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Abstract. The present paper contains a systematic study of several linked
singularities in condensed matter. We introduce a hierarchy of conservation
laws in terms of differential forms corresponding to a sequence of linking
invariants so that we can distinguish nontrivial links possessing zero Gauss
linking coefficients. We obtain a set of topological obstruction rules for links in
nematics, cholesterics, and superfluid 3He and 4He.

Introduction

Line defects or disclinations, which are made visible in liquid crystals by polarized
light, have been known in condensed matter physics since the discovery of
nematics by F. Reinitzer and O. Lehmann in the late 80-ies of the last century (as to
a modern presentation, and references, see [1, 2]). In fact, the term nematic is a
graphic description (the greek word vημa) of the phenomenon. G. Friedel in his
classical paper [3] found a partial explanation for the nature of such singularities.
However, their systematic study was undertaken only in the 70-ies. In this respect
the following results are worth mentioning: the phenomena of linked singularities
observed experimentally by Bouligand [4], the topological approach based on
homotopy groups first suggested in the paper [5] and, next, the linking of two
defects investigated later by Poenaru and Toulouse [6, 7], using the concept of
supergraduation of homotopy groups (the Whitehead product). This approach
was also used in [8].

The present paper contains a systematic study of several linked singularities.
Here it is worthwhile to note that the relevant theory, from the topological point of
view, is the familiar theory of links, but with a view to physical applications we
should take into account new structures related to thermodynamical problems
requiring the introduction of the order parameter.

Our main results are the following:
1. We introduce a hierarchy of conservation laws in terms of differential forms

corresponding to a sequence of linking invariants so that we can distinguish
nontrivial links possessing zero Gauss linking coefficient.
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2. We obtain a set of topological obstruction rules for links in nematics,
cholesterics, and superfluids 3 He and 4 He. In particular, we should like to point
out the case of 3He. Let us recall that the order parameter of superfluid 3 He is a
complex 3 x 3 matrix subject to constraints required by the choice of a superfluid
phase, and the minimization of the magnetic energy which can be cast in the form

p q p q

Next, if the matrix of the order parameter has three different eigenvalues, then
under the conditions indicated above the spin part of the order parameter is
degenerate, and consists of three interlinked curves corresponding to the
eigenvalues of the matrix Λpa.

Another example of a link in superfluid 3 He is provided by vortices
corresponding to the orbital part of the order parameter. It is worth noticing that
the topology of the vortices is the same as that of singular lines in nematics.

The paper is arranged as follows. In Sect. 1 we indicate the mathematical
setting for defects in condensed media and introduce the concepts of homotopical
and isotopical links. In Sect. 2 the standard linking theory is introduced using the
Milnor coefficients. In Sect. 3 the general theory of Sects. 1 and 2 is applied to
physical systems: nematic, biaxial nematic, cholesteric, and superfluid 3He. All
these systems are characterized by the fundamental group πγ(V) of the order
parameter V. The most difficult case is the biaxial nematics and cholesteric, for in
these cases, π x (F) is nonabelian. In Sect. 4 invariants of links are constructed via
differential forms. To this end special cohomology operations (Massey products)
are used. In the conclusion some possible physical applications of our work are
discussed. It should be noticed that the mathematical apparatus used in this article
is highly nonconventional and its presentation is rather scattery (see e.g. the
excellent book [10]). To make this paper as selfcontained as possible we included a
short summary of the necessary topological facts.

We expect the approach worked out in this paper will be useful for physical
problems in which the sophisticated structures of links, singular lines, surfaces, and
n-dimensional structures are of primary importance.

1. Links and Defects

1.1. Topological Nature of Defects1

A set { of closed non-self-intersecting curves / 1 ? ...,/n in S3 or R3 is called a link.
Let us fix a point * outside L We shall call the ith meridian of the link ( a non-self-
intersecting loop mb beginning at the point *, contained in the complement to the
set formed by curves of the link, so that *ff intersects some surface bounded by mi at
precisely one point, while none of the other £j have any common points with this
surface. Evidently, the loop mt can be chosen arbitrary narrow.

Let us consider a manifold M, the physical space of the system, and the
manifold V of the order parameter space. Let Φ be a continuous map of the
complement of a subset Σ in the manifold M into the order parameter space. The
set Σ is called the defect of Φ.

1 In this paper we reserve the term "map" for continuous maps only
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Definition 1.1. The defect Σ is essential for Φ if there is no continuous extension of
Φ to any small disk intersects Σ.

Let us suppose that M = S3, and Σ = / = (ίu ...,ίn) is a link.

Definition 1.2. The link ί is called a meridional-essential (m-essential) defect if
Φ{m^) is not contractible to a point 2 in V for all mi (l^i^n).

It should be noted that an m-essential defect is essential. In fact, suppose that
Σ = i is not an essential defect. Then on one of the curves /y of/, we can find, a point
such that Φ can be extended to its neighbourhood. In this neighbourhood let us
choose a meridian m 3 and a surface g bounded by m 3 so as to have Φ defined on g.
Consequently, the image of the surface g:Φ(g) is contractible and Σ is not
m-essential. Thus we see that the m-essential defect is essential. On the contrary for
M = S3 and Σ = ί, any essential defect is m-essential in many physically important
cases. A rigorous treatment of the subject requires the following definitions.

Definition 1.3. Consider a map Φ:M\Σ^>V. We define a map Φf.M\Σ->V
homotopically close to Φ if:

i) Φ' is homotopic to Φ,
ii) Φf coincides with Φ outside a sufficiently small neighbourhood of one of

meridians.
We denote the set of such maps {Φf} as HC(Φ).

Definition 1.4. An essential defect Σ of the map Φ is stable if I1 is an essential defect
for any Φ'eHC(Φ).

Theorem 1.5. Let M = S3 and an essential defect related to the link ( = Σ be stable for
the map Φ: S3\Σ->V. Then defect Σ is m-essential.

Proof. Suppose that Σ is not m-essential, i.e. there exists a curve ί} in the link / with
contractible Φ(mj). Let Φ be the restriction of Φ to my, there is an extension φ of Φ
to a surface g bounded by m/. It is easy to construct a map Φ' of gv(S3\Σ) extending
φ and homotopic to Φ on S3\Σ\ We can choose m} so narrow that the restriction Φ'
on S3\Σ belongs to HC(Φ). Since /,- intersects the surface g, the defect Σ is not
essential for Φ'. This circumstance contradicts the stability of Σ and proves the
theorem.

The arguments used above are useful for studying other properties of defects
generated by links of curves. Let us recall the definition of the parallel to the loop /,-
[13]. An iih parallel 7i of/ with respect to the path p{ obtained by traversing pt from
* to a sufficiently narrow tubular neighbourhood of ί{ then traversing along f{ with
linking coefficient zero and finally returning to * along pt. The choice of pt is not
essential for the definition. We suppose also that the parallel 7t is contracted in

Definition 1.6. Let Φ: S3\f-^ V. The defect Σ = £ is called strongly essential for the
map Φ if Σ remains essential for any map Φ': S 3\/->F homotopic to Φ.

Theorem 1.7. //' Σ = £ is a strongly essential defect of the map Φ and the curve t{ of a
link { cannot be separated from other curves by a homeotopic image of a two
dimensional sphere, then Φ{7ι) is not contractible in V.

2 Hereafter the term contractible means contractible to a point
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Fig. 1. Trivial link (disjoint circles £γ and

Fig. 2. Linked circles k(Sί9S2)= 1

Fig. 3. Borromean rings

Proof. Let us suppose that Φ(^) is contractible in V. Then the restriction Φ on 7{

extends to a map ψ of a surface g, bounded by /f. Consider a homotopy of Φ into
the map Φ' which coincides with i/> on the intersection gn(S3\Σ). If the curve t{

cannot be separated from the other curves, then at least one curve /,- with j Φ i
intersects the surface g. It follows that Σ is not an essential defect of the map Φ\ and
by definition is not a strongly essential defect. This proves the theorem.

1.2. Model Examples

Let Φ: S3y-> F be a map into the parameter order space with a defect Σ formed by
link {. Let us consider four model examples.

Example 1.8 (Fig. 1). The link consists of two unlinked circles. In this case parallels
of the link are contracted in S3\f and hence, for any essential defect their images are
contracted.

Example 1.9 (Fig. 2). The link is constructed by means of the simplest linking of
two closed curves with the Gauss coefficient f. It is obvious that a parallel to one of
the curves is homotopic to a meridian of the other one. Hence, in this case the
m-essential defect results in the non-contracting of the parallel images in V.

Example 1.10 (Fig. 3). The link i is a well known Borromean rings. It consists of
three closed curves that can be split by cutting one of them. Here the parallel of one
of the curves, e.g. /3, is homotopic to the commutator of the meridians of two
others: Iz ~ \mum^\ = mγ m2, mϊ1 -m^x. It is evident that when the fundamental
group of the order parameter space is commutative the parallel images are
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Fig. 4. Whitehead's link

contracted in V. If, however, πx(F) is non-commutative then the situation can be
more complicated.

For example, the fundamental group of a biaxial nematic or a cholesteric
consists of 8 elements ±eί9 ±e2, ± e 3 , J, 1 with relations e\ = e\ = e\ = J, J2 = l,
Jeί = eiJ= — et (i = 1,2,3), eίe2e3 = J. (For details see Subsect. 3.5 and [6].) The
centre of this group consists of two elements J and /. Therefore, if a defect is the
Borromean rings and the images of all parallels and meridians are non-contractible
in F, then the images of meridians m l9ra2, m3 are homotopic up to renumeration
±eu ±e2, ±e3, and Φ(^) is homotopic to J for all i.

It is important that, although the Gauss linking coefficient for any two curves
of the Borromean rings is zero, the properties of /, as it is easy to see, drastically
differ from the three unlinked closed curves.

Example 1.11 (Fig. 4). Our last example is the well known Whitehead link ( of two
curves ίx and ί2. ^n this case the Gauss coefficient of the link t is also equal to zero.
But the topological properties of this link are considerably different from the trivial
link in Example 1.8. The parallel / 2 in the Whitehead link is homotopic to the
product of commutators of meridians \m{ \ m2] ° [m1? m2]. Consequently if πx(F)
is commutative, Φ(/2) *s contractible in the case of any essential defect. It is
worthwhile to note that Φ(/2) is also contractible for biaxial nematic and
cholesteric, even though π^V) is not commutative.

It follows from the previous considerations that the topological properties of
the map depend essentially on the structure of the defect. The knowledge of the
Gauss coefficient is not sufficient for characterizing the structure of the defect. In
the following sections we will construct the so-called higher linking coefficients,
distinguishing between Borromean, Whitehead, and trivial links.

Some formulae for different homotopic classes of parallels in terms of
homotopic classes of meridians have been given by Rolfsen [10] and Porter [11].

2. General Theory of Links

2.1. Homotopic and Isotopίc Properties of Links

Two links / = (/l5 ...,/J a n d ^' = (̂ i> >O a r e called homotopic if there is a
/-parameter family of maps ht from the space C(ή) consisting of n disjoint oriented
circles in the three-dimensional sphere S3 such that for each t the disjoint circles in
C(n) have disjoint images in S3, ho(C(ri)) = ί, hΐ(C(n)) = ̂ \ The curve <{ is
homotopically inlinkable with other components of/ if / is homotopic to a link {'
with ί\ contractible to a point.
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Two links S = (ίl9 ...,/„) and S' = {ί'l9 ...,ζ) are called isotopic if there is a
/-parameter family of maps ht from C(rc) to S3 such that ht(C(ή)) is a link for any ί,
ho(C(n)) = £, hί(C(ή)) = //. A curve i{ is isotopically unlinkable with other
components of £ if it can be separated by a homeomorphic image of the two
dimensional sphere S2 from other components.

A link *f = (*fl5 ...,*fn) is homotopically trivial if it is homotopic to a link
consisting of n points. A link £ is isotopically trivial if its every component is
isotopically unlinkable with the other ones.

From the physical point of view "unlinkability" of links means its isotopical
"unlinkability." Homotopical unlinking allows self-intersection of a curve which
"cost an energy." Homotopical "unlinkability" is rougher than the isotopical one.

Example 2.1. The Borromean rings are not homotopically trivial though each pair
of it components is isotopically trivial.

Example 2.2. The Whitehead link is not isotopically trivial but it is homotopically
trivial.

It is possible that, for a pair of two curves £γ and /2, £γ is homotopically
unlinked with /2, but t2 is not homotopically unlinked with tγ (see [10, p. 69]).

The simplest linking invariant for two oriented closed curves /1 ? ί2

 m S3 is the
Gauss linking coefficient k{ίuί2) [10] defined by the Gauss integral. For the
simplest link on Fig. 2 k(£ί9£2) = l9 and for the Whitehead link in Fig. 4
k(Sl9S2) = 0. Note, that k(Sl9S2) = 0 if Sx and {2 are homotopically unlinked.
However, the Whitehead link shows that for isotopically linked curves this
coefficient may be equal to zero. We shall describe in Subsect. 2.3 and Sect. 4 some
higher order linking coefficients which allow us to solve the problem of
homotopically and isotopically unlinking. The corresponding definitions are
based on the properties of the Gauss coefficients of a link { in S3 [10].

2.2. The First Order Mίlnor Coefficients

Let ( = (/1?..., O be a link in <S3. For this special case let us choose a point * in the
complement to /. Let us explain the meaning in which the homotopy classes of
meridians are generators of the group π^S^V). To be more exact we assume every
curve to be oriented. The orientation of a curve determines the orientation of its
parallel and its meridian. The parallel inherits the orientation of the curve and the
meridian m{ is so oriented that k(/i9 m^) = 1.

Let us consider for an arbitrary group a lower central series (LCS) of subgroups
G1DG2DG3D ... determined by the following rule :G1 = G and Gn + x is a subgroup
of G generated by the products xyx~1y~1

9 where x e G, y e Gn. The minimal s, for
which Gs consists of the unit element only, represents the measure of non-
commutativity of the group G. If such s exists the descending chain condition is
fulfilled. In particular, for a commutative group such s is equal to 2. For the
fundamental group of the order parameter space of a biaxial nematic the
corresponding s equals 3. It should be noted that all Gt are normal subgroups of G.

For G = π1(S3\/) the homotopical classes of meridians m1?...,mΠ are gen-
erators of the factor-group G/Gs for s^l . Strictly speaking, the following
proposition is valid.
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Proposition (Milnor's theorem [11]). For any q there exists such a map a of a free
group F of noncommutίng variables xu ...,xn on G = π1(S3Y) that:

i) α(X/) is equal to the homotopy class of mt;
ii) a induces isomorphism between F/Fq and G/Gq;

iii) if oi(yt) is equal to the homotopy class of a parallel Ib then [xb y j = 1.

Let us determine the Milnor coefficient. Let έ = (£ί9 ...,*fn) be a link in S3.
Choose q = n in the Milnor theorem. Let μ(ί9j) be the sum of powers of the
generators xt of the group F in the decomposition of the elements yj for i φ;. For
example, for the Borromean rings we have μ(l, 3) = μ(2,3) = 1 — 1 = 0. The numbers
μ(i J) are called Milnor coefficients of the first order for the link f. They do not
depend on the choice of parallels and meridians. Milnor shows [12] that μ(ij)
= k(ij). We recommend that the reader check the theorem by model examples. It is
shown [12] that for a link of two curves ίγ and (2 the equality μ(l,2) = 0 is
necessary and sufficient for its homotopic unlinking. The Whitehead link shows
that for isotopical unlinking this condition is not sufficient.

2.3. The Higher Order Milnor Coefficients

Let ( = (/1?..., O - be a link in S3. The first order Milnor coefficients, introduced
in the previous subsection are determined by the representation of homotopic
classes of parallels through homotopic classes of meridians. They are, however,
very rough characteristics of such representations. Indeed, in the case of two-
component links the formula μ(l,2) = 0 is valid for the trivial link and the
Whitehead link, which is isotopically unlinked. For the Borromean rings
{= (βγj2J^ μ(ij) = 0 for l ^ i , j ^ 3 , but this link is not trivial even in the
homotopical sense. In order to distinguish between such links Milnor [12, 13]
introduced higher order linking coefficients.

In the terminology of the previous subsection, we construct a homomorphism
θ of the free group F with generators x l 5 ...,xn into the multiplicative group of
formal power series with integral coefficients of concommuting variables xl9...,xn

whose constant term is L Put Θ(xi) = l + Z i . It is evident that Q{x^γ)
= 1 — Xt + Xf — ... for 1 ̂  i ̂  n. Let us determine the Milnor coefficient of the order
p—\ for p^2. Consider the set of indices l ^ ί l 9 ...,ip<|n. Let yip be element
transformed into the class of the parallel fip. We denote μ(il9...9 ip) the coefficient of
the monomial XiίXi2 ...Xip_ίin the formal series θ(yip). This is the (p - l) t h Milnor
coefficient. It is evident that the way of determining μiiγΛi) presented in this
subsection and in the previous one coincide. Now we shall present the values of the
second and the third order Milnor coefficients for our model examples. For the
Borromean rings μ(l, 2, 3) = 1, μ(2,1,3)=— 1. For the Whitehead link μ(l, 2, 2, 1)
= μ(l,l,2,2) = l , μ ( l , 2 , l , 2 ) = - 2 , . . . [11].

Milnor [12, 13] has shown that the numbers μ(i1,...Jp) are uniquely
determined modulo the number μ(/ l9 ...Jβ), where (ju ...Jq) is an arbitrary set of
numbers from the set (ίί,..., ip) for q < p. In particular, if μ{j1,... Jq) = 0 for all such
sets, the number μ(il9...,ip) is determined uniquely. In the general case we consider
the image μ(z1,..., ip) in the group ΈjμΈ. Here μ is the maximal common divisor of
the numbers μ(/Ί,... Jq) (here q ̂ p — 1). This image is denoted by μ(iί9..., ip) and is
called the Milnor coefficient of the order p — 1 for the link £.
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The Milnor coefficients μ(il9..., ip) are homotopy invariants of a link in the case
where there are no equal numbers in the set ( ί l 9 . . . , ip). In the opposite case the
coefficients μ(iu...,ip) are only isotopy invariants. Moreover, the link
/ = (/1? . . ./„) is homotopically unlinked iff all μ(iu ..., ip) = 0 for p^n when there
are no equal numbers in the set (il9...,ίp). Therefore, for the homotopical
unlinking it is sufficient to examine the vanishing only of a finite set of numerical
invariants.

A different situation arises in the isotopical case. It is evident that for
isotopically trivial link έ β(iu ..., ip) = 0 for any set (iu ..., ip). The converse is not
true, in general [13].

It is worthwhile to note that there exists a certain interrelation between the
Milnor coefficients. The simplest one is the following:

For other relations see [12, 13].
It is worthwhile to note that for a link of two curves the vanishing of the first

order Milnor coefficient implies the vanishing of the second one. This fact is
illustrated by the Whitehead link. Massey appears to have noticed the circum-
stance in the paper [14] which, regretfully, has not been available to the authors.

3. The Homotopy Properties of Maps into the Parameter Order Spaces

In this section we consider a map Φ: S3\Σ-> V with the defect Σ which is equal to
the link € = (/1?..., /„). We study the homotopy classes of the images Φ{7^ where I{

is a parallel of ίb in connection with the properties of Φ(mt ), where m{ is a meridian
of (^ using the Milnor coefficients. To obtain more specific information about
these properties, we restrict the class of the order parameter spaces. Let us denote
the basic point of V by Φ(*).

3.1. The Properties of Φ for the Finite Lower Central Series

Let us consider the LCS of πx{V). The constraint for LCS to be finite is valid for all
known order parameter spaces. For such spaces we have the following result.

Theorem 3.1. a) The homotopy classes of Φ{m^) and Φ(/j) commute for every

b) // every Φ{m^) can be contracted in V then every Φ(t^) can also be contracted.
c) If every Milnor coefficient for { is equal to zero then Φ{βι) can be contracted

in V for l^i^n.

Proof. The Milnor theorem from Subsect. 2.2 immediately implies the
condition a).

If the parallel 7X can be contracted in iS3\/ then Φ(Ij) can be contracted in V. Jί^i

cannot be contracted in S3y, then the Milnor theorem implies that in nx{V) the
homotopy class of Φ(/j) is equal to a product of homotopy classes of the images of
meridians. So, if every Φ(mj) can be contracted in V, the same is true for every Φ ^ ) .
This proves b).
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The proof of c) is based on Subsect. 2.3.
In the following section we mention the connections between the values of

linking coefficients and the properties of some physical systems and their order
parameter spaces F. We consider the following examples:

1. π^F) = Z. The considered physical system is superfluid 4He. Here the links
consist of Abrikosov vortices.

2. π1(V) = %2- The physical system is nematic, F = R P 2 i.e. the real projective
plane. The order parameter space V for the superfluid ^4-phase for 3He under the
spin orbital interaction Fa has the same fundamental group. Here F=SO(3).

3. π1(V) = Έ4. The corresponding physical system is v4-phase of 3He,

4. π^F) equals to the group of quaternion units Q, and so π t(F) is non-
commutative. In this case the corresponding physical systems are biaxial nematic
and cholesteric and F=SO(3)/^2 where 3)2 is the diedral group.

The identification of the order parameter space in these examples was obtained
by many authors. The details can be found in the reviews [16,17] as well as in the
Poenaru lectures [18].

3.2. πx(F) is Commutative

Theorem3.2. Fix l^i^n.If μ(ij) = k(tb/,) = 0 for 1 ̂ j^n, iή=j, then the image of
the parallel t\ can be contracted in V.

Proof. Let G = π1(S3Y). The homotopy class of 7X equals some product Π of
homotopy classes of meridians in the factor group G/Gn. We can choose t{ so that
the sum of powers in which the homotopy class of m{ entries in Π equals to zero.
The same is true for other meridians because μ(ίJ) = 0 for every Φ/. From the
commutativity of πx(F) we conclude that the map induced by Φ sends the group Gn

to zero, so Φ(lt) is homotopic to a product of some powers of Φ(mj), 1 ̂ j ^ n. The
sum of powers in this product is zero, so Φ(7t) can be contracted in V because of the
commutativity of nx{V).

3.3. nί(V) = Z2

In this case we can strengthen Theorem 3.2.

Theorem 3.3. Fix l^i^n. Let the defect Σ be m-essential. The loop Φ(^) can be
contracted in V iff

Proof. As in Subsect. 3.2 we can show that Φ(^) is homotopic to the product

Φ(mi)
μii>1)...Φ(mn)

μ(i'n)

9

where μ(i, ϊ) = 0.
Let ί be a loop in V whose homotopy class is a generator in π^F). Let

n
s = Σ KUj) Of course, Φ(m^ is homotopic to t for every i, because the defect is
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m-essential. So Φ(^f) is homotopic to f and the loop f can be contracted iff
SΞΞθmod2.

Example 3.4. Let us illustrate the theorem for £ = / = (/1 ?/2). If Φ(^Ί) can be
contracted in V then the linking coefficient k(ίu ί2) *s e v e n HWu ̂ 2) ̂  1 for some
energetic reasons (only such links appeared in the Bouligand experiments [4]) then
K^u^2) = Q> s o Λ a n d ̂ 2 a r e homotopically unlinked.

3.4. πί(V) = %4

We have the following modification of Theorem 3.3.

Theorem 3.4. Let the a loop in V whose homo top y class is a generator inπ^V). Let
Φ(mj) for every j be homotopic to the loop fu\ where 0 ̂  s(j) ̂  3. Then Φ{7i) can be
contracted in V iff

Σ 50>μ(U) = 0mod4.
7 = 1

3.5. V is the Order Parameter Space for Biaxial Nematic and Cholesteric

In this case, πγ(V) is equal to the unit quaternion group Q, it has 8 elements + eu

±e2, ±e3, J, 1 and the relations ef = J, J2 = l, eJ^Je^ —eb e1e2e3 = J
0=1,2,3).

It is evident that
i) J commutes with every element of Q and commutator of πx(V) has only two

elements, 1 and J.
ϋ) β.(- e i) = l f o r i = l , 2 , 3 .
iii) efi^i-efotoτ i+j.
iv) g* = 1 for every g e πγ{V).
By Theorem 3.1 we have for a map Φ: S3\Σ -+ V with Σ = t{βγ,..., /„) that Φ(m^

and Φ(ίi) homotopically commute in V for every I Consequently, if Φ{mi) is
homotopic to + ek9 then Φ(^) may be homotopic to ± ek, J or 1 only.

The property iii) implies that every Φ(I^) may be homotopic to 1, J or to the
product

± Π(?/ y

This implies the following result.

Theorem 3.5. Let ^ = (tf1,tf2) and the defect Σ = i be m-essential. Denote by h the
homotopy class of Φ(mx\ then Φ(l2)

 can be contracted in V iff:

μ(l,2) = 0mod4 when h=±et for some i= 1,2,3,

μ(l,2) = 0mod2 when h = J.

For the links of three circles we have

Theorem 3.6. Let Σ = £ = (£1,£2,£3) and Φfai) and Φ(m2) do not homotopically
commute in V. Then Φ(/3) can be contracted in V iff:
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Fig. 5. Four component links

4. The Differential Forms and the Higher Order Linking Coefficients

In this section we define, using the differential forms, a lot of cohomological
onstructions to the unlinking of a link ί = (/1?.. .,ίn) in S3. V. Poenaru noted in his
preprint "Superalgebras and confinement in condensed matter physics" that the
Sullivan model [19] may be used for measuring the nontriviality of the Whitehead
link ί = {ίuί2). Sullivan's model in this case is also based on studying the
differential forms on S3y. This construction includes the special graded different-
ial skew-commutative algebra. On the contrary, our method is based on the
straightforward calculation of differential forms on S3γ. We think that this
method is simpler and more natural for physical applications.

The mentioned cohomological obstructions carry more information than the
Alexander polynomials usually used by physicists [20]. For example, for the link
on Fig. 5 the corresponding Alexander polynomial vanishes, but this link is
homotopically unlinked. The Stallings conjecture, which was proved in [11] and
[23] connect these cohomological obstructions with higher order Milnor
coefficients.

Let £ — (/1? i2). Consider a surface S2 bounded by ί2. It is w e U known [10] that
the intersection index for t\ and S2 equals the Gauss linking coefficient k(β γJ2\
We use this definition of k{έ\J2) to connect it with differential forms.

Let ut be a differential 1-form which is the Alexander dual of the circle t{. This
form is defined on S3\ίb it is closed and

for any closed curve c from the S3Yt. (This is the characteristic property of wf.) The
cohomology class of ut is determined uniquely.

Let Bi9 ί= 1,2 be the boundary of some tubular neighbourhood of f{. Suppose
that Bt does not intersect the other circle. Then3

J uγu2=- \ uιu2 = k{ίιj2).

We need the cohomology with compact support for determination of /c(/l5 /2)
using the integration of densities on S3.

Let Mn be a manifold and ω a differential form on M". The support of ω is the
maximal closed subset of Mn on which ωφO. If M" is compact then the support of
any form on Mn is compact. The cohomologies with compact support may be

3 We use the notation uv for the skew product of differential forms
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defined by the DeRham complex of differential forms with compact support. For
the curve t{ we consider the Poincare dual cohomology class with compact
support on S 3 W This class is uniquely determined by a closed 2-form vt on S3γt

such that

J vt = intersection index of z and ί{
z

for any 2-cycle z in S3γt.
The 3-forms u1v2 and υ1u2 are defined on the whole S3 and

j u1v2=- J v1u2 = k(^ί9^2).
s 3 s 3

The coefficients k{βbί^ present some number invariants of the link
/> = (ί1, ...,£n). We can also denote the single first order linking coefficient of/ by
the formula

k{β) = max |fc(4Λ )|.
t ύ i ̂  j ύ n

If ί is isotopically unlinked then ϊί{β) = 0. However, for links in Figs. 3-5 this
number is also zero but such links cannot be unlinked. We need high order linking
coefficients for the description of such links.

Note that k(έί9£2) = 0 implies that there is a 1-form uί2 on S3Y and 2-forms
v12, v'ί2 with compact supports on S3 such that

du12 = u1u2, dv12=-vγu2, dv/

ί2 = uίv2.
Let ψ) = 0 for / - ( / 1 , / 2 , / 3 ) . Define the Alexander dual 1-form ux and the

Poincare 2-forms vtj with compact supports (1 ̂ /<7^3). It is easy to check that
the forms

are closed. The form u 1 2 3 is defined on S3γ. We can choose v12 and v23 so that vί23

and U123 are defined on the whole S3.
The form ύί23 defines the cohomology class in H2(S3Y) and the forms tf123,

v'123 define the cohomology classes in H (S3). These classes are called the Massey
products of the cohomology classes of uuu2,u3; υl9u29u3 and ul9u29υ3, respec-
tively [15, 25]. They depend on the cohomology classes of wl5 ...9υ3 only. We
denote them by <clw1,clw2,clw3>,... where clω is the cohomology class of ω.

One can show that there exists an integer k2(β) such that:

ί "123= - ί W 1 2 3= ί #123= ί #123 = ^200-
3 3

This integer does not depend on the choice of w12, u23, υ129 and v23. This is a
linking coefficient of the second order.

For the link / = (/1? . . . , O , n ^ 3 w e consider the sublinks ^ = (^,^5^) f°Γ

1 S i < j < k S n. It is possible to define the linking coefficient of the second order
k2(iC) by the formula

)= max
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For the Borromean rings this coefficient is equal to 1. If t is homotopically
unlinked then k2{β) — 0. But for the link in Fig. 5 k2(β) = 0, although this link is not
homotopically unlinked. We introduce the linking coefficient of the third order
which is not equal to zero for this link.

Let £ = (β γJ 2J 3J 4)
 a n d ^ 6 0 = 0. There exist 1-forms u123,u234 in S3γi23

and S3\tf234, respectively such that du123 = ύ123, du234 = ύ234. There also exist
2-forms v123, v234 with compact supports such that their supports do not intersect
(γ and *f4, respectively and dv123 = ϋ123, dv234 = v234. We can choose vί23 and υ234

defined on the whole S3. It is easy to check that # 1 2 3 4 and v{234 are closed. They
define cohomology classes in H3(S3). The 2-form uί234 = uίu234 + ul2u34 + uί23u4

defines the class in H2{S3\ί). One calls the defined classes the Massey products
<clf1?clw2,clw3,clw4>,..., respectively. They do not depend on the cohomology
classes of uu ...,t>4.

One can show that there exists an integer k3(/) such that

k3(ί) = J w 1 2 3 4 = ... = J v{234.
B€ S3

This integer does not depend on the choice uί2,u23,u123,....
For the link in Fig. 5 k3(S)=l [22]. Note that the value of k3(ί) for

£ = {{ XJ 2J 3J 4) does not change under the cyclic permutation of (1,2,3,4), but
may change under other permutations (see [22]). We can also define the third
degree order linking coefficient for two closed curves. From the geometric point of
view we consider several images of the same curve under small translations. For
example, we consider ^ i 2 2 2 = (^i,^2,^2,^2) instead of ^12 = (̂ 1? ̂ 2)- From the
algebraic point of view in this case u2 = u3 = u4 and u2u3 = u3u4 = 0, w23 = u 3 4 = 0.
The Whitehead link £ = {tu ί2) may be transformed to / 1 2 1 2 = {ίu zf2, Sl9 i2) with
u3 = uu u4 = u2 and so on. We have

Now let us define for the link / = (/ l5 ...,/n) the (p— l ) t h order invariants
k(iu ..., ip) using the curves *flV ..., ίίp, some of them may coincide with each other.
Under this definition /c(*f) = fc(l, ...,rc). The general (p— l ) t h linking order coeffi-
cient of / may be defined by the formula

kp-!0O= m a x \k(il9...Jp)\.
l^ii,...,ip^n

We define k(i1,...,ip) using the (p— l ) t h order Massey product [16, 25].
Let ωu ..., ω s - be closed differential forms on the manifold M, degω ( = α{ and

clcOj is the cohomology class of ωt for lrgzrgs. The Massey product
<clω1? ...,clωs> is defined if there exist differential forms ωtj for O^j — i<s—l
such that

i) ωu = ωi9_^

ϋ) dωtJ= Σ . ώikωk + lj;ώik = (-l)de*ω*+1ωίk.

The form Σ &ikωk+is i s closed and its cohomology class is called the value
k=l

of <clω 1 ?..., clωn>. For simplicity we write <ω 1 ? . . . , ωn} instead of <clω 1 ?..., clωπ>.
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Note that the Massey product may have many values but they depend only on
cohomology classes of ωt, (i= 1,2,...,«).

If we use the forms ωt with compact supports then the forms ωtj must have
compact supports, too. In this case the values of Massey products are cohomology
classes with compact supports (or usually cohomology classes if M is compact).

We call the forms ωtj for i φ j the intermediate forms.
For the link / = (/1? ...,/„) inS 3 we consider the Massey product <ω ί l ? ...,ωt >

in the following cases.
1) M = iS3\/, ωt is equal to 1-form ub which is the Alexander dual to a circle t{

f o r l ^ i p ^ n .
2) M = S3, ωh is equal to 2-form vh with compact support which is the

Poincare dual to a circle tiχ and ωip = φίp uip, where φip is a smooth function on S3

andφ f = 0 in a small neighbourhood of t{ , 2 ̂  ip ^ n. In this case we use u{ instead

3) M = S3, the forms are uil9 . . . ,^ p by analogy with 2).

Theorem 4.1. Let ίί = 1, ip = n and one of the three Massey products (uh, ...9uip)9

(j)iί9 ...,Wj ) , (uiχ, >..,Vί ) is defined. Then two other products are also defined and
there exists an integer

K h , . . . , i p ) = ί ( u h , . . . , u i p } = ( - l ) p f <uil9...,uipy
Bh B>P

= Uυiί9...,uip> = ( - i γ ϊ3uil9...9vip.

This integer is the (p— l ) t h order linking coefficient of/. The qih order linking
coefficient is defined iff every r th order linking coefficient vanishes for r < q.

The Stallings conjecture [21] which was proved by Turaev [23] and Porter
[11] implies that k(il9 ...9ip) = μ(il9...9ip) if every r th order linking coefficient
vanishes for r ^p— 1. By [11] in this case <Mfl,..., uip) = (— l)pμ{iu •••> Qy> where y
is the Poincare-Lefschetz dual to a path from tiχ to ίip.

There exists a more general statement [11,23] that does not require that every
r th order linking coefficient should vanish for r^p— 1.

Conclusion

In this paper a topological approach to the recognition of non-trivial links is
developed. The physical applications are mainly illustrative in nature and consist
in describing the restrictions on types of defect links in condensed matter.
However, we hope that our method will be useful in other physical problems: for
example, in the statistics of polymer chains or in the turbulence in superfluids. The
influence of linked vortical threads on the turbulence origin in homogeneous
superfluid 4He was considered in [26]. Another example is the magnet hydrody-
namics where the formulae for linking coefficients from Sect. 4 play the role of
topological conservation laws for magnet power threads frozen in a field.
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