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Abstract. We construct the infinite volume limit of the t/(l) Higgs model in two
and three dimensions, and verify some of the Osterwalder-Schrader axioms.
The proof uses a combination of renormalization group techniques and
correlation inequalities.

1. Introduction

In a previous paper [K 1], we considered the lattice U(l) Higgs model in a finite
volume with periodic boundary conditions in dimensions <2 = 2,3. We proved the
convergence of this model to a finite limit as the lattice spacing approaches zero.
The method of proof was based on the renormalization transformations intro-
duced in [Ba 1-4]. In this paper, we continue our analysis of the model by
constructing the infinite volume theory and verifying some of the Osterwalder-
Schrader axioms.

This model was previously constructed in two dimensions in the papers
[BFS 1-3]. In particular, a collection of useful correlation inequalities was
established in [BFS 1]. We use these inequalities to define the infinite volume limit
of the continuum theory derived in [K 1]. The limit is shown to satisfy reflection
positivity, translation invariance, and a suitable analyticity property.

Since we approach the continuum limit through a sequence of models defined
on lattices with a fixed orientation, it is not obvious that the continuum theory
satisfies rotation invariance. We prove a result which, when combined with a
construction of the infinite volume limit for periodic boundary conditions, implies
the rotation invariance of that limit. (Although the correlation inequalities of
[BSF1] fail for periodic boundary conditions, other methods such as the cluster
expansion could be used.) Specifically, we prove that two lattices whose
orientations differ by a special angle θ0 (incommensurate with 2π) give the same
continuum theory in a finite volume.

The paper is organized as follows. Section 2 contains a statement of the results
proved in this paper. In Sect. 3, we construct the infinite volume limit and verify the
properties mentioned before. Section 4 contains the results on rotation invariance.
Finally, in Sect. 5 we extend the ultra-violet stability results of [Ba 1-4] to include
the different boundary conditions used in this paper.
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** Research supported in part by the National Science Foundation under grants PHY 82-03669
and PHY 81-17463



324 C. King

We recommend that the reader study [K1] before reading this paper.

2. Statement of Results

The lattice [/(I) Higgs model was defined in [K1]. In order to apply the results
obtained in [BFS 1-3] concerning correlation inequalities, we restrict attention to
the case of a two-component scalar field, though the ultra-violet estimates do not
depend on this restriction. For convenience, the field is written

φ(x) = r(x)emx\ (2.1)

where r e [0, oo) and θe [ — π,π). The model is defined on a finite lattice ΩCεZd,
where the scalar field is a map φ: Ω-»C The vector field is considered either as a
map A: Ω->Rd, or as a map A: Ω*->]R, where Ω* is the set of oriented bonds on Ω.
These meanings are identified by

where eμ is the unit lattice vector in the μth direction. The co variant derivative of the
scalar field is

(Dε

μφ)(x) = ε- Hexp [ieεAμ(x)-]φ{x + εeμ) - φ(x)), (2.3)

where e is the electric charge. Under a local gauge transformation χ, these fields
transform as

Aμ(x)->Aμ(x)-dμχ(x), (2.4)

Denoting by dε the usual lattice derivative on Ω, our lattice action is

Sε(Ω,AJ)

= 1 Σ Σ zψAμ{b)\2+\μl Σ Σ εd\Aμ(x)\2

^ μ=l beΩ* £ μ=l xeΩ

\ Σ εd- 2[r(x)2 + r{yf - 2r(x)r(y) cos(θ(x) - eεA<Xιy> -

XEΩ

(2-5)

The quadratic part of the action for the scalar field comes from expanding the
gauge-invariant term

2 μ=l xeΩ

We have introduced a vector field mass μ\ for technical reasons connected with
ultra-violet stability. The constant Eo is a normalization for the Gaussian parts of
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the action (2.5):

^ Σ Σ sd\dεΛμ(b)\2- \μ2 Σ Σ AAμ{x)\2

£ μ=l beΩ* I μ=ί xeΩ

- \ Σ ε"\dεφ(b)\2-\m2Σ ε<V(x)|2]. (2.6)
I bΩ* I J

The mass and vacuum-energy counterterms δm2 and E1 are introduced to
cancel the usual divergences of perturbation theory, and they are defined in [K1].
For definiteness, we take Ω to be a rectangular parallelepiped with equal sides.
Define for integer /,

d: -MJ£xμ<MJ9 μ=l,...,d}9 (2.7)

where M is the large integer used in Sect. 2.3 of [K1]. As before, we define lattice
spacings {εx}, K = 0,..., oo, by

sK = L ~ K , (2.8)

where L is the small integer which determines the size of the blocks used in the
renormalization transformation.

In the action (2.5), we will use Neumann boundary conditions (Nb.c.) for the
vector field Aμ on dCj. We will use Dirichlet boundary conditions (D b.c.) for the
scalar field φ on dCj (this choice of boundary conditions for φ is gauge-invariant).
With these choices, the partition function in Cj is written

-SχCj,A, φ)], (2.9)

and the expectation of an operator & is defined by

>εN?β = Z*NtD(Cj)-' j {dA){dφ)Θ{A9 φ)oxpl-S%Cj, A, φ)~]. (2.10)

We are primarily interested in gauge invariant operators Θ. Denote by Ω** the
set of plaquettes on Ω, and define the field strength tensor F: £2**-»R by

F(p)= Σ ε~%. (2.H)
bedp

Then for a function g: ί2**->IR, we have

F(g)= Σ sdF(
peΩ**

For a function h: £2->R, the gauge-invariant operator for the scalar field is

:φ2:h= Σ εdh(x)lr(x)2-2(-Aε>Ω + πι2)~1(x,x)~], (2.13)
xeΩ

where — Δε'Ω is the Laplacian on Ω with D b.c. The general operator we consider is

Θ(zg, wh) = exp \zF{g) + w:φ2: (Λ)], (2.14)

where g,he C£(ΈLd) and z, w e <C.

F(g)= Σ sdF(p)g(p). (2.12)
peΩ**

It will be understood below that the results stated hold for dimensions d = 2,3.
The first result extends Theorem 2.1 of [K1] to include the boundary conditions
used in this paper, and the second result gives the existence of the infinite volume
limit.
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Theorem 2.1. Let C3 be defined by (2.7), and let g, h be supported in Cj. Then for all
z,we(C,

3 lim <0(zflf, w/z)>^bCj = <Θ(zg, wh)}%D. (2.15)
X-^oo

Theorem 2.2. Let g,h be C00 functions with compact support, and z,we(C. Then

3 lim (Θ(zg, wft)>&> = (Θ(zg9 wh)}. (2.16)
J-κχ>

We also establish some properties of the limit (2.16). We denote by Tf the
function obtained from / by some translation T in the Euclidean group on IRA
Also, if supp/ C {x e R d : xv > 0}, we denote by θvf the function obtained from / by
reflection in xv = 0.

Theorem 2.3. The infinite volume limit (2.16) satisfies the following properties:

(i) <Θ(Tg,Th)) = (Θ(g,h)}; (2.17)

(ii) if supp#usupp/zC{:xeIRd: x v >0}, some v, then

<β(θvg9θyh)β(g9h)y^O9 (2.18)

where the bar denotes complex conjugation;

(iii) if the 2N functions {#J, {hj}9 ί,j = 1,..., N, are in C^(lRd), and {zj, {w,-} are
m (C, ί/ί̂  function

is entire on C* x C N .

The properties we have listed in Theorem 2.3 are a subset of the Osterwalder-
Schrader axioms presented in [GJ 1]. To complete the list, we would need to prove
ergodicity, rotation invariance and regularity. Ergodicity corresponds to unique-
ness of the vacuum, and has been proved for other models using cluster expansion
techniques. To establish regularity we would need to keep more careful track of the
source functions g, h when proving ultra-violet stability using the renormalization
transformation method of [Ba 1-2].

In order to prove rotation invariance, it is sufficient to show that the limit
(Θ(zg,wh)y is the same when constructed from two sequences of lattices whose
orientations differ by an angle θ0 incommensurate with 2π. The two lattices we use
are illustrated in Fig. 1. One lattice has spacing ε, the other has spacing 5ε. The
angle between the lattices is θ0 = tan~ 1(3/4). For d>2, the lattices have the same
orientation in the other d — 2 coordinate directions not shown in Fig. 1.

The methods we use to construct the continuum limit require quite explicit
expressions for lattice operators with periodic, Neumann and Dirichlet boundary
conditions. These hold only when the boundary is a lattice hyperplane orthogonal
to a lattice coordinate direction. Clearly the two lattices in Fig. 1 never share such a
boundary. Our solution of this problem is to use periodic boundary conditions.
We define a torus Ds by (2.7) with M replaced by 25M. For L - 5, we can "fit" Dj by
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Fig. 1. Two lattices with different orientations

lattices with the same orientation as the sides of D3 and with lattice spacings
&K = L~K. The expectation defined by this lattice is written

<e>yP

κ-Dj. (2.20)

From Fig. 1, and since the length of each side of D3 is a multiple of 25, we see
that Dj is also fitted by the rotated lattice. Again taking L = 5, and εκ = L~κ, the
expectation defined by this rotated lattice is written

'* D'. (2.21)

(2.22)

(2.23)

We can now state our result concerning rotation invariance.

Theorem 2.4 For g, h supported in D J ? and z, w e (C,

lim *'Dj= lim (Θ(zg,wh)yRiBκ)-Dj.
K->oo

Also, θo/2π is irrational.

Because the expectations in (2.22) are defined with Pb.c, we cannot use
correlation inequalities to take the infinite volume limit. However, we can expect
that a cluster expansion would give the following result:

= lim
1 K-+oo

(2.24)

where the limit A / lRd is taken through an arbitrary sequence of rectangular
parallelepipeds with P b.c. Therefore, if we denote by Rμvf the function obtained
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from / by rotation through an angle θ0 in the μv-coordinate plane, we have

<Θ(zR;v

ίg,wR;v

1h))= lim lim (Θ(zR;v%wR^h)}**-*
A / R d 2£->oo

- lim lim {Θ(zg,wh)}^{εκ^R^{Λ)

- l i m lim (Θ(zg,wh)}iκ>R^(Λ\ (2.25)
A ^ I R d K

where we used Theorem 2.4. Since (2.24) holds for an arbitrary sequence of regions
Λ, the limit (2.25) equals (2.24). By iterating the rotation R ~v

: and using the fact that
θo/2π is irrational, we generate all rotations in the μv-plane. Repeating the
procedure for each μ,v gives invariance under the full rotation group SO(d).

3. The Infinite Volume Limit

3.1. The Continuum Limit

The renormalization transformation method was introduced in Sect. 2.2 of [K 1].
The space of field configurations is divided into cells, each corresponding to
fluctuations of the field on a certain length scale. Beginning with the shortest length
scales, the integral over fields in the partition function is successively analyzed in
each cell. This method of phase space localization was first introduced in [GJ 2]. It
was developed for the 1/(1) Higgs model in [Bal-4], using a block spin
transformation to separate fields into average and fluctuation parts.

In order to apply the renormalization transformation to the case when the
scalar fields φ has Db.c, we modify the averaging operators defined in [Kl] .
Given a block B(y) containing Ld sites, we consider a bounded function / : £(}/)-• IR
such that

Σ L-'f(x) = l. (3.1)
xeB{y)

For each y e LεZd, we introduce / on the block B(y), giving a function / on
εΈd. We now define the averaging operator for the scalar field by

L~kd Σ f(x)explieA(φ-]φ(x), (3.2)

where j ; e LkεZd and A(Γ$) is defined in [K 1]. The operators and notation used in
[K1] will be taken over unchanged, with the understanding that Qk{A) is replaced
by (3.2). We leave unchanged the averaging operator for the vector field. The
results stated in Sect. 2.2 of [K1] still hold, in particular the representation (2.17) of
the propagator.

Using the method of multiple reflections, we can write an operator with P, N,
or Db.c. on a lattice hyperplane as a sum of operators with free boundary
conditions. Suppose ΩCεZd is a rectangular parallelepiped given by

μ μ μ=l,.. .,d}, (3.3)

and the dimensions Lμ satisfy

( L ^ ^ L e N , each μ = l,...,d. (3.4)
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Recall that the renormalization transformation produces a sequence of
covariances defined by

Gε

k(Ω) = (-Aε>Ω + m2 + ak(Lks)" 2P f c(0))" x, (3.5)

where Pk(0) = β*(0)βfc(0) and — Aε'Ω is the Laplacian on Ω with some boundary
conditions on dΩ. The operator Gk with free boundary conditions on εΈd is given
by (3.5) with —Aε'Ω replaced by — Aε. We have an explicit Fourier representation
for Gε

k and so we want to write covariances with other boundary conditions in
terms of Gε

k. For Pb.c. on Ω, we take / = 1 in (3.1) and then

Gl(Ω)(x,y)= Σ G\(x,y+ Σ nμLμeμ). (3.6)

For Nb.c. we also take / = 1 and then

Gl(Ω)(x,y)= Σ Σ Gl(x,y+ Σ ϊnμLμeμ- Σ mv(2yv-ε)e). (3.7)
neZd me{O,ί}d \ μ = l v=l /

Finally, for D b.c. we use a different function /. For x e B(y% define

L V
γ—\) l f xβ-yμ^(L-2)ε e a c h μ=h' ,d,

^ H 0

V " ;

 o t h e r w i s e . (3-8)

We take — J ε > ί } tohaveDb.c. on {xGεZd: xμ = 0 or xμ = Lμ, someμ=l, ...,d}.
Then we can write

Gί(Ω)(x,y)= Σ Σ (-l)Σ^k(y Σ μ A Σ
neZdme{O,l}d \ μ = l v=l

(3.9)

If we had taken / = 1, the representation (3.9) would not hold.
We now wish to prove Theorem 2.1, giving the continuum limit in a region Cj.

In Sect. 4, Theorems 3.1 and 3.3 of [K1] are extended to include the case when the
vector field has N b.c. and the scalar field has D b.c. Therefore, the existence of the
continuum limit in Cj will follow from the convergence of the effective action,
which was proved for P b.c. in [K1], Recall that Theorem 3.1 of [K1] states that
the generating functional Zε

ND(Cj)(&(zg,wh)y^β is well approximated by the
integral of an effective action S(k)>Lkε on the lattice with spacing Lks in Cj9 when
z,w are real. By proving convergence of S{k)'Lkε as ε->0, we can deduce
convergence of the generating functional, and hence of (Θ(zg,wh))ε^β, for z, w
real. Furthermore,

|<0(zfif, wfc)>ί#| S <tf(Rez#, Re wh))ε^β. (3.10)

Therefore, using Vitali's theorem, it follows that (Θ(zg, wh)}εύcβ converges to an
entire function in (C x C as ε->0.

In the remainder of this section we will prove convergence of the effective
action S{kh LH in C3 for z, w real. For convenience, we adopt the following notation:

fc = 0,l,...,K. (3.11)
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When fc = 0, we write (3.11) as Tε. Under a re-scaling ε->η, (3.11) becomes T$n.
We will henceforth reserve η to mean L~k. Recall that for an integer n^l,
η' = L-nη = L~{k + n\

The effective action S(k)'Lkε is defined on the lattice 7$ ε . For convenience, we re-
scale Lfeε->1 and then we have the following formula for S{k)Λ (see [ K l , Sect.
3.6]):

, g, h)=HAh, ΔMAk) + \nN

lk,φk9g,h). (3.12)

The operators Λ{k\ Λ{k\A{k)) are effective Laplacians for the fields Ak and φk.
The interaction term P(fe)'* is represented by a sum of connected graphs with
vertices on the lattice Tη. These graphs were described in detail in [K1] and in
[Ba3]. The only way that the boundary conditions enter this description is
through the propagators Gη

k(A{k)) and GjJ connecting the vertices. In our case,
Gl(A{k)) has D b.c. and Gl has N b.c. on dTη. We shall specify below how the proof of
convergence in Sect. 3.4 of [K1] must be modified to take account of this.

When we localize the vertices of a graph in a cube D, it may happen that
dUndT{k) is non-empty. In this case the vertices will see a "sharp boundary;"
this is the main difference between periodic boundary conditions and those
used here. The following remarks refer to Sect. 3.4 of [K1].

Having localized the vertices of a graph H in a block D, we obtained the
expression E(k)(H, A(k); {yt}, {zq}). We now replace each propagator Gk(A(k)) by the
difference Gk(Π\A{k))-δGk(Π\A{k)l where we take Gk{Ώ\A{k)) tohaveDb.c. on
dΠ'. In the expansions (3.47M3.53), we take B = 0 and A' = Ά{k\ We omit the
replacement (3.54), so every scalar field propagator in our graph is Gfc(D/,0). We
shall prove Propositions 3.8 and 3.9 for Gk(D ', 0) and Gk in Appendix A. There is a
minor technical point connected with the operator Qk+n(0). After all propagators
and sources have been replaced in a graph in E{k+n\H), we have (for some
function K)

Σ Σ f(x)K(z) = ηd Σ Hz)
Bk(y) xeB"(z) zeBHy)z<=

Σ ( l - / ( x ) ) | x - ^ l β Γ ^ - ^ l . (3.13)
| \*z\ J

The second term in (3.13) gives a factor L αfe, since \x — z\^ydL k+ί for
all x, z.

There are other modifications required when we examine subgraphs with non-
positive degree. First, note that it is sufficient to assume that dΠ'ndTη is non-
empty; otherwise, the vertices of the graph never see a sharp boundary, and the
methods of [K1] go straight through.

We shall define the mass counterterm δm2 using free boundary conditions; that
is the propagators used to define the graphical expansion of δm2 (see Sect. 3.3 of
[K1]) have free boundary conditions on dTη. This is necessary in order to take the
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infinite volume limit (see the next section). At first glance, this appears to cause
problems since the divergent diagrams produced by perturbation theory have
propagators with N and Db.c. on dTη. However, because we use Db.c. for the
scalar field, the propagators entering a mass vertex go to zero near the boundary,
and this is sufficient to keep the graph finite, once the most divergent part has been
removed.

As a specific example, consider the following linearly divergent graph for the
self-energy of the scalar field:

(3.14)

As explained in Sect. 3.5 of [K1], this graph may be written as

(3.15)

The third graph on the right-hand side of (3.15) is convergent. In the first graph
on the right-hand side, we integrate by parts at y to give

(3.16)

where the asterisk denotes differentiation of the localization function χ(y). Using
the representations (3.7) and (3.9) we now write (3.16) and the second graph on the
right-hand side of (3.15) as a sum of graphs with free propagators. The graph in δm2

corresponding to (3.14) has an expansion similar to (3.16), and we may cancel some
of the terms produced. The remaining graphs have one or more propagators
connecting x to some reflection of y in dTφ or they have y summed over η%d\Tη.

Let H represent one of these remaining graphs. Suppose that for some line / in
H, there is a propagator connecting x to a reflection of y in dTη. Then we see that the
graph H with / omitted has positive degree [(3.16) ensured this], and the degree of
H is greater than or equal to — 1. We can analyse H in the manner described in
Sect. 3.4 of [K1]. The internal propagators are decomposed with the relation

fc-l

GJt = Σ G<j> a n d w e c a n restrict attention to one particular ordering of the

internal lines. After inserting the appropriate bounds, we get the following factor
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for the line /:

({x9y}9dΠ')} ]. (3.17)

Following the methods of [K1], we shrink the lines in H to x and the final sum
of integers is

Σ (Uηf^expl-δiϋη)'1 dist({x},SD')]
7 = 0

£Cexpl-δ(LJoη)-1dist({x}9dΠ')']

ί(Ljoη)D(H\ D(H)>09

J
Lldist ί ίxJ^D 7 )^, D(H)<09 (3.18)

wherejΌ is the smallest integer on an external line. Suppose now that x is connected
to another vertex z by a scalar field line with integer J Ί ; then for all 0 ^ α < 1,

δoiUiηy'lz-xU. (3.19)

This bound follows from the representation (3.9) and Proposition 3.7 of [K1].
Therefore, we have the additional factor Idist^xJjδD')!* available when we sum
over x, and so we get

^ C(Lhη)D{H)+α exp [ - δ{Lhη)~ι dist({z}, 5 D 0] . (3.20)

Since D(H)^ — 1, we can use any positive α. This extra degree of convergence
has been borrowed from a line external to if; as usual, we have transferred the
divergence to a bigger graph. This is exactly how divergent diagrams are
renormalized in Sect. 3.5 of [K1], so we see that H produces no divergence. The
same reasoning holds when one vertex of H is restricted to the region r\TLdjTn.
Furthermore, we may extract a convergence factor L~yk and so prove convergence
of the graph as fc-»oo.

The other graphs in δm2 can be treated similarly; in fact, the cancellation of the
logarithmically divergent graphs does not require Db.c. The Ward-Takahashi
identities hold for our choice of boundary conditions, since this choice is gauge-
invariant. We will prove in Appendix A that the operators Δ{k) and Δ{k\ϋ) converge
as k-^co. Therefore, all the results of [Kl] go through, and we deduce
Theorem 2.1.

3.2. Correlation Inequalities and Monotonicίty in the Volume

By using an appropriate collection of correlation inequalities, we can prove that
(Θ(g, h)}χJ

D is monotonic in J, for suitable g9 h. The reader is referred to [BFS 1]
for a derivation of the inequalities, which are quoted below.
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For two operators Θ and Θ\ and 0^5^2, define the ratio of expectations

We are concerned with operators of the following form:

(3.22)

r2(fc) = Σ εdr2(x)h(x). (3.23)

The following proposition is proved in [BFS 1] using standard methods.

Proposition 3.1. For real functions g, h with h^.0, for any complex function u, and
for ε>0, 0^s^2,

i\\h)ΛiA{Y \A(u)\2; s)^0, (3.24)

^ ; r2(x); s )^0, (3.25)

r(x)r(y)cos(θ(x)-eεA<x,y>-θ(y)); s)^0, (3.26)

; \A(u)\2; s )^0, (3.27)

; r2(x); 5)^0, (3.28)

^(r(h) + A(g); r(x)r(y)cos(θ(x)-eεA^y>-θ(y)); s )^0. (3.29)

Using Proposition 3.1, we can deduce the following theorem.

Theorem 3.2. For g real and /z^O, both with compact support in lRd, (βiig, ^iγ/k,Ώ
and <ί%, — h)}^J

D are, respectively, monotonic increasing and decreasing in J.

Proof of Theorem 3.2. We establish monotonicity for a non-zero lattice spacing ε;
continuity gives the same result for the continuum limit. For given sources g and h,
we take J large enough so that suppg and supp/z are bounded away from dCj.
Recall that

:φ2:(h) = r2(h)-2 Σ εdC%x,x)h(x), (3.30)
xeCj

where Cε = { — Δε-\-m2)"1 is computed using Db.c. on δCj. When x is a distance
R > 1 from CJ? the difference between Cε(x, x) computed with free and D b.c. is less
than Cexρ[ — mK]. So taking dist(supρ/z, dCj)> 1, we may define the subtraction
needed to renormalize φ2(h) using free boundary conditions, and the results of
Sect. 3.1 still hold. The advantage of doing this is that \φ2: (h) is then independent
of J.
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Consider the expression

iεd-2\Aμ(b+)-Aμ(b_)\2; s), (3.31)

where b is a bond in CJ+ v By (3.24), the value of (3.31) at 5 = 2 is less than its value
at 5 = 1 . Examining the definition (3.21), this means that removing the term
\εd~2\Aμ{b+)- Aμ(b _)\2 from the action decreases (Θ(ig, Λ ) ) ^ 1 . Similarly, (3.26)
shows that removing a term — εd~ 2r(x)r(y) cos(θ(x) — eεA<xyy — θ(y)) from the
action also decreases this expectation. If we remove all such terms coupling sites in
Cj to sites in CJ+1\Cj, then the resulting expectation factorizes, and the integral
over fields in CJ+1\Cj cancels.

The remaining expression is exactly (Θ(ig9 h))%J

D, since we defined δm2 using
free boundary conditions. Therefore, we deduce the inequality

) ) c

N ^ . (3.32)

A similar proof shows that

& Λ ) ) ^ 1 - (3.33)

3.3. Reflection Positίvity

Reflection positivity is a crucial ingredient in the reconstruction theorem of
Osterwalder and Schrader [OS 1]. It was proved for the [/(I) Higgs model in
[BFS 1], and we state their results below. Given a rectangular parallelepiped
ΩCεZd, consider a hyperplane π which is perpendicular to the vth coordinate
direction, and which lies midway between neighbouring sites of Ω. Define Ω + to be
the sites in Ω lying on opposite sides of π, and let ρ denote reflection in π. Then we
shall assume that

= Ω_. (3.34)

We now introduce a map θ taking functionals with support in Ω+ into
functional supported in Ω_ by

, ΦW) = ήΛ(ρbl φ(ρx)). (3.35)

The bar denotes complex conjugation and ρb = ρ<b_i> + > = <ρi>_,ρb + >. We
will choose boundary conditions for the fields on Ω which are invariant under
reflection in π. It is convenient to consider the vector field A as defined on oriented
bonds, and to assume that

(3.36)

We define a characteristic function on Ω by

ίl if xeΩ,

Ω(x) =< . (3.37)
0 otherwise.
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The action that we consider on Ω is /recall that F(p) = ε~ι Σ A(b)\,
bedp

,φ)=ί Σ εd\F(]?)\2+iμ2o Σ
peΩ** beΩ*

xeΩ

•cos(θ(x)-eεA((x,y»-θ(y))-]
d W 2 %2x)r(x)2]. (3.38)

xeΩ

We have written x* for the set of nearest neighbour sites of x on εZd. We write
yΩ for the expectation of a functional 3F in the measure defined by (3.38). Since

the quadratic form for the vector field in the action (3.38) differs from the "unitary"
form \{A, (d*d + μl)A} by a gauge-fixing term only (d is the lattice exterior
derivative), we may apply Corollary 5.4 of [BFS 1] to deduce the following
proposition.

Proposition 3.3. For any gauge-invariant functional $F supported in Ω + ,

O. (3.39)

The action (3.38) differs from (2.5) by the omission of some terms of the form
εd~2\A(b) — A(b')\2, where b and V intersect dΩ. We shall use the correlation
inequalities of the last section to insert these terms below.

We return now to the construction of the infinite volume limit. For any sources
g,h and for z,weC,

KΘ(zg, wh))tfβ\ ^ <Θ(Rezg, Re * * ) > $ # . (3.40)

We can write Rewh = h + — h_, with h+,h^0. Then using Schwarz's inequality
and Theorem 3.2,

(3.41)

where JQ^J is such that supρ^usuppftcC J o_ 1, and the factor " C " in (3.41)
depends on gf,Λ,z,w (this is the ultra-violet stability bound). For each J, we
consider <0(O,2/z+)>ε

Cj defined with the action Sε

Cj(A,φ) given by (3.38). Then
Theorem 3.2 gives

< t f ( 0 , 2 / z + ) > ^ < ^ ^ ^ (3.42)

Using (3.42), reflection positivity and ultra-violet stability, there is a standard
argument (see [GJ1]) which allows us to deduce

? (3-43)
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all J ^ J 0 , for some constant C, again depending on \\h+1|. Combining monotonic-
ity (Theorem 3.2) and (3.41), (3.43), we deduce

3 lim (Θ(zg, wh)}c

N'D = <Θ(zg, wh)} (3.44)
J-+00

for Rez = 0 and h^tO. (Notice that we took the continuum limit before taking the
infinite volume limit; all our bounds and monotonicity results are uniform in ε.)
Vitali's theorem then extends (3.44) to an entire function o n C x C . Furthermore,
for each J, (β(zg, wh)}8^ converges on some subsequence as K-*oo. This limit is
reflection positive; also (3.42) implies that as J-»oo it converges to (3.44).
Therefore, (3.44) is also reflection positive.

Translation invariance follows by uniqueness of the limit (3.44). Vitali's
theorem allows us to deduce (2.19).

4. Rotation Invariance

As explained in Sect. 2, in this section we will consider the model on a torus Dj
defined by

D J = { x e R d : -25MJ^xμ<25MJ9 μ=l9...9d}. (4.1)

We denote by Zε(Dj,g,h) the generating functional on the lattice Tε with
spacing ε and the "usual" orientation. We will denote by ZR{ε)(Dj,g,h) the
generating functional on the lattice TR{ε) with spacing ε, but rotated by an angle θ0

as shown in Fig. 1. The results of [Ba 1-4] apply to both these models, and we have

g9 h) £ e c ^ , (4.2)

where C l 5 C 2 depend on g, h but not on ε or J.
In order to compare these models we consider a modified block spin

transformation. Each lattice site y in TR{5ε) defines a block of 5d sites on Tε9 which we
denote by B(y). We introduce corresponding averaging operators

Σ Aμ(x), (4.3)Σ μ
xeB(y)

(Q(Λ)φ)(y) = 5~d Σ U(A(fyJ)φ(x), (4.4)
xeB(y)

where the contour fyx is chosen to lie entirely inside B(y). Using the operators (4.3),
(4.4) we can generate from Z%Dj, g, h) an effective action on the lattice T ^ ε ) , which
we write s(lhR{5ε\T{1\ Al9 φl9 g9 h). By applying succeeding steps of the renormal-
ization transformation in the usual way, that is without rotating the blocks, we
generate effective actions s{k)>R{5kε\Tik\ Ak9 φk9 g9 h) on the lattices Γ ^ ^ . In Sect. 5
we will prove the following proposition.

Proposition 4.1.

Z\DJ9 g9h)^i (dA)(dφ)χk(Ak)χk(φk)

• exp[-ί (*> Λ(5kβ>(TW Ak9 φk9 g9 h) + C{Lhγ\Dj\-\ (4.5)

for0^kSK,σ>Oand χk as defined in Sect. 3 of [K 1].
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We can also perform the usual renormalization transformations on
ZR{5ε)(Dj,g, h). This produces effective actions S{k~ 1 ) 'Λ ( 5 k 8 )(Γ ( f c ), Ak9 φk9 g, h) on the
lattices T$5kε), which we can compare with the previous actions.

Theorem 4.2.

xMk)χk(Φk)\S(k) HT«\ Ak, φk, g, h) -S»- x> \T»\ Ak, φk, g, h)\

^ C(L~ >\Lh) ~ β + (Us)") \Dj\, (4.6)

where 0 < y < 1, 0 < σ, β, and c depends on g, h.

Proof. The proof is almost identical to the proof of Theorem 3.4 in [K1], assuming
that we have corresponding results on convergence of propagators. These results
will be established in Appendix B. The only significant difference in the rest of the
proof is that we always decouple regions using propagators with periodic
boundary conditions on some torus defined in the same way as Dj. This allows an
explicit Fourier representation for free propagators.

We can now establish Theorem 2.4. First, using the results of [Ba 2] (as stated
in Theorem 3.1 of [K1]) and Proposition 4.1,

ZR<5B\Dj,g,h)-Z\Dj9g,h)

S<*- " \T*\ Ak9 φh9 g9 *)]-exp[-#*>• \Pk\ Ak9 φk9 g9 A)]}
. eC{LHr\Dj\ + e~p(L^ε)2 + C\Dj\ ^

We now use Theorem 4.2 and the bound

ex - ey ^ \ex - ey\ ύ\x~y\ (ex + ey), (4.8)

which gives

(4.7) ̂  C(IΓ y\Lh) - ' + (LkεY) \Dj\ {ZR<5*\Dj9 g9 h) + Z%Dj, g9 h)}

(4.9)

To complete the proof, we must prove the same bound for {Zε(Dj,g,h)
— ZR{5ε\Dj,g, h)}. We do this by switching around the argument; rotated blocks
are used to generate from ZR{5ε)(Dj, g, h) an effective action on the lattice T$l, and
other actions on T^~x\ These are compared with the actions generated from
Zε(Dj, g, h) by the usual transformations. We can prove analogues of Proposition
4.1 and Theorem 4.2, which is all we need. Then using the bound (4.9) and choosing
k suitably, Theorem 2.4 follows (see Sect. 3.2 of [K1]).

It remains to prove that θo/2π is irrational. We know that cos θ0 = f. So suppose

P
that θ o = -2π, where p,q are integers. Then

(cos θo)
q Σ ( ' ) + Pq - 2(cos θ0) for q even,

n ~° V H/ (4.10)
]oYll2Σ U * J + P -aίcosθo) for q odd,
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where P^_ 2,P^_ 2 are polynomials of degree q — 2. It is easy to show that

Therefore, for some integers ao,...,aq-l9 cos#0 is a solution of the equationaq

qj] anx
n = Q. (4.12)

n = 0

We will now prove that 3/5 is not a solution of (4.12). Let x = M/N, where M, JV
are mutually prime. Then

2q~ίMq + Έ α π M W " = 0. (4.13)
n = 0

Therefore, JV divides 2q~ιMq, and so by assumption N = 2S for some s.
Therefore, x = 3/5 is not a root of (4.12).

5. Ultra-violet Stability

5.1. Regularity and Decay of Operators with Db.c.

In this section we will extend Theorem 3.3 of [K 1] to include operators defined
with D b.c. Recall that we modified the averaging operator in (3.2) by including the
averaging function / defined by (3.8). Theorem 3.3 of [K1] was proved in the
paper [Ba4], and we will modify suitably that proof below.

For any Cs defined by (2.7), we denote by Tε the lattice in Cs with spacing c.
After rescaling to the ^/-lattice (η = L~~% it is written Tη. We denote by T(k) the
sublattice of Tη with unit spacing. Let Ω C Tη be such that Ω{k) is a union of large
blocks on T(fe). We will write δΩ to mean that part of the boundary of Ω which does
not belong to dTη. Recall that Gk(A) is defined with D b.c. on dTψ and Gk(Ω, A) with
Db.c. on dΩudTη. Also a vector field configuration A is regular on Ω if

l y - v y - 1 (5.1)
for μ,v = ί, ...,d, β>0, and xeΩ.

Proposition 5.1. Let A be regular on Ω, and f:Ω-+1R.Letε = L~κ; then for all k^K,
for xeΩ and <50>0,

\Gk(Ω, A)f(x)\ £ C exp[ - δ0 dist(x, supp/)] | | / 1 | , (5.2)

\Gk(Ω9A)f(x)-Gk(A)f(x)\

^Cexp[-(5odist(x,supp/)-(5odist(x,aί2)-^odist(supp/, δΩ)'] \\f\\. (5.3)

Corresponding bounds hold for DA μGk(Ω, A) and the α-Hόlder derivatives of
Gfe(β, A\ DA, μGk(Ω, A) for 0 < α < 1.

Proof. We will mimic the random walk representation presented in [Ba 4] in order
to prove Proposition 5.1. For eachyeZ d define the set

Πj = Ωn{thQ union of large blocks with Mj at one corner}. (5.4)
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We introduce a partition of unity on Έd as follows. For each j e Έd, define

hj(x)= Π M T J - J , , (5.5)

where ft is C00, supported on [ — 2/3,2/3] and ft = 1 on [ —1/3,1/3]. Also we choose
ft so that

; § - f c ' 2 = 1' (5'6)

We define the operator

G0=ΣhjGk(ΏpA)hj; (5.7)

this will serve as a first approximation to Gk(Ω, A). A straightforward calculation
(see [Ba4]) shows that

Lkε)2 + akPk(A))G0)(x,x')

( - A\% + m2{Lhf + akPk(A))Gk(Πj,
J

- Σ (d%
best(x)

+ (Rk(A, δ%)Gk(Dp A))(x, x')hj(x'), (5.8)

where st(x) is the set of bonds connected to x, and we have included a superscript to
denote D b.c. Also

Rk(A,d"h)φ(x)= Σ h

x'eBk(yk(x))

•η-\h{x)-h(x'))φ{x'). (5.9)

If we define the operators

(Kjφ)(x)=Πj(x)[ Σ (δ"hj)(b)(D"Aφ)(b) + (A'<hj)(x)φ(x)-Rk(A,δ''hj)φ(x)),
(best(x) j

(5.10)

R=ΣKjGk(ΠpA)hj, (5.11)
j

then (5.8) implies that
oo

Gk(Ω,A) = G0(I-Ryι= Σ G0R". (5.12)
n = 0

We can now deduce the random walk representation. Define a path
ω = {ω0, ω l 5..., ω j , ωf e Zd, where ωi5 ω̂  + x are vertices of the same unit cube. Then
(5.12) can be written

Gk{Ω,A)=ΣhωΰGk{Ώωo,A)hmKmGk{Ώωί,A)hωi... KωGk(Ώωn,A)hωn.
ω

(5.13)
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In [Ba4], it is shown that Proposition 5.1 follows from the following two
lemmas.

Lemma 5.2. Let G be a sum of a few large blocks. Then

\\Gk{Π,A)f\\2,\\D\μGk(U,A)f\\2,

\\Gk(n,A)D\*j\\2,\\D\fik{u,A)D\*j\\2^c\\f\\2.

Lemma 5.3. Let D be a rectangular parallelepiped which is a sum of a few large
blocks. Then

\()f\\C\\f\\. (5.15)

Corresponding bounds hold for Ό\ μGk(O, A) and the α-Hόlder derivatives of
Gk(Π,A),D\μGk(Π,A)ϊorO<a<l. '

Proof of Lemma 5.2. Since A is regular on D, we can write

A = B + A\ (5.16)

where B is a constant vector field and

\A\ \dη

μA'\ ^ C(Lkε){2-d/2Hβ-ι). (5.17)

In the paper [K 1], we deduced the following expansion for Gk(Ώ,A):

(5.18)

If we assume that Lemma 5.2 holds with A replaced by B, then (5.18) implies
(5.14). Furthermore, we can gauge transform from B to the zero vector field
configuration. The lemma then follows by getting lower bounds on quadratic
forms. We see that

iφ, {- Δt°+m2(Lkε)2 + akPk)φ) ^ (φ, (- Λ"ό

N+m\Lh)2 + akPk)φ),

(5.19)

where —Λη^N has N b.c. on δ D. The proof then proceeds exactly as in [Ba 4] we
separate —Δη^N across unit blocks using N b.c. On each block Pk projects onto the
zero eigenvector of the Laplacian. The other eigenvalues of the Laplacian are
greater than π 2.

Proof of Lemma 5.3. By expanding (5.18), we get
00

Gk(Π,A)= Σ Gk(Π,B)(Vk(A',B)Gk(Π,BW. (5.20)
« = o

Once again, we assume that Lemma 5.3 holds with A replaced by B. By
combining (5.20) with the bound

|| Vk(A', B)Gk( D, B) L ίS Ce(Lkεf, (5.21)

we then deduce the required result. Recall that (see [K1])

+ akQUB)F2,k(A', B) + akF2Λ(A\ B)*F2Λ{A\ B) (5.22)
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(the operators Flik and F2ik

 a r e defined in [Kl]). As mentioned in [Ba4],
Vk(A\ B) is a first order differential operator acting on the function to its right. The
only obstacle to this interpretation is the term Dη

B*Fltk(A'). Explicitly computing it,
we get

(D%*Fl9k(A')φ)(x)

Σ η-ι{U(B

-η -\U{A'{(x, x + ηeμ})) - \)φ{x + ηeμ)χ(x)χ(x + ηeμ)}, (5.23)

= Σ η-ι{U(B)η~i(U(AX(x-ηeμ,x}))-l)φ(x)χ(x)χ(x-ηeμ)

where

χix)J< « «p\9Q. ( , 2 4 )

(0 otherwise.

In Appendix A, we will show that

\η-\Gk(Ώ,B)φ)(x)\^C, (5.25)
when x 4- ηeμ or x — ηeμ lies on d D [this is a consequence of the fact that Gk( •, B)
has D b.c. on 9D]. Therefore, (5.23) is a regular operator on Gk(Ώ,B), and so (5.21)
holds. It remains to prove (5.15) for a constant vector field. By gauge covariance,
this is equivalent to having zero vector field. In Appendix A, we will show how
these bounds follow from an explicit Fourier representation.

The next proposition gives a lower bound on the effective Laplacian which is
crucial in the proof of ultra-violet stability. Again, we assume that Ω{k) is a union of
large blocks on Tik\ and we denote by Ω{k) that part of dΩ{k) which intersects dT{k\

Proposition 5.4. When A is regular on Ω,

Σ |^(<x,x'>MxO-^(x)|2

C{e{Lhf-^f^ Σ \Φ(*)\2• (5.26)
xeΩM

Proof. The bound (5.26) is established in [Ba 4] for N b.c, but without the term
7o Σ \Φ(X)\2- This term is present only because we are using Db.c. Since

-Δ\D^~Δ\\ (5.27)

the remaining terms on the right-hand side of (5.26) follow from the bound on the
operator with N b.c. (It is important to notice that the proof presented in [Ba 4]
requires only L2-bounds on operators.) So we will prove the lower bound for the
first term on the right-hand side of (5.26).

We may separate Aik)(Ω, A) by Neumann boundary conditions across the
boundaries of each unit block in Ω{k\ On each block away from Ω{k\ we estimate
the operator by zero. So let D be the block on Ω defined by some x e Ω{k). Then

(φ, A«XΠ,A)φ) = ak\φ(x)\2-a2

k(φ, Qk(A)Gk(Π, A)Qi(A)φ>. (5.28)

Since A is regular on Ω, we can write A = B + A\ with B constant and A! small.
We can then gauge transform (5.28) to remove J5, and expand about A' = 0
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in the usual way (see Sect. 3.4 of [K1]). Using the L2-bounds of Lemma 5.2, the
terms in the expansion of order e2 and higher can be bounded
by C(e(Lkε)2~dl2p(Lkε))2\φ(x)\2. The term of order e is proportional to
RG(φ*(x)ίφ(x)) = 0. So we are left with the piece independent of A, which is

ak\φ{x)\2 -al (φ, QkGk(Π)Qtφ}. (5.29)

For simplicity, we change Gk(D) so that — Δη

a has D b.c. on one side of D only,
and N b.c. on the other sides. We denote this side by B; it contains η1 ~ά sites. We
will use the integral representation of (5.29):

Cexp[-4(5.29)]

= ldφ'\π

where C is some constant. Clearly, for some Ao,

(5.30)

\A0\φ{x)\2]. (5.31)

In order to evaluate Ao, we will Fourier transform (5.30). Since (5.30) does not
mix the components of φ(x), it is sufficient to consider each component separately.
Then

If we change φ' to φ + φ' in (5.30), we get

(5-32)

(5.33)

where — ^ j ^ has Nb.c. on every side of D. We can write

Σ η*-2\Φ'(y)+Φ(χ)\2= Σ ηd

yeB yeB
Σ nd~2Φ\yf)

y'eB

+ η - 1

yeB

If we define

then (5.32) becomes

yeB
η~Ύ(y)- Σ

y'eB

(5.34)

(5.35)

Φ(χ)+ Σ
yeB

•KΦUΦ'ϊj

where

f(y)= Σ η'-'δ'iy-
y'eB

(5.36)

(5.37)
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Therefore, we deduce

-1f> (5.38)

From (5.35), we see that

(φiAψy^^i-A^ + mDψy, (5.39)

where m0 is 0(1). Therefore, we get

^ ^ 0 ( 1 ) , (5.40)
and hence (5.26) follows.

5.2. Upper and Lower Bounds on the Generating Functional

We will now establish Theorem 3.1 of [ K l ] for the generating functional
Zε

N D(Cj, g, h) defined with N b.c. for the vector field and D b.c. for the scalar field.
Of course, the proof follows by modifying suitably the material in [Ba 1] and
[Ba2].

Because the covariant Laplacian for the scalar field has D b.c. on 3CJ? there is
an additional positive factor in each effective action S(k) which keeps the scalar field
φk small near 3T(k). Specifically, we introduce the following bounds on the scalar
field at each step of the renormalization transformation:

Π χ(\ψk(xMCp(Lkε)), (5.41)

where Λff is the subset of T(/c) on which all fields are small (see [Ba 2]). If the bound
in (5.41) is not satisfied at some point, then Proposition 5.4 shows that we get a
small factor exp( — p(Lkε)2) from the integral.

The additional bounds (5.41) are enough to ensure that the proof of the upper
bound goes through (there is no change in the proof of the lower bound). First,
(5.41) ensures that the fluctuation fields φ' are always small. Recall that the field φ'
at the kih step is defined by Eq. (2.110) of [Ba2]:

r

 k+»-*)Q*(B<k+1)'*)φk+1. (5.42)

As shown in [Ba2], when dist(x, dΛ%))>p(Lkέ), xeΛ%\ we have

φk + ί)(x) + Cp(Lkε). (5.43)

Therefore, suppose that xeΛ%\ and dist(x,dT{k))<p(Lkε). Then using (5.41)
and the bounds on the covariant derivative of φk,

\φk(x)\ = I U(B* + »-\ΓxJ)φk(y) + φk{x) - J
h\ (5.44)

where y e dT{k) and Γx y is a contour connecting x and y. A similar bound holds for
(Q*(Bik+ί)>η)φk + iXx).' Using the exponential decay of C%iBk(A^lBik+lh% it
follows that for x e Λf, with dist(x, dTik))<p(Lkε),

\φ\x)\^Cp{Lkε)\ (5.45)
as required.
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Second, (5.41) also ensures that a large scalar field near dT{k) produces a small
damping factor in the integral. Recall that the dominant term in the effective action
is

ηd\Φ(k)(x)\\ (5.46)

where the field φ(k\x) is given by

^1}\ <VAW)φJ(x). (5.47)

Suppose that xeBk(A{k~iy) is a distance ,R or greater from dT{k). Then by
taking R to be a small fraction of p(Lkε\ we have

= Φk(y) + Cp(Lkε) \x-y\ + O(Lkεf, (5.48)

where Gfc(^4(fc)) has periodic boundary conditions on T(fc), and y is any point in
Bk(A{k~1}). Therefore, by choosing R suitably, we deduce for any sufficiently large
subset Ω,

-λ(Lkε) Σ ηψkKx)\4S-ίKLkε)Σ\Φk(y)\4 + C(Lkεr\Ω\, (5.49)
xeBk(Ω) yeΩ

where a > 0. This bound allows us to extract a small factor for each large field φk(y\
and so the proof of the upper bound goes through.

5.3. Lower Bound for the Rotated Model

The proof of Proposition 4.1 follows by verifying the properties used in [Ba 1] to
prove a lower bound. We will write Gk(A), C{k){A) etc. to denote the propagators
produced by the averaging operators (4.3), (4.4). The following proposition gives
the required properties of Gk(A).

Proposition 5.5. Let A be regular on Tη9 and / : Tη-^WLN. Then

\(Gk(A)f)(x)\ S Cexp(- δ0 dist(x, supp/)) | |/ | | „, (5.50)

, (5.51)

\χ~y\

£ C exp [ - δ0 dist({x, y}, supp/)] || /1| „, (5.52)

where 0 < α < 1, for all x, y e Tη.

Proposition 5.5 guarantees that the effective action S(k)>R{5kε)(T{k\Ak,φk,g,h)
has the necessary properties to act as a small, local perturbation of the free field
measure at each step of the renormalization transformation. In order to apply the
results of [Ben 1] to perform a cluster expansion at each step of the renormal-
ization transformation, we need the following results concerning C{k\A). For
Ωt 7i(7c), define

£ i ι . (5.53)
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Proposition 5.6. Let ΩcT£k) be a sum of big blocks; then for x,yeΩ,

\C«XA;x,yMCexvl-δo\x-y\]. (5.54)

Proof of Proposition 5.5. Once again we use a random walk representation. This
time, we use blocks {D }̂ which are small scale versions of Dj, that is they can be
fitted by both the usual lattice and the rotated lattice. Our first approximation is
the operator

G0=ΣhjGk(DβΆ)hj, (5.55)

where Gk(Ώ,A) has periodic boundary conditions on the block •. Also, we take A
equal to A in the interior of D, and changing regularly to a constant configuration
near <9D. We then deduce the representation

Gk(Λ)= ΣhωoGk(BωoJjhωoKωiGk(Dωi,Aωi)... Kωβk(Πωn,AJhωn.
ω

(5.56)
To deduce Proposition 5.5, we need the following lemmas.

Lemma 5.7.

\\Gk({J,Ά)f\\2,\\DlμGk(Π,Ά)f\\2,

| |Gk(D,l)D^/||2,| |^μG f c(D,I)^* v/||2^C||/||2.

Lemma 5.8.

\\Gk(Π,A)f\\MSC\\f\\O0. (5.58)

Corresponding bounds hold for D\>μGfe(Π, A) and the α-Hόlder derivatives of
these operators, 0 < α < l .

Proof. As with Lemma 5.2, Lemma 5.7 follows from the lower bound

^ C<^? φ>. (5.59)

To prove (5.59), we cover D by cubes {Δ^ on the ̂ -lattice, with sides parallel to
the coordinate planes on that lattice. The size of Δ is chosen so that each cube
contains fully at least one block of 5kd sites defined by Pk. We then estimate (5.59)
from below by omitting Pk except on one block fully contained in each Δb and
omitting the (derivative)2 terms on bonds connecting different Δv We then get

(5.59) * ?
i

φ\Aiy, (5.60)

since Pk{Δ^) projects onto the constant mode on Δb and —Δη

A\
N has non-zero

eigenvalues greater than (π/JR)2, where R is the dimension of Δt. This gives (5.57)
(the other bounds follow as before).

To prove Lemma 5.8, we write A = B + A' with B constant and A' small, and
expand about A' = 0. As in the proof of Lemma 5.3, we reduce to the case v4 = 0,
which we prove in Appendix B.

Therefore, Proposition 5.5 holds for Gfc(;4) as required. To prove Proposition
5.6, we use the method presented in Chap. 3 of [Ba4]. This method requires only
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L2-bounds on the operators Gk(Ω, A\ and these may be established in the same
way as Lemma 5.7. Hence (5.54) holds for the set Ω.

Appendix A

Using the representations (3.7), (3.9), it is sufficient to consider the operators
Gk, Gk(0) with free boundary conditions. The only difference from the case studied
in [K1] is the averaging function f(x), given by (3.8). The Fourier transform of/ is
equal to

d Γ g-iJVί(L-l) i Ί

fη(p)=L~d Σ /(*)*-*<*-»= Π (τ w-iPμn A (A.1)
xeB(y) μ=l\_(L—l)(β Pμl—l)J

We can easily deduce the explicit representation corresponding to (4.2)
of [ K l ] :

(akGkQΪ)(x,y) = (2πyd J
\p'\£π

A»(p'

The terms in (A.2) have the same meaning as the corresponding terms in (4.2) of
[K 1], with the following change:

Lemma 5.3 follows by exactly the same considerations used in [Ba4] with
/ = 1. The integrand in (A.2) may be analytically continued in a strip around the
real praxis, giving exponential decay. The sum over / is controlled by the estimates

(A.4)

Furthermore, suppose that we have D b.c. on the hyperplane xμ = 0. We wish to
prove that

\n " ' (G*(x, y) - Gk(x, y - 2yμeμ))\ ̂  C, (A.5)

when yμ = η (this shows that the propagator with Db.c. goes to zero near the
boundary; Gfc in (A.5) has free boundary conditions).

It is sufficient to show that

\Ά ' KakGkQΐ)(x9 y) - akGkQ*(x, y - 2 yμeμ))\ S C. (A.6)

From (A.2), we get the factor

/|ί (A.7)

There are sufficient negative powers of \p' + l\ in the sum over / in (A.2) to
control (A.7). Therefore, (A.6) holds and hence also (A.5).

In order to prove the necessary convergence estimates for (A.2) which were
proved with / = 1 in Sect. 4 of [K1], we specify below the alterations needed to
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include /. We leave unchanged (4.6) and the conditions (4.7), (4.8). In order to
reprove Lemma 4.1, we consider

Σ L- 2 d [/(x)/(ω)-l] e -^- ω )

x,ωeB(y)

|2 Σ L-2d[l-/(x)/(ω)]sin2[|p(x-ω)], (A.8)
x,ωeB(y)

since /(0) = l. Hence

μ, v =
mύl,(]>)? Σ ίWvj Σ L-2d(x-ω)μ(x-ω\

^lpPl^i ίp) ! 2 . (A.9)

Using (A.9) and the estimates (4.10), (4.11) of [Kl], and also
==^d9 w e deduce Lemma 4.1 of [K1]. Next, we again notice that

* _
z)(fe+n)0/) can be written in the form of Aik)(p') with

\uL

n«

Also, we have

\fη'(p)\2\un-ί(p)\2 = Σ L~2ndf(x)f(ω)e~ip{<x~ω)

- 1 + Σn L-2ndf(x)f(ω)le-ip{χ-ω)-l]. (A.ll)

Using (A.10) and (A.ll), we can follow the proof of Lemma 4.2 in [K 1], and
deduce convergence of Δ{k)(p'). The rest of Sect. 4 of [Kl] goes through with
virtually no changes, and so we deduce the convergence lemmas needed for the
proof of the continuum limit.

Appendix B

We denote by Gk the propagator generated by the averaging operators (4.3).

Consider a region Ω given by

where {Lμ} are integers. We denote by Tη the torus with lattice spacing η = 5~k

which fits inside Ω. The orientation of this lattice is the same as that of dΩ. The
lattice operator Gk(Ω) on the torus Tη is then defined by the equation

"2(Tkp\2-\-n Ω*Ω* Π ΠΛG(O\f—f ΓR ?ϊ

for any function / on Tη. We can now state the multiple reflection representation
for Gk(Ω) (the operator Gk is defined with free boundary conditions):

Ok(Ω)(x,y)= Σ Gk(x,y+ Σ 25nμLμeμ). (B.3)
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Therefore, it is sufficient to prove regularity and decay estimates and
convergence properties for Gk. We will denote by ηΈd the original lattice on which
Gk is defined, and by Ώr\%d the rotated lattices defined by the renormalization
transformation, for j= 1,..., k. The dual of ηΈd is Pη; the dual of L}Ύ\ΊLd is PLJη (of
course, L = 5 here). We introduce the function

HP) = 5~d Σ *-*•<*-», (B.4)
xeB(y)

for p e Pη. By introducing a Fourier representation on ηΈd, we deduce the following
explicit formula:

where

^ * + Σ |w,(p'+ Γ)|2|tί!L!(?'+ 0 1 W + 0"*V ' > (B.6)

and we sum /, Γ over 2τάLd, such that p' + ί or p' + V belongs to Pη. Using the
representation (B.5), we can deduce the regularity and decay estimates for Gk in the
same way as in Appendix A. Similarly, the convergence proofs go through in
almost the same way. We will give the proof of convergence for Δ{k)(p') — Δ{k)(p')\
the other estimates then follow straightforwardly (see Sect. 4 of [K1]). First, we
have

' + Σ l"Z(p '+Π\ 2 ΛV+IT x Y', (B.7)

where Δη(p) is the Laplacian on the lattice v$Ld, and /' is summed over 2π%ά such
that p' + ΓePη. It is clear that

(B.8)

So we need only prove convergence of {A(k\p')~1 — A{k)(p')~x). This is done by
comparing similar terms in (B.6) and (B.7). We will use μ, a to denote components
taken with respect to ηtd,ηZd. Then

Λ"(p'+Γ) = 4>7~2£sin2 [jη(p' + /')„] + mz(Lkε)2,
" (B.9)

A"(p'+Γ)=4η~2Σsin2[k(P'+OJ + m2(Lkε)2.
a

Using x 2^sin 2x^x 2—yx 4, we get

| i V +1')- Δ *(p'+ 01 ^ CL"2k[(p7 + 0 2 ] 2 . (B.10)

Hence we deduce

It is also straightforward to show that
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Combining these estimates with the results obtained in Sect. 4 of [K1], we
deduce

\Δ (k)(p0 - A (k)(p0l ύCL~ 2kA <*>(p'), (B. 13)

which is the required result.
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