\frac{\lambda(2+\lambda \bar{f})}{2(1+\lambda \bar{f})} f^{i} \bar{f}_{j} ; \quad \overline{f f} \equiv f^{i} \overline{f_{i}}
\end{align*}
$$

It is remarkable that the extremely simple monomial $N=2$ superfield interaction (2.1) entails a complicated nonpolynomial Lagrangian for the physical bosons. Note the manifest $\mathrm{U}(2)$-invariance of (2.15), (2.16), which reflects the $\mathrm{U}(2)$ invariance of the original action.

3

It is not so easy to see that the metric (2.16) is hyper-Kählerian, especially, because it is not manifestly Kählerian in coordinates $f^{i}, \overline{f_{i}}$. By simple (though lengthy) calculations one can verify that it is Ricci-flat. However, it is the necessary condition, not the sufficient one. One should also pick up three linearly independent covariantly constant complex structures and this is less trivial. In Sect. 5 we shall visualize these geometric properties of metric (2.6) by passing to the new, τ-representation of Eqs. (2.2). Here we prefer to proceed in a different way. Namely, we demonstrate that (2.15) is reduced by a change of variables to the wellknown Taub-NUT metric, which belongs to the class of four-dimensional Euclidean gravitational instantons and is known to be hyper-Kähler.

To this end, let us first introduce "spherical" coordinates in the R^{4}-space $\left\{f^{i}, \bar{f}_{i}\right\}:$

$$
\begin{align*}
& f^{1}=\varrho \cos \frac{\theta}{2} \cdot \exp \frac{i}{2}(\psi+\varphi), \\
& f^{2}=\varrho \sin \frac{\theta}{2} \exp \frac{i}{2}(\psi-\psi), \quad f \bar{f}=\varrho^{2} . \tag{3.1}
\end{align*}
$$

Then

$$
\begin{align*}
d s^{2}= & g_{i j} d f^{i} d f^{j}+\bar{g}^{i j} d \bar{f}_{i} d \bar{f}_{j}+2 h_{j}^{i} d f^{j} d \bar{f}_{i} \\
= & 2\left(1+\lambda \varrho^{2}\right) d \varrho^{2}+\frac{1}{2} \varrho^{2}\left(1+\lambda \varrho^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right) \\
& +\frac{\varrho^{2}}{2\left(1+\lambda \varrho^{2}\right)}(d \psi+\cos \theta d \varphi)^{2} . \tag{3.2}
\end{align*}
$$

We assume that (3.2) has no singularities in ϱ, so $\lambda>0$. Then one makes a change of variables

$$
\begin{equation*}
\varrho^{2}=2(r-m) m, \quad r \geqq m=\frac{1}{2 \sqrt{\lambda}}, \tag{3.3}
\end{equation*}
$$

recasting $d s^{2}$ in the form

$$
\begin{align*}
d s^{2}= & 2\left\{\frac{1}{4} \frac{r+m}{r-m} d r^{2}+\frac{1}{4}\left(r^{2}-m^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right. \\
& \left.+m^{2} \frac{r-m}{r+m}(d \psi+\cos \theta d \varphi)^{2}\right\} \tag{3.4}
\end{align*}
$$

which, up to a numerical coefficient, is the standard Taub-NUT metric (see, e.g. [12]).

4

We have seen above that the hyper-Kähler geometry in the $N=2$ analytic superspace description arises only upon eliminating an infinite tower of auxiliary fields, i.e. with partially putting the theory on-shell ${ }^{4}$. One may inquire how to expose the hyper-Kähler properties directly in terms of $N=2$ superfields. Clearly, it should essentially involve the use of superfield equations of motion. Here we derive another on-shell superfield representation of self-interacting q-hypermultiplets in which the geometry is expected to reveal itself more transparently and which bears an interesting analogy with the τ-description of $N=2$ gauge theory [9,10$]$.

For simplicity we restrict our study to a single q^{+}self-interacting in a manifestly $\mathrm{SU}(2)$-invariant manner (the general case will be treated elsewhere). The action is

$$
\begin{gather*}
S_{q}=\int d z_{A}^{(-4)} d u\left(\overline{\underline{q}}^{+} D^{++} q^{+}+\mathscr{L}_{\mathrm{int}}^{(+4)}\right) \tag{4.1}\\
\mathscr{L}_{\mathrm{int}}^{(+4)}=\frac{\lambda_{1}}{2}\left(q^{+}\right)^{2}\left(\bar{q}^{+}\right)^{2}+\lambda_{2}\left(q^{+}\right)^{3} \overline{\mathrm{q}}^{+}-\bar{\lambda}_{2}\left(\bar{q}^{+}\right)^{3} q^{+}+\lambda_{3}\left(q^{+}\right)^{4}+\bar{\lambda}_{3}\left(\bar{q}^{+}\right)^{4} \tag{4.2}
\end{gather*}
$$

Note that the kinetic term in (4.1) is invariant under some extra $\widetilde{\mathrm{SU}}(2)$ group [containing the $\mathrm{U}(1)$-subgroup (2.4)] which is an analogue of the known PauliGürsey group. With respect to this group q^{+}and $\stackrel{*}{q}^{+}$form an isodoublet. If

$$
\begin{equation*}
q^{+a} \equiv\left(q^{+},-\stackrel{*}{q}^{+}\right), \quad\left(\stackrel{*}{q^{+a}}\right)=\stackrel{*}{\bar{q}}_{a}^{+}=-\varepsilon_{a b} q^{+b} \tag{4.3}
\end{equation*}
$$

then the kinetic term can be written in the form

$$
\begin{equation*}
\frac{1}{2}\left(\stackrel{*}{q}^{+} D^{++} q^{+}-q^{+} D^{++} \stackrel{\stackrel{*}{q}}{ }+\frac{1}{2} q^{+a} D^{++} q_{a}^{+}\right. \tag{4.4}
\end{equation*}
$$

Though self-couplings in (4.1) break this $\mathrm{SU}(2)$ symmetry, the $\widetilde{\mathrm{SU}}(2)$-notation is useful in that it allows one to write the equations of motion in a compact 2×2 matrix form ${ }^{5}$

$$
\begin{align*}
& \left(D^{++}+i V^{++}\right) q^{+}=\left[D^{++} \delta_{a}^{b}+i\left(V^{++}\right)_{a}^{b}\right] q_{b}^{+}=0, \tag{4.5}
\end{align*}
$$

Let us also recall the analyticity conditions

$$
\begin{equation*}
D_{\alpha}^{+} q^{+a}=0, \quad \bar{D}_{\dot{\alpha}}^{+} q^{+a}=0 \tag{4.6}
\end{equation*}
$$

The quantity V^{++}, being a real analytic superfield in the adjoint representation of $\mathrm{SU}(2)$, can be regarded as a composite $N=2$ Yang-Mills prepotential [9]. Correspondingly, Eq. (4.5) is similar to the equation for the "bridge" between λ and τ-representations of $N=2$ gauge theory [9], Eq. (IV.16b)). This suggests the

[^2]following substitution for q^{+}:
\[

$$
\begin{gather*}
q^{+}=e^{i v} \tilde{q}^{+} \tag{4.7}\\
\left(D^{++}+i V^{++}\right) e^{i v}=0, \quad \text { or } \quad V^{++}=-i e^{i v} D^{++} e^{-i v} . \tag{4.8}
\end{gather*}
$$
\]

In terms of \tilde{q}^{+}, Eqs. (4.5), (4.6) reduce to

$$
\begin{gather*}
D^{++} \tilde{q}^{+}=0 \Rightarrow \bar{q}^{+a}=\tilde{q}^{i a}(z) u_{i}^{+}, \tag{4.9}\\
\mathscr{D}_{\alpha(\dot{\alpha})}^{+} \tilde{q}^{+} \equiv\left(D_{\alpha(\dot{\alpha})}^{+}+i A_{\alpha(\dot{\alpha})}^{+} \tilde{q}^{+}=0,\right. \tag{4.10}\\
A_{\alpha(\dot{\alpha})}^{+} \equiv-i e^{-i v} D_{\alpha(\dot{\alpha})}^{+} e^{i v}=A_{\alpha(\dot{\alpha})}^{i}(z) u_{i}^{+} . \tag{4.11}
\end{gather*}
$$

Thus, we arrive at the on-shell description of the self-interacting hypermultiplet in terms of the ordinary $N=2$ superfield $\tilde{q}^{i}(z)$ constrained by the "covariantized" analyticity conditions (4.10). It directly generalizes the standard $N=2$ superfield formulation of a free hypermultiplet [9] and is related to the original analytic superspace description given by Eqs. (4.5), (4.6) like the τ-representation of $N=2$ Yang-Mills is related to the λ one [9]. In the q^{+}-language, analyticity is purely kinematic while the dynamics is concentrated in Eq. (4.5) which can be interpreted as the condition of "covariant" $u_{i}^{ \pm}$-independence of q^{+}. On the contrary, in the \tilde{q}^{+}-language, the notion of $u_{i}^{ \pm}$-independence is kinematic. The theory is put onshell by the constrains (4.10) stating that \tilde{q}^{+}is "covariantly" analytic.

Let us emphasize that Eq. (4.8) in different descriptions comes out as a definition of different objects. In the λ-description it defines the bridge $e^{i v}$ while in the τ-description it defines the "prepotential" V^{++}. The expression of $e^{i v}$ in forms of V^{++}can be obtained iteratively, by a general recipe given by us for the $N=2$ gauge theory [10]. This solution is nonlocal in harmonics and is independent of a specific form of V^{++}.

Note that again in a close analogy with the $N=2$ Yang-Mills theory $[13,9]$ we may define the τ-representation of q^{+}-hypermultiplet in more abstract terms, namely, by adding to Eq. (4.10) the constraints

$$
\begin{align*}
\left\{\mathscr{D}_{\alpha}^{+}, \mathscr{D}_{\beta}^{+}\right\} & =\left\{\overline{\mathscr{D}}_{\dot{\alpha}}^{+}, \overline{\mathscr{D}}_{\dot{\beta}}^{+}\right\}=\left\{\mathscr{D}_{\alpha}^{+}, \overline{\mathscr{D}}_{\dot{\beta}}^{+}\right\}=0, \\
{\left[D^{++}, \mathscr{D}_{\alpha}^{+}\right] } & =\left[D^{++}, \overline{\mathscr{D}}_{\dot{\alpha}}^{+}\right]=0 . \tag{4.12}
\end{align*}
$$

Equations (4.10), with any $A_{\alpha(\dot{\alpha})}^{+}$composed of \tilde{q}^{+}and satisfying (4.12), are reduced after the redefinitions (4.7), (4.8) to the manifestly analytic Eqs. (4.5), (4.6), However, for (4.5) to be derivable from an action, V^{++}and, respectively, $e^{i v}$ and $A_{\alpha(\dot{\alpha})}^{+}$have to obey certain integrability conditions whose implications are not clear to us at the moment.

These considerations can be easily extended to the case of n hypermultiplets. Superfield q^{+a} (4.3) then acquires additional indices and so do V^{++}and $A_{\alpha(\alpha),}^{+}$, which become $2 n \times 2 n$ matrices.

In the next section the usefulness of the τ-representation will be illustrated by the $\left(q^{+}\right)^{2}\left(\stackrel{\star}{q}^{+}\right)^{2}$-example.

5

In the τ-description of q^{+}proposed above the basic geometric object is the composite spinor connection $A_{\alpha(\alpha)}^{+}(\tilde{q})$ restricted by the constraints (4.12), (4.10). On
the other hand, Sierra and Townsend [11] have given a different on-shell superfield formulation of q^{+}-hypermultiplet, also in terms of the ordinary constrained $N=2$ superfields. For one hypermultiplet their constraint is as follows [11]:

$$
\begin{gather*}
E_{j b}^{(i a}(\tilde{q}) D_{\alpha(\dot{\alpha})}^{k)} \tilde{q}^{j b}(z)=0, \quad \overline{\tilde{q}}_{j b}=\varepsilon_{j \ell} \varepsilon_{b c} q^{\ell c} \\
(i, j=1,2 ; a, b=1,2), \tag{5.1}
\end{gather*}
$$

where the real superfields $q^{j b}$ are assumed to parametrize a four-dimensional real Riemann space, $E_{j b}^{i q}(\tilde{q})$ is the corresponding inverse vielbein with the world indices $j b$ and the tangent space indices $i a$. In terms of $E_{j b}^{i a}$ the hyper-Kählerian geometry of self-interacting hypermultiplet manifests itself most clearly [11]. So it would be desirable to put our constraints (4.9)-(4.11) in the form (5.1). For the time being, we do not know whether it is always possible [the σ-models associated with the constraint (5.1) seem to require the $\mathrm{SU}(2)$ automorphism group to be unbroken while Eqs. (4.9)-(4.11) do not imply such a restriction]. Our aim here is to explicitly demonstrate that for the $U(2)$-case treated above this equivalence really takes place.

The relevant V^{++}is diagonal

$$
V^{++}=\frac{1}{i}\left(\begin{array}{cc}
\lambda q^{+} \stackrel{*}{q}^{+} & 0 \tag{5.2}\\
0 & -\lambda q^{+} \stackrel{*}{q}^{+}
\end{array}\right)
$$

and there arises an analogy with the Abelian $N=2$ gauge theory. Such a simplification allows us to obtain the bridge and spinor connections in a closed form

$$
\begin{gather*}
v=\frac{i \lambda}{2}\left(\tilde{q}^{+} \stackrel{\tilde{\tilde{q}}}{ }_{-}^{-}+\tilde{q}^{-} \stackrel{*}{\tilde{q}}^{+}\right), \quad \tilde{q}^{ \pm}=\tilde{q}^{i}(z) u_{i}^{ \pm}, \quad \stackrel{\rightharpoonup}{\tilde{q}}^{ \pm}=-\overline{\tilde{q}}^{i}(z) u_{i}^{ \pm} \tag{5.3}\\
A_{\alpha(\dot{\alpha})}^{+}=\left(\begin{array}{cc}
D_{\alpha(\dot{\alpha})}^{+} v & 0 \\
0 & -D_{\alpha(\dot{\alpha})}^{+} v
\end{array}\right) . \tag{5.4}
\end{gather*}
$$

Note that

$$
\left.\tilde{q}^{i}(z)\right|_{\theta=0}=f^{i}(x),\left.\quad i v\right|_{\theta=0}=\lambda \varphi(x, u),
$$

where f^{i} and φ are the same as in Eqs. (2.9), (2.10).
By means of some easy algebra the constraints (4.10) with $A_{\alpha(\dot{\alpha})}^{+}(5.4)$ can be reduced to

$$
\begin{gather*}
E_{k b}^{+a} D_{\alpha(\alpha)}^{+} \tilde{q}^{k b}(z)=0, \quad E_{k b}^{+a}=E_{k b}^{i a}(z) u_{i}^{+}, \tag{5.5}\\
E_{k b}^{i a}=\left(\begin{array}{cc}
E_{k 1}^{i 1} & E_{k 1}^{i 2} \\
E_{k 2}^{i 1} & E_{k 2}^{i 2}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{k}^{i}\left(1+\frac{\lambda}{2} \tilde{q} \overline{\tilde{q}}\right)-\frac{\lambda}{2} \tilde{q}_{k} \overline{\tilde{q}}^{i} & \frac{\lambda}{2} \overline{\tilde{q}}_{k} \overline{\tilde{q}}^{i} \\
-\frac{\lambda}{2} \tilde{q}_{k} \tilde{q}^{i} & \delta_{k}^{i}\left(1+\frac{\lambda}{2} \tilde{q} \overline{\tilde{q}}\right)+\frac{\lambda}{2} \overline{\tilde{q}}_{k} \tilde{q}^{i}
\end{array}\right) \tag{5.6}
\end{gather*}
$$

Taking off the zweibeins u_{i}^{+}from the right-hand side of (5.5) we may cast the latter equation just into the form (5.1). To achieve a complete agreement with [11], one should also take into account a freedom of rescaling (5.5) by a scalar function of \tilde{q}. It turns out that the hyper-Kähler properties become manifest in terms of the vielbeins

$$
\begin{equation*}
\widetilde{E}_{k b}^{i a}=(\operatorname{det} E)^{-1 / 6} \cdot E_{k b}^{i a}=\frac{1}{(1+\lambda \tilde{q} \tilde{q})^{1 / 2}} E_{k b}^{i a} \tag{5.7}
\end{equation*}
$$

One may explicitly check that the two-forms:

$$
\begin{equation*}
\Omega^{i j}=\widetilde{E}_{k b}^{(i a} \widetilde{E}_{\ell d}^{j) c} \varepsilon_{a c} d \tilde{q}^{k b} d \tilde{q}^{\ell d} \tag{5.8}
\end{equation*}
$$

are closed, constitute a $\mathrm{SU}(2)$-triplet, and are covariantly constant with respect to the connection constructed by the metric

$$
\begin{equation*}
q_{i b, k a}=\widetilde{E}_{i b}^{\text {jc }} \tilde{E}_{k a}^{e d} \varepsilon_{j l} \varepsilon_{c d} . \tag{5.9}
\end{equation*}
$$

These properties are just characteristic of a hyper-Kähler manifold. The purely bosonic metric defined as the θ-independent part of (5.9) exactly coincides with (2.16),

$$
g_{i k}(f)=\left(\begin{array}{cc}
\frac{\lambda\left(2+\lambda \varrho^{2}\right)}{2\left(1+\lambda \varrho^{2}\right)} \bar{f}_{i} \bar{f}_{k} & \varepsilon_{i k}\left(1+\lambda \varrho^{2}\right)+\frac{\lambda\left(2+\lambda \varrho^{2}\right)}{2\left(1+\lambda \varrho^{2}\right)} \bar{f}_{i} f_{k} \tag{5.10}\\
-\varepsilon_{i k}\left(1+\lambda \varrho^{2}\right)+\frac{\lambda\left(2+\lambda \varrho^{2}\right)}{2\left(1+\lambda \varrho^{2}\right)} f_{i} \bar{f}_{k} & \frac{\lambda\left(2+\lambda \varrho^{2}\right)}{2\left(1+\lambda \varrho^{2}\right)} f_{i} f_{k}
\end{array}\right)
$$

Thus, there exists a possibility to expose the structure of metrics associated with the q-self-couplings also in the τ-representation by passing to the constraints of the form (5.1). One may derive a general formula relating the vielbein $E_{j b}^{i a}$ to the bridge $e^{i v}$. However, to restore $e^{i v}$ by V^{++}is in general not easier than to compute the metric in the λ-representation. Perhaps, it would be more fruitful to deal at once with the $N=2$ Yang-Mills-like constraints (4.10), without transforming them to the form (5.1) or (and it would be most desirable) to learn how to reveal the geometric structures directly in the λ-representation which provides the natural framework for handling hypermultiplets.

In any case, there remains an actual and interesting task of computing the metrics for other self-couplings of q and ω-hypermultiplets by applying the straightforward method of Sect. 2. In particular, it is an intriguing question which self-coupling corresponds to the more familiar hyper-Kähler metric, that of Equchi and Hanson [14]. It appeared in the early investigations on supersymmetric hyper-Kähler σ-models and, like the Taub-NUT metric, exhibits U(2)invariance (see Note added in proof).

6
Finally, we discuss the most general self-interactions of hypermultiplets. The dimensionality and analyticity arguments seem to completely determine their form. Indeed let us start with the case $N=0$. The standard $N=0 \sigma$-model action is

$$
\begin{equation*}
S=\frac{1}{\kappa^{2}} \int d^{4} x g_{i j}(f) \partial_{a} f^{i} \hat{\partial}^{a} f^{j} \tag{6.1}
\end{equation*}
$$

where κ is a coupling constant (dimension mass ${ }^{-1}$), f^{i} are dimensionless and are considered as coordinates of some manifold. To pass from f^{i} to the physical scalar field one has to rescale it as $f^{i}=\kappa f_{\text {phys }}^{i}$. The metric $g_{i j}(f)$ is dimensionless and does not explicitly depend on κ.

Correspondingly in the $N=1$ case matter is described by dimensionless chiral superfields $\phi^{i}\left(\phi^{i}(x, \theta)=f^{i}+\theta \psi^{i}+\ldots\right)$ which again play the rôle of coordinates of some (Kähler) manifold. The most general $N=1 \sigma$-model action is

$$
\begin{equation*}
S=\frac{1}{\kappa^{2}} \int d^{4} x d^{4} \theta K(\phi, \bar{\phi}) \tag{6.2}
\end{equation*}
$$

The dimensional parameter κ enters again via the factor κ^{-2} and the structure of Lagrange density is controlled by dimension of measure $d^{4} x d^{4} \theta$.

As we know $N=2$ matter is represented by $N=2$ analytic superfields $q^{+}\left(z_{A}, u\right)$ and $\omega\left(z_{A}, u\right)$. Their θ-expansion again begins with geometric fields $f^{i}(x)$, so q^{+}and ω are dimensionless as well. Under the natural assumption that the most general $N=2 \sigma$-model is formulated via q^{+}or ω superfields, the only possible superspace action which results (after elimination of auxiliary fields) in (6.1) is

$$
\begin{equation*}
S=\frac{1}{\kappa^{2}} \int d z_{A}^{(-4)} d u \mathscr{L}^{(+4)}\left(q^{+}, \omega, u^{ \pm}, D^{++} q^{+}, D^{++} \omega, \ldots\right) \tag{6.3}
\end{equation*}
$$

where $\mathscr{L}^{(+4)}$ is dimensionless function of q^{+}, ω, harmonics $u^{ \pm}$and analyticity preserving derivatives $D^{++} q^{+}, D^{++} \omega$, etc. Note that $\mathscr{L}^{(+4)}$ cannot contain harmonic nonlocalitics ${ }^{6}$, because for analyticity such terms would inevitably include spinor derivatives $\left(D^{+}\right)^{4}$. The latter is forbidden by the above dimensionality arguments.

Thus, we conjecture that any hyper-Kählerian σ-model is supersymmetrized to some $\mathscr{L}^{(+4)}(6.3)$. This provides a technique to explicitly compute hyper-Kählerian metrics by choosing a Lagrangian and eliminating auxiliary bosonic fields ${ }^{7}$.

Concluding the paper we wish to emphasize the importance of establishing a classification of the hyper-Kähler metrics according to $N=2$ superfield Lagrange densities. The simplest case considered above is an example.

Appendix

We derive here a general conservation law for self-interacting q-hypermultiplets which may be useful in practical calculations.

We start with the most general q-hypermultiplet action containing no more than one harmonic derivative.

$$
\begin{equation*}
S=S_{\mathrm{free}}+S_{\mathrm{int}}=\int d z_{A}^{(-4)} d u\left[\stackrel{*}{q}+a D^{++} q^{+a}+\mathscr{L}_{\mathrm{int}}^{(+4)}\left(q^{+}, \stackrel{\rightharpoonup}{q}^{+}, u^{ \pm}, D^{++} q^{+}\right)\right] \tag{A.1}
\end{equation*}
$$

The relevant equations of motion are

$$
\begin{align*}
& D^{++} q^{+a}+\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial \tilde{q}^{+a}}-D^{++} \frac{\partial \mathscr{L}_{\mathrm{in}}^{(+4)}}{\partial\left(D^{++} \stackrel{+}{q}^{++a}\right)}=0 \\
& D^{++\frac{*}{q}+a}-\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial q^{+a}}+D^{++} \frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial\left(D^{++} q^{+a}\right)}=0 \tag{A.2}
\end{align*}
$$

[^3]Let us compute

$$
\begin{align*}
& D^{++} \mathscr{L}_{\mathrm{int}}^{(+4)}=\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial q+a} D^{++} q^{+a}+\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial q^{++a}} D^{++\frac{*}{q}+a}+\frac{\partial \mathscr{L}_{\mathrm{in}}^{(+4)}}{\partial\left(D^{++} q^{+a}\right)}\left(D^{++}\right)^{2} q^{+a} \\
& +\frac{\partial \mathscr{L}_{\mathrm{in}}^{(+4)}}{\partial\left(D^{++} \stackrel{*}{q}^{+a}\right)}\left(D^{++}\right)^{2} \stackrel{\frac{*}{q}+a}{+}+\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial u^{-i}} \cdot u^{+i} \\
& =D^{++}\left\{\frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial\left(D^{++}{ }_{q}^{*+a}\right)} \frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial q^{+a}}-\frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial\left(D^{++} q^{+a}\right)} \cdot \frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial \stackrel{*}{q}+a}\right. \\
& \left.+\frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial\left(D^{++} q^{+a}\right)} \cdot D^{++} \frac{\partial \mathscr{L}^{(+4)}}{\partial\left(D^{++}{ }_{q}^{++a}\right)}-\frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial\left(D^{+++} q^{++a}\right)} \cdot D^{++} \frac{\partial \mathscr{L}^{(+4)}}{\partial\left(D^{++} q^{+a}\right)}\right\} \\
& +\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial u^{-i}} u^{+i} \text {. } \tag{A.3}
\end{align*}
$$

Using once more Eqs. (A.2), we observe that the quantity

$$
\begin{equation*}
T^{(+4)}=\mathscr{L}_{\mathrm{int}}^{(+4)}-\frac{\partial \mathscr{L}_{\mathrm{in}}^{(+4)}}{\partial\left(D^{++} q^{+a}\right)} \cdot D^{++} q^{+a}-\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial\left(D^{++\frac{+}{q}}{ }^{+a}\right)} D^{++\frac{*}{q}+a} \tag{A.4}
\end{equation*}
$$

obeys the conservation-like identity,

$$
\begin{equation*}
D^{++} T^{(+4)}=\frac{\partial \mathscr{L}_{\mathrm{int}}^{(+4)}}{\partial u^{-i}} u^{+i} \tag{A.5}
\end{equation*}
$$

which becomes exact if $\mathscr{L}_{\text {int }}^{(+4)}$ contains no explicit u^{-}-dependence.

$$
\begin{equation*}
u^{+i} \frac{\partial \mathscr{L}_{\text {int }}^{(+4)}}{\partial u^{-i}}=0 \Rightarrow D^{++} T^{(+4)}=0 . \tag{A.6}
\end{equation*}
$$

Equation (A.6) implies that in coordinates of the central basis,

$$
\begin{equation*}
T^{(+4)}=T^{(i j k e)}(z) u_{i}^{+} u_{j}^{+} u_{k}^{+} u_{e}^{+} . \tag{A.7}
\end{equation*}
$$

In the case when $\mathscr{L}_{\text {int }}^{(+4)}$ does not contain derivatives, $T^{(+4)}$ coincides with $\mathscr{L}_{\text {int }}^{(+4)}$. This conservation law is especially simple for $\mathrm{U}(2)$-invariant coupling (2.1):

$$
\begin{equation*}
D^{++}\left[\left(q^{+} \frac{*^{+}}{q}\right)\right]^{2}=0 \Rightarrow D^{++}\left(q^{+} \frac{\stackrel{*}{q}^{+}}{}\right)=0 . \tag{A.8}
\end{equation*}
$$

An interesting point about the conservation law (A.6) is that it can be related by the standard Noether procedure to the invariance of action (A.1) with respect to the following transformations

$$
\begin{gather*}
\delta u_{i}^{-}=c^{--} u_{i}^{+}, \quad \delta u_{i}^{+}=0, \\
\delta x_{a}^{m}=-2 i c^{--} \theta^{+} \sigma^{m} \bar{\theta}^{+}, \quad \delta \theta^{+}=\delta \bar{\theta}^{+}=0, \tag{A.9}\\
\delta^{*} q^{+}=-c^{--} D^{++} q^{+} \tag{A.10}
\end{gather*}
$$

provided c^{--}is a double $\mathrm{U}(1)$ charged constant independent of u $\left(D^{++} c^{--}=0, c^{--} \neq 0\right.$). Such a constant looks rather unusual. However, one may recall the familiar isospin transformations. Here, e.g. in the transformation of
proton via neutron $\delta p^{(+)}=i \alpha^{(+)} n^{(0)}$, parameter $\alpha^{(+)}$also has an electric charge +1 . We prefer to postpone a discussion of the exact meaning of transformations (A.9), (A.10) to the future.

Acknowledgements. We are sincerely thankful to A. Perelomov, A. Rosly, A. Schwarz, and B. Zupnik for useful discussions

References

1. Zumino, B.: Supersymmetry and Kähler manifolds. Phys. Lett. 87B, 203-206 (1979)
2. Alvarez-Gaume, L., Freedman, D.Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model. Commun. Math. Phys. 80, 443-451 (1981)
3. Bagger, J., Witten, E.: Matter couplings in $N=2$ supergravity. Nucl. Phys. B 222, 1-10 (1983)
4. Grisaru, M., Rocek, M., Karlhede, A.: The super-Higgs effect in superspace. Phys. Lett. 120B, 110-119 (1982)
5. Nilles, H.P.: Supersymmetry, supergravity, and particle physics. Phys. Rep. 110, 1-162 (1985)
6. del Aguila, F., Dugan, M., Grinstein, P., Hall, L., Ross, G., West, P.: Low-energy models with two supersymmetries. Nucl. Phys. B 250, 225-251 (1985)
7. Curtright, T.L., Freedman, D.Z.: Nonlinear σ-models with extended supersymmetry in four dimensions. Phys. Lett. 90B, 71-74 (1980)
Alvarez-Gaumé, L., Freedman, D.Z.: Ricci-flat Kähler manifolds and supersymmetry. Phys. Lett. 94B, 171-173 (1980);
Morozov, A., Perelomov, A.: HyperKählerian manifolds and exact β-functions of twodimensional $N=4$ supersymmetric σ models. Preprint ITEP-131, Moscow, 1-56 (1984)
8. Lindstrom, U., Rocek, M.: Scalar-tensor duality and $N=1,2$ nonlinear σ-models. Nucl. Phys. B 222, 285-308 (1983)
9. Galperin, A., Ivanov, E., Kalitzin, S., Ogievetsky, V., Sokatchev, E.: Unconstrained $N=2$ matter, Yang-Mills and supergravity theories in harmonic superspace. Class Quantum Grav. 1, 469-498 (1984)
10. Galperin, A., Ivanov, E., Ogievetsky, V., Sokatchev, E.: Harmonic supergraphs. Green functions and Feynman rules and examples JINR prep-s E2-85-127, 1-24, and E2-85-128, 1-20
11. Sierra, C., Townsend, P.: The gauge-invariant $N=2$ supersymmetric σ-model with general scalar potential. Nucl. Phys. B 233, 289-306 (1984)
The hyperKähler supersymmetric σ-model in six dimensions. Phys. Lett. 124B, 497-500 (1983)
12. Eguchi, T., Gilkey, P., Hanson, A.: Gravitation, gauge theories, and differential geometry. Phys. Rep. 66, 213-393 (1980)
13. Rosly, A., Schwarz, A.: Geometric origin of new unconstrained superfields. In: Proceedings of III Int. Seminar "Quantum Gravity" (Moscow, October 1984)
14. Eguchi, T., Hanson, A.: Self-dual solutions to Euclidean gravity. Ann. Phys. 120, 82-106 (1979)
15. Galperin, A., Ivanov, E., Ogievetsky, V., Townsend, P.K.: Eguchi-Hanson type metrics from harmonic superspace. Preprint JINR-E2-85-732, 1-15 (submitted to Class Quantum Grav.)

Communicated by S. W. Hawking

Received September 10, 1985

Note added in proof. Recently [15] we have found harmonic superspace actions corresponding to a wide class of hyper-Kähler metrics including multi-Eguchi-Hanson and Calabi ones. In particular, the familiar Eguchi-Hanson metric [14] is described by the following ω-hypermultiplet action

$$
S_{E H}=-\frac{1}{4 x^{2}} \int d z_{A}^{(-4)} d u\left[\left(D^{++} \omega\right)^{2}-\left(\xi^{++}\right)^{2} \omega^{-2}\right], \quad \xi^{++}=\xi^{i j} u_{i}^{+} u_{j}^{+}
$$

with $\xi^{i j}$ being constants.

[^0]: 1 We mean the supermultiplets with the propagating spins $0,1 / 2$

[^1]: 2 As well as $N=2$ Yang-Mills and supergravity theories

[^2]: 4 This has to be compared with the $N=1$ case where the Kähler properties are manifest already at the level of off-shell $N=1$ superfield action. Elimination of auxiliary fields there does not influence the form of the bosonic Lagrangian
 5 Besides this, extra $\widetilde{\mathrm{SU}}(2)$ group effectively reduces also the number of independent coupling constants in (4.2) from 5 to 2

[^3]: 6 E.g. like those occurring in the $N=2$ Yang-Mills action [10]
 7 Recently Rosly and Schwarz [15] have suggested a geometric action for hyper-Kähler supersymmetric σ-models in the analytic $N=2$ superspace starting with the Sierra-Townsend approach [11], where hyper-Kähler metrics are assumed to be given in advance

