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Abstract. The manifold M of null rays through the origin of R 2 ' π + 1 is
diffeomorphic to S1 x S", and it is a homogeneous space of SO(2,n + 1). This
group therefore acts on T*M, which we show to be the "generating manifold" of
the extended phase space of the regularized Kepler Problem. A local canonical
chart in T*M is found such that the restriction to the subbundle of the null non-
vanishing covectors is given by p0 + H(q, p) = 0, where H(q, p) is the Hamiltonian
of the Kepler Problem. By means of this construction, we get some results that
clarify and complete the previous approaches to the problem.

1. Introduction

By the Kepler Problem (KP) we mean the Hamiltonian system on the phase space
T*(Un - 0), with the Hamiltonian

H = ±2p
2-K (1.1)

qk and pk being canonical coordinates, p2 = Σpl and q = ( X ^ ) 1 / 2 .
k k

Let us recall some well known facts:

i) As every particle in a spherically symmetric field, the KP is completely
integrable. Besides the obvious integrals of energy and angular momentum, one has
conservation of the Lenz-Laplace vector

(1-2)

where (E = numerical value of H):

ε = sgnE ( £ # 0 ) ,
[ ό

For E = 0 we define (ε/2H)1/2 to be the modulus of the angular momentum. Under
Poisson brackets, angular momentum and Lenz-Laplace vector yield the Lie
algebra of SO(rc+ 1), SO(n, 1) or SO(n)®sIR" (semidirect product) for negative,
positive or null energy. These groups are the maximal invariance groups. Fock [1] in
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the quantum 3-dimensional case and Moser [2] in the classical n-dimensional case
gave a geometrical picture of this dynamical symmetry (for E < 0) through the
stereographic projection of the sphere Sn in the momentum space. In this way one
obtains at the same time the regularization of the KP. In fact:

ii) The KP is not regular, i.e. the vector field generated by H in T*(UH - 0) is not
complete since, in the collision orbits, the particle gets to the attractive center with
infinite velocity in a finite time. Following Pham Mau Quan [3] we define
"regularization" in this way: given a smooth manifold Wand a non-complete vector
field X on Wf find a smooth manifold W9 a complete vector field X on W and an
embedding μ:W\-+W such that μ(W) is a set open and dense in W and the orbits of
X are embedded in those of X. The regularization of the 3-dimensional KP may be
also obtained by the Kustaanheimo-Stiefel-transformation [4] [5]. Kummer [6]
proved the equivalence of the two methods for E φ 0. In both these regularization
procedures, time is replaced by a new parameter α such that

It follows that:
iii) For any fixed value of E < 0 the phase space of the regularized KP is

diffeomorphic to the unit T*Sn. Notice that T+Sn (i.e. T*Sn with the zero section
removed) is an orbit in the coadjoint representation of SO(2, n + 1), which is locally
isomorphic to the conformal group of R1>w [7-9]. This dynamical group has been
defined by Bacry [10] and Gyδrgyi [11], who also introduced the so called Bacry-
Gyorgyi variables, to be used alternatively to Fock variables (see [9] for the
definitions).

In this paper we proceed as follows. The manifold M of null unoriented rays
through the origin of tR2'" + 1 is diffeomorphic to S1 xS", which is in turn a
homogeneous space of G = SO(2, n + 1). This group acts therefore on T*M. As we
shall see later, Γ*Mcan be identified with the "generating manifold" of the extended
phase space of the regularized KP with any energy. The action of G on T*M is not
transitive, so we restrict to consider the (2n + l)-dimensional subbundle N of T*M
given by null non-vanishing covectors: it results that T+Sn = N/S1. The main point
is the following: it is possible to find three local canonical charts in T*M (one for
every value of ε) such that JV is locally given by the equation

po + H(q,p) = Q, (1.5)

where H{q,p) is the Hamiltonian (1.1) of the KP or the Hamiltonian with repulsive
potential.

As is well known (see Theorem 2.6 below), by considering (1.5) as a constraint in
T*(Mn - 0) x Γ*IR one obtains the Hamilton equations

dqk _ dH dpk dH

dq0 dpk dq0 dqk

By means of this construction, we get some results that clarify and complete the
previous approaches to the KP:
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a) the introduction of the regularization parameter α in Eq. (1.4) is not
postulated, but is a consequence of our approach;

b) the definition of Fock and Bacry-Gyorgyi variables is extended to the case
E = 0, and their relations are clarified;

c) the case of repulsive potential is automatically included;
d) the equivalence between Fock-Moser and KS regularization, which is

basically due to the homomorphism SO(2,4) ~ SU(2,2), is here straightforwardly
proved for any value of £;

e) as suggested in [12], the present construction can be generalized by
considering the simple Lie groups whose maximal compact subgroup contains U(l)
[13, Chap. VIII], and studying their action on the Bergman-Silov boundary;

f) as we shall show in a forthcoming paper, the geometric quantization (in the
sense of Kostant and Souriau) of the Kepler manifold T+S" can be naturally
obtained. Notice, for instance, that N is already the prequantum bundle.

As for the notation, the range of the indices is

AB, C= - l , 0 . . . n + l ,

μ, v, p = 0... n,

cc9β,y = 1...Π+ 1,

hj,k= l . .w,

α, b, c = 2... n.

2. The "Generating Manifold"

Let ηAB = diag( 1 h) be the metric tensor of R2 '"+ * and mAB = — mBA a basis

of the Lie algebra 0 of G = SO(2, n + 1). Then

, mAC] = ηAAmBC, (2.1)

or zero if all indices are different. It is convenient to introduce special symbols for the
elements of the basis, namely:

(2.2a)

or alternatively:

Pμ = Aμ + Bμ9

Cμ = Aμ-Bμ. (2.2b)

We now recall some well known facts [14,15]. Since the action of G on IR2)Π+1 is
linear, it induces an action on the projective manifold of (unoriented) rays through
the origin. Moreover G sends the null cone into itself and acts transitively on the
manifold M of null rays. This manifold is diffeomorphic to S1 x Sn and is endowed
with a class of pseudoriemannian metrics gγ obtained by restriction of the
SO(2,H+1) invariant metric η on any section γ of the null cone. The action of G
on M is conformal; the metrics gγ being conformaly flat, with signature ( - H h),
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the Lie algebra ^ of G is isomorphic to the Lie algebra of conformal vector fields on
Minkowski space IR1'". So we can identify the generators in (2.2ab) as follows: Jμv =
Lorentz group, D = dilation, Pμ = translations, Cμ = conformal translations. Let
H be the (closed) subgroup of G with Lie algebra Jf = {Jμv, Cμ,D}: it is the isotropy
group of the origin in IR1'". Since M = G/H, we can identify M with the "conformal
compactifΐcation" of R1 >fl. In other words, one can obtain M by adding to IR1'" a null
cone at infinity.1

Let us now consider the symplectic action of G on T*(G/H). This action not
being transitive, we decompose T*(G/H) in orbits of G. They are symplectic
manifolds on which the group action is transitive, and so they may be identified
(Kostani-Souriau Theorem, [16, p. 180] with (covering spaces of) orbits of G in ^*.
To get this identification, it is useful the following theorem due to Wolf [17]:

Theorem 2.1. Lei G be a Lie group with Lie algebra @9 fe&*9 Gf the isotropy sub-
group off (i.e. Gff=f) and &f the corresponding Lie algebra. Consider a closed
subgroup H cG with Lie algebra J»f such that: a) dim Jf = i(dim 0 + dim <3f)\ b)
< /, Jf > = 0; c) <&f c tf. Then Of = Gf is equivariantly diffeomorphic to an open G-
orbit in T*(G/H).

If, as in the present case, G is semisimple, by means of the Cartan-Killing form
B: & x ^H>[R we may identify *§ and 3?*. So, for me^, we define m*e^* by
<m*,tt> = £(m,n), Vne^. Therefore ^m, = {ne^: [m,w]=0}. The basis (2.2a) is
(pseudo)-orthonormal for B and so B(Pμ, Cv) = 2ημvi B(P, P) = B(C, C) = 0.

Proposition 2.2.///_ = Cg andf+ = C\, then Θf_ (&f) are the submanifolds of
T*(G/H) given by timelike (spacelike) covectors.

Proof. 9f_ = {Cμ9Jhk} and 9f+ = {Cμ9Jaθ9Jab}9 then j f = {Jμv,Cμ,D} satisfies the
hypotheses of Theorem 2.1. Moreover G/H has tangent space ^/Jf, hence cotangent
space Jf1 = {xε$*: <x, JV> = 0}, and so JtTλ = {C*}. Remembering the signature of
gy and that the action of G on G/H is conformal, the proposition is obtained. •

Proposition 2.3. The symplectic G invariant form induced in Θf_ by the canonical form

ofT*(G/H) through the equivarίant diffeomorphism of Theorem 2.1, coincides with the

Kirillov form

Proof. We remember that the Kirillov 2-form ω, (that makes every orbit of a group
in the coadjoint representation a symplectic manifold) is defined as

ωjμ9υ) = <f9lu9v]y9 (2.3)

where w, ve to the Lie algebra of the group, and/e to the dual. The cotangent space to
Θf in / i s spanned by 9j9f\ for, e.g., /_ we have #/#,._ - {Pμ;D, JOk}9 where {Pμ}
span the tangent space to G/H. A direct computation of (2.3) proves the proposition.
Analogously for / + . •

The two orbits Θf_ are 2(n + l)-dimensional. We now come to the 2n-
dimensional orbit considered by Onofri [8] and called "Kepler manifold."

1 The relation of the conformal compactification with the regularization of the KP has been noted first

by Kummer [6]
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Proposition 2.4. Let f0 =f+ — /_: then Θfo is symplectomorphic to T + Sn, endowed
with the canonical symplectic form.

Proof. Let G' = SO(l,n + 1). As a subgroup of G, G' has the Lie algebra <&' =
{Jhk,Pk,Ck,D}. Consider the subgroup H' of G' generated by Jf'= {Jhk,Ck,D}.
The manifold M' = G'/H' can be identified with the projective manifold of the rays of
the null cone in UltK + ί

9 and so M' = Sn. Being/+ =Cf, then ^'f+ = {Ck, Jah). From
Theorem 2.1 we obtain: Θ'f+ = T+Sn, where Θ'f+ = G' f+. Let 0>\e the orthogonal
complement of 9' in 0, i.e! B(0>9<g') = 0 and £ = 0 ' © ^ . Being G' ^ * = ^ * and
/ + e # ' * , / _ e ^ * , we have that G' / o is identifiable, through projection ^ * H » ^ ' * ,
with d^+. The orbit G / o contains G' / o , but a dimension count shows that they
must coincide: therefore we obtain the proposition. Computing <&fo hence the
cotangent space to (9fo, shows that the Kirillov form coincides with the canonical
symplectic form of T + Sn. •

Analogously, we could prove Proposition 2.4 for/0 =/+ + / _ . Thus summariz-
ing, we have

N/S1 = &f0 (mod Z2), (2.4)

where N is the submanifold of null non-vanishing covectors in T*M.

Proposition 2.5. Identify $* with A 2 R 2 ' " + 1, then T*M—{zero-section) is dif
feomorphic to the manifold of the simple null non-vanishing bivectors, i.e. the biυectors
of the type Y A X, where X, ΓeR 2 '" 4" 1 and η(X,X) = 0, η(X, Y) = 0.

Proof It is sufficient to verify that: a) /_ as simple bivector is generated by X =
(-10...01) and y = (010...0);b) /+ by * = idem and Y = (0010...0); c) f0 by
X = idem and Y = (0110.. .0). •

The following fact is crucial for our concern: the reduction T*M \-+T + M' above
described, may be interpreted as the reduction of the extended phase space of a
mechanical system to the phase space. More exactly, we have the following classical
theorem (see e.g. [18]):

Theorem 2.6. Let Jf: T*Qt->M be a "time" independent Hamiltonian, and
(xo,xfe,^o,^fe) the canonical coordinates of T*Q (Q is any differentiable manifold).
Therefore C/f equals some constant /i, and we may write, at least locally,

yo + K(xo,xk,yk) = 0. (2.5)

Let us project the trajectories generated by Jf and belonging to the hypersurface (2.5)
onto the hyper plane y0 = 0: they are the solution of the hamiltonian system

dx δK dy±dK ( 2 6 )

dx0 dyk dx0 dxk

In our case Q = M and Jf = gy(y, y) with h = 0. Notice that gy is conformally flat
Vy, so we can choose local coordinates (xo,xk) on Msuch that gy is diagonal with χ 0

timelike. Then χ 0 is a local coordinate on the manifold of null rays in U2Λ c U2'n + *.
Apply Theorem 2.6: the reduced phase space is T + M' = Θfo and K =

1 / 2
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Three choices of 7 are relevant for the KP, i.e. those obtained intersecting the null
cone with:

i) a sphere with center in the vertex of the cone, thus γ is defined on M = S1 x Sn

and i o n M ' = S" with the usual metric induced by the immersion of Sn in IR" + 1

(more exactly, being χ 0 a coordinate of the "time" type, we consider the universal
covering G instead of G, and so M = IR x Sn instead of M);

ii) a hyperboloid with same center; γ is defined o n M - Z 2 x C Q O = ί ί 1 x ίΓ,
where CO, is the null cone at infinity in M and the ί f s are hyperboloids (the metric in
Hn is induced by the immersion in UUH); y' is defined on M'—(two points at 00) = Hn;

iii) a hyperplane parallel to a ray of the null cone; y is defined o n M - C ^ ^ P 1 ' "
(hyperbolic paraboloid) and / on M'—(one point at 00) = Pn; the two metric are flat.

The Hamiltonian K is the Hamiltonian of the unit geodesic flows on i) Sn, ii) //",
iii) Pn and the invariance groups (i.e. the isometry groups of gγ) are i) SO(n + 1), ii)
SO(n,l), iii)SO(n)(x)s[Rπ.

The main point of the present work is the following

Theorem 2.7. The extended phase space of the regularized KP (for negative, positive
and null E) is symplectomorphίc to the open submanifolds ofT*M given by the domain
of the sections y defined in i) ii) iii) (in this sense T*M is the "generating manifold"). The
Hamiltonian of the KP is a function ofK and so has the same symmetry groups.

3. Regularization of the KP

In this section we prove the theorem above and the points a), b) and c) of Sect. 1. To
this end we construct the moment map T * M H - > ^ * , in the three cases, using the
following construction suggested by Proposition 2.5. Since y: MH> IR2'"+ x is a section
of the null cone, we can locally represent it by functions

XA = ΓA(xμl (3.1)

satisfying the null cone equation,

η(Γ,Γ) = 0. (3.2)

The metric induced on the domain of γ by η is given by gγμv = ψ*ηABψ*, where
ψμ = dΓA/dxμ. Let YA and yμ be the components of a covector respectively of
[R2'" + 1 and M. Let T*y: T*M^T*M2>n+ί be the cotangent map, i.e. the map
locally given by (3.1) and by YA = ΠA(xμ,yv\ where

ΠA = ηABφ
B

μg
μvyv. (3.3)

It is easy to check that
ΠAΓ

A = 0, (3.4)

ΠAdΓΛ = yμdxμ. (3.5)

I f / a n d g are differentiate mappings: T*U2'n+1\-+M, from (3.5) we have: {f,g}
T*y = {f-T*y,g-T*y}, where {•,•} are the Poisson brackets. If j : T*n2>n + 1h+g*
is the moment map

mAB=YAXB~YBXA, (3.6)

then J = jT*y: T*My-+y* is a moment map as well.
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Explicitly we have the following three cases,
i) T*y is given by

= cos χ°,

X° = sinx°,

Xk = -^T, (3.7α)

Y 2 1

and by

(3.7b)

Notice that x° do not parametrize S1 but rather its covering space ~ U. The
functions Γa are obtained through a stereographic projection of S" onto Un. The
metric gy is

+ m2, (3.8)
where y = i^ykyk)

112 and x 2 =
ii) Γ*y is given by

γ-l _ ^ _ _
x - 1

= Sinhx°, (3.9α)

A — —2 7)

x - 1

X"+ 1=Coshx°,

and by

yo = y0Coshx°,

(3-96)

The functions Γ~1 and Γfe are obtained through a stereographic projection of one
sheet of Hn into Un (i.e. onto the n-dimensional Poincare disk) and a following
inversion with respect to the origin, so that we have x 2 > 1. The metric gy is
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iii) T*y is given by

y - i _ , 1 (x0)2

Xk = H-, (3.1 lα)
X

and by

The mapping is obtained through a projection of P 1 " onto UUn and a following
inversion with respect to the origin in Un

9 so that we have x2 φ 0. The metric gy is
given by

- (3.12)

We stress the fact that, owing to stereographic projection in i) plus inversion in ii)
and iii), we are missing one point in S", W and P": restoring this point corresponds
just to regularization of the KP.

From Theorem 2.6 we obtain that the Hamiltonian K is given in the three cases
by

K = \y{x2-ε\ (3.13)

where ε is defined in (1.3). Let us reduce the three moment maps, i.e., in accordance
with (2.4), put JΓ = 0 and x° = 0, and consider the unregularized problem. All the
three moment maps T+Uny-+%* now become (see [19, p. 276] for the precise
definition of J, A etc.)

(3.i4α)

and

= x2yk-2<x,y>xk, (3.146)

= - y k
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The Hamiltonian K equals in the three cases (modulo an uninteresting sign): i) Bo, ϋ)
Λo, iii) Po/2 and thus have as symmetry groups the isotropy subgroups of these
generators, i.e.: i) SO(n+ 1), ii) SO(l,n), iii) Rπ(χ)sSO(rc).

Let us return to the moment map J and before reducing it, consider the canonical
transformation #

(3.15b)

(# is not defined for ε = 0. However, since ε enters in the formulas below only
through the expression (ε/2//)1/2, which we defined in the limit case also, we can
safely take the limit ε = 0 in the final formulas.) # may be viewed as the composition
of three canonical transformations: a) that given by exchanging coordinates and
momenta; b) that given by (3.15αb), equivalent to an "energy rescaling"; c) that given
by (3.15d). Note that (3.15c) is forced by requiring canonicity. Now C/f = 0 reads as

po + H(q,p) = 0, (3.16)

where H(q,p) = p2β Tq'1- Equation (3.15d) shows that H is a function of K, so it
has the same symmetry groups. Note that χ° is basically the regularization
parameter: in fact

and setting α = (ε/2iί)1/2x0, we get (1.4).
Let us consider the restriction to N of the moment maps J>(€~1: T*((R" — 0) x

T*U\->9*. We have
i) £ 0 = (-2H)~1/2; Jhk = angular momentum; Άk = Lenz-Laplace vector; βk, β

and Jo f c, Λo = Fock variables (for x° = 0) or Bacry-Gyόrgyi variables (for q0 = 0).
ii) Ao = (2if)~1/2; Jhk = angular momentum; Bk = Lenz-Laplace vector; β9 Ak

and — Bo>Jok = Fock variables (for x° = 0) or Bacry-Gyδrgyi variables (for q0 — 0).
iii) PQ/2 H» (2H/ε)~il2 (in the limit sense); Jhk = angular momentum; Pk = Lenz-

Laplace vector; Cμ and /), JOk = Fock variables (for x° = 0) or Bacry-Gyόrgyi
variables (for q0 = 0).

4. KS-transformation

As Kummer proved, the local isomorphism SO(4,2) ~ SU(2,2) yields the KS-
transformation for E φ 0. We first recall some of the Kummer's results. Let δ be a
matrix representation of the U(2,2) invariant Hermitian form. We can choose a basis
in C 2 ' 2 such that δ has the form
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0 σo\

σ0 0 /

being σv the Pauli matrices. Following Penrose we call twistors the elements of C 2 ' 2

on which U(2,2) acts in the fundamental representation, and null twistor space To

the set of elements φeC2'2 such that

φ^S φ = 0. (4.2)

Identifying the null twistors up a phase, i.e. φ « φ exp (iθ\ we get that the quotient
T 0 /^is a real 6-dimensional manifold. Let zeC 2 —0 and weC 2 be such that

φ = ί JeTΌ. It is easy to check that the matrices of the type

• t r-zt N

(4.3)
wzτ

describe a 6-dimensional orbit of SU(2,2) in su*(2,2). This orbit is equipped with the
symplectic form ω = dΘ, where

Θ = l-{φϊ£dφ - dφ^φ). (4.4)

On the basis of this construction, then Kummer proves the equivalence between
Fock-Moser and KS regularization.

As an application of the present approach we prove the same result. As a
byproduct we get the KS-transformation in a way which is independent of the sign of
E and also covers the case E = 0. Let Ξ = 3c ~σ and 2 Y = yσ0 + J'~σ1 Being det Y = 0,
we can define Y1/2 as an element of (C2 - 0 ) / « such that Γ 1 / 2 Ϊ t l / 2 - r . Now

Γi/2

H (45)

provides a canonical system of coordinates for our orbit. In fact

(4.6)

The inverse of the bijective mapping (4.5) is the KS-transformation. To show it,
immediately we have, from the mere definition, that

Y = zz\ (4.7a)

Moreover multiply from the right both sides of — ίw = Ξz by z\z]z)~ι and take the
imaginary part. We obtain

Equations (4Jab) are easily seen to be equivalent to the KS-transformation as given

by Kummer [6].

The relation with the KP is seen by composing (4.3) with (4.5), which gives

iφφ^ = i(~J,l* . I Λ (4.8)
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and taking into account the isomorphism su*(2,2) = so*(2,4). In this way we obtain
the moment map (3.14ab), which is valid for any value of E.
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