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Abstract. We determine all the potentials V(x) for the Schrόdinger equation
( — dl + Y(x))φ = k2φ such that some family of eigenfunctions φ satisfies a
differential equation in the spectral parameter k of the form B(k, dk)φ = Θ(x)φ.
For each such V{x) we determine the algebra of all possible operators B and the
corresponding functions Θ(x).
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0. Introduction

In this paper we study the following question: For which linear ordinary
1 ( d V

differential operators L= Σ L/x) l — I is there a non-zero family of eigenfunc-
tions φ(x, λ), j=0 ^dx'

(LφKx9λ) = λ φ(x9λ)9 (0.1)

depending smoothly on the eigenfunction parameter λ, which is also an
id V

eigenfunction of a linear ordinary differential operator A = Σ ^UΌ

(Aφ)(x, λ) = Θ(x) φ(x, λ) (0.2)

for an eigenvalue Θ which is a function of x?

* This research was partially supported by NSF grant DMS 84-03232 and ONR contract
NOOO14-84-C-0159
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One of us was led to this question in an attempt to analyze some problems in
"limited angle tomography," see [11].

The quantitative study of the relation between "amount of data" and "picture
quality" rests on the possibility of a detailed analysis of the spectral properties of a
specific integral operator. This is made possible, in very simple cases, by the
miraculous existence of a commuting second-order differential operator: the same
one that enters in the study of the problem of concentrating a function both in time
and frequency, see Slepian and its references [24], or in the study of the eigenvalue
distribution for infinite matrices with Gaussian entries, see Mehta [18].

Both for practical as well as for purely mathematical reasons it is desirable to
look at the corresponding integral operator in more complicated situations than
the real line, or equivalently in the case when Fourier analysis is replaced by the
decomposition in terms of eigenfunctions of a general second order differential
operator on the line. In [12, 13] several cases are considered in detail, and the
observation is made that there is a relation between the existence of a commuting
differential operator and the validity of property (0.2). How strict this relation is,
remains an open problem.

Another motivation was that one frequently sees families of eigenfunctions
φ(x,λ) for which the asymptotics as Λ.->oo has a formal resemblance to the
asymptotics for x-»oo. The asymptotics for x-*oo follows from the differential
equation (0.1) in the variable x. A differential equation (0.2) in the variable λ could
then be the explanation of the similarity of the asymptotics.

We will give a detailed answer to the case that L has order 2, when it can be
taken in the standard Schrόdinger form

2 + F ( x ) > ( α 3 )

with some potential V(x). The answer will be described in terms of a construction
introduced in 1882 by Darboux [6, Livre IV, Chap. IX, No. 408], and which we
now recall for the convenience of the reader.

One can always factorize

L = PoQ with P * - ψ £ Q=l-ψ&, (0.4)
dx φo(x) dx φo(x)

where φ0 is a non-zero eigenfunction for the eigenvalue 0:

Lφo = 0. (0.5)

Interchanging the factors one obtains another Schrόdinger operator

jJ + V(x) (0.6)
with

as the new potential. The point is that if Lφ = λφ, then LQφ = QPQφ = QLφ = λQφ,
so if one knows the eigenfunctions for L, then one obtains the eigenfunctions for L
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by applying Q to them. (This explanation, in terms of interchanging the factors, is
due to Burchnall and Chaundy [5], who call it "transference.") We shall call Ff-» V
a rational Darboux transformation if ΦΌ(x)/Φo(x) *s rational. With such a
transformation, V remains rational if F is rational. Our answer to the question
posed above can now be formulated as follows.

Theorem 0.1. The potentials V for which (0.1), (0.2) hold (for non-zero φ and A of

positive order) are V(x) = ax + β, α, β e <C, α =j= 0 (Airy) or V(x) = - ry + b,
(x-ay

α,i,ceC (Bessel) or, modulo a translation in x and adding a constant to F, those
which can be obtained from F=0 or F = — j-^by finitely many rational Darboux
transformations. x

With the Darboux transformations starting from F=0, one can, at every step,
take an arbitrary non-zero φ0 e KerL. Because a non-zero factor in φ0 leads to the
same new potential, at every step this introduces one new complex parameter in
the family of potentials; this parameter runs over the Riemann sphere of complex
lines in the complex two-dimensional vector space KerL. The potentials thus
obtained have been identified by Adler and Moser [2] as the potentials which stay
rational under the Korteweg-de Vries flow, as found in the paper of Airault,
McKean, Moser [3]. An equivalent characterization of these potentials is given by
the condition that F(oo) is finite and that all the eigenfunctions are meromorphic
in C, see Theorem 3.4.

For the Darboux transformations starting at — \x2, the rationality oίφ'Qlφ0 at
the various steps is no longer automatic; see Proposition 4.3 and the remarks
thereafter for more details. This case is characterized by the property that, after
conjugating A by a suitable function of λ, the common eigenspace Ker(L—λ)
nKer(/l — Θ(x)) is 2-dimensional, whereas it is always 1-dimensional for the
rational KdV potentials which are not Bessel. Moreover, if dim[Ker(L—λ)
nKer(^4 — <9(x))] = 2, then F and Θ are necessarily even functions of x, which is
why we call this the "even case." A natural question would be to find evolution
equations analogous to the KdV hierarchy in the even case.

Equivalent descriptions of the rational KdV potentials, respectively the
potentials in the even case, can be given in terms of the properties of their poles in
the complex plane, see (3.31). (3.32), respectively (4.45), (4.46). The operators
appearing in (0.2) form an algebra (corresponding to a singular curve) isomorphic
to the algebra of functions Θ in (0.2). These turn out to be polynomials,
characterized by the vanishing of the first vp derivatives of odd order of Θ at the
poles p (p φ 0 in the even case) of the potential F(see Theorems 3.5 and 5.4). A fringe
benefit is the relative ease with which we can produce examples of such algebras of
differential operators.

The first step in our proofs is the observation that Θ must be a polynomial and
F must be rational. The argument is related to, again, a basic observation in
Burchnall and Chaundy [5]. Then all other results are obtained from an analysis of
the asymptotic behavior of the eigenfunctions φ(x, λ) as x converges to oo, or to a
pole of F, or as λ->oo. In this we follow the strategy of Flaschka and Newell [8].
For instance, the somewhat mysterious equation (3.32), (4.46) simply express that
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the eigenfunctions are single-valued around these poles p of V for all λ; see
Proposition 3.3. In Sect. 7 we discuss some special cases in more detail, in order to
illustrate some aspects which have received only marginal attention in the general
theory.

After unearthing the final answer (in the process of which we got our hands very
dirty), we are still left with feelings of bewilderment. For instance, the rational KdV
potentials, respectively, the ones in the even case, bifurcate from the Bessel

potentials —^ at c = v(v+l), respectively c = L2— j = (L—i)(L+^) with v,LeZ.
^

Reading x = (xj + ... + x^)1/2, the eigenfunctions at these "bifurcation Bessel

potentials" are, up to a factor x 2 , the spherical symmetric eigenfunctions for
the Laplace operator in R", with n = 2v + 3, respectively, n = 2L+ 2. Does this mean
that there is a geometric explanation for our answer?

1. (adL)w

Consider a linear ordinary differential operator

L=L(x,dx)= Σ Lhή&x, 8X=-—, (1.1)
j=o dx

of order /, with complex valued coefficients Ly(x), depending smoothly on the
independent variable x. Let φ = φ(x9 λ) be a non-zero family of eigenfunctions of L,

(L^)(x,λ) = λ ^(x,λ), (1.2)

depending smoothly on x and λ, which satisfies another differential equation of the
form

(Aφ)(x9λ) = (θφ)(x,λ). (1.3)

Here A is a linear differential operator with respect to λ9

m β

A = A(λ, dλ) = ΣQ Ar{λ)d\, dλ= — (1.4)

with coefficients depending only on λ, and

m

is a linear differential operator with respect to x, with coefficients depending
(smoothly) on x.

The assumptions are made only locally, that is, for x, respectively λ, in a
neighborhood of x0, respectively λθ9 on the real axis. "Smooth" means Cp for
sufficiently large p. p = l(m+\) is safe, it is a separate game to find minimal
smoothness conditions for φ and the coefficients of L and Θ in order that the
conclusions in this section remain valid.

Write
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for the commutator of two linear operators P, Q. One obtains immediately from
(1.2) and (1.3) that

lL,ΘW = l-λ,Alψ, (1.7)

using that A = A(λ, dλ) and L=L(x, dx), respectively λ and Θ = Θ(x, dx\ commute
with each other. Replacing (9, respectively A, in (1.7) by (adL)r~ 1(Θ)? respectively
( — adλy~ι(A), one obtains by induction on r that

(2LdLf(θ)φ = {-2idλγ(A)φ for all reZ>0. (1.8)

Here the zero order differential operator "multiplication by Λ," has been denoted by
λ as well. Because each ad λ decreases the order of a linear differential operator in λ,
we get from (1.8) with r = m+ 1:

(adL)m+1(Θ)φ = 0. (1.9)

On the other hand, adL increases the order of a linear differential operator in x
by at most / - I , so (adL)m+1(<9) is a linear differential operator in x, with
coefficients depending only on x, of order at most α = order (9-f (m + l)(ί— 1).

Now let (adL)w+1(<9)φO, order (ad L)m + 1(Θ) = α^α. In a neighborhood of a
point x0 where the coefficient of the highest order term does not vanish, the null
space oϊ(a,dL)m+1(Θ) is a vector space of functions of x of finite dimension, equal to
α. However, non-zero eigenvectors for any linear operator L, corresponding to
different eigenvalues λu ...,λt, are automatically linearly independent. So taking
ί>α, φ = φ( ,λs\ s = l , . . . , ί in (1.9), we arrive at a contradiction with the
assumption that (adL)m + γ(Θ) φ 0. (This is the argument with which Burchnall and
Chaundy [5] proved that two commuting ordinary differential operators satisfy
an algebraic equation between them.) We have proved that necessarily

(adL)w + 1(6>H0. (1.10)

Equation (1.10) can be given another, equivalent formulation, using the
following infinitesimal version of the linear independence of the eigenfunctions
φ(-,λ) for different /Γs.

Lemma 1.1. Let (φj( , λ))j = 1 f Λ be a basis of Ker (L—Λi), each φj( , λ) depending
smoothly on λ. Then

jλyiϊζ:;:;;r (1.11)

forms a basis of Ker(L-/l/)m + 1.

Proof. For any φ(x,λ) depending smoothly on x,λ:

=p-dΓιφ. (1.12)

The proof is by induction on p, the induction step is made by differentiating (1.12)
with respect to λ. Applying powers of L—λl to (1.12) yields

(L-λiy dϊφ=^—dΓqΦ for q£p, (1.13)

= 0 if φeKoτ(L-λl). (1.14)
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So the elements in (1.11) all belong to Ker (L—λl) m + 1 . Suppose now that cjp are
constants such that

Σ Σcjp-dΊφj=o.
j=ί P=0

Applying (L-λI)m we get, using (1.13), (1.14) that

which, in view of the linear independence of the φj} means that cjm = 0 for all;. By
induction on m it follows that cjp = 0 for all j , p and we have proved that the dp

λφj are
linearly independent. Because

the dp

λφj form a basis of Ker(L-/l/) m + 1 .

Proposition 1.2. The following conditions a)~c) are equivalent:
a) There is a non-zero family φ{ , λ) e Ker(L—λl% depending smoothly on λ,

such that (Θφ)( ,λ)e KQr(L-λI)m+1 for all λ.
b) (adL)m+1(<9) = 0.
c) Θ maps Ker(L-AJ) into Ker(L-A/) m + 1 for all λ.

Proof. If φe Ker (L—λΐ) then, by induction on m:

1 1 (1.15)

So, if φ is as in a), then ((adL)m + 1(<9)¥( , λ) = 0 for all λ. But (1.9) => (1.10) above
then gives b). b) => c) follows directly from (1.15) and c) => a) is obvious.

We will apply Proposition 1.2 and Lemma 1.1 in the next sections in the
following way. Let J be a linear subspace of the space of functions of x,
characterized for instance by certain asymptotic behavior, such that

dim(JnKer(L-/l/) m + 1 ) ^ m + l . (1.16)

Let φ( , λ) be a non-zero family of functions of x, depending smoothly on λ, such
that

φ{ ,λ)eKer{L-λI)nX {&$)(• ,λ)e£ and dp

λφ{ ,λ)sΆ for all O^p^m.

(1.17)

Inequality (1.16) and the last statement in (1.17) imply, in view of Lemma 1.1, that
the dpj( , λ\ O ^ p ^ m , form a basis of J n K e r ( L - / l / ) m + λ [and the equality holds
in (1.16)]. From Proposition 1.2 we now read off:

Lemma 1.3. // ( a d L f + 1 ( 0 ) = O and (1.16), (1.17) hold, then (©$)(•, λ) is a linear
combination of the dp

λφ( , λ\ 0 ̂  p ̂  m, with coefficients depending only on λ. That is,
φ satisfies an equation of the form (1.3), replacing A by a suitable operator

This leads to equivalence between the equation (adL)m+1(<9) = 0 and the
existence of a non-zero family φ = φ(x, λ) and an operator A = A(λ, dλ) satisfying
(1.2), (1.3). See Sects. 2 and 6, where the subspace Ά is defined by the asymptotic



Differential Equations in the Spectral Parameter 183

behaviour for x-»αo. From the existence of a non-zero family φ = φ(x,λ) and
operator Λ = A(λ, dλ) satisfying (1.2), (1.3) we will use Lemma 1.3 again in Lemma
2.1 in order to see that the special family φ = φ( , λ) e Ά satisfies (1.2), (1.3) as well,
with A replaced by a suitable operator A = A(λ, dλ).

From now on let us assume that

Θ = Θ(x) (1.18)

is of zero order - so it plays the role of an eigenvalue parameter for the operator
A = A(λ, dλ) in (1.3). (One has to allow Θ to depend on x in order to get a non-trivial
problem.)

Assuming also that Lt(x), the highest order coefficient of L is real, or that L has
analytic coefficients and therefore is defined in a complex neighborhood of x0, we
can arrange by a substitution of variables in x that

Lj(x) is a non-zero constant. (1.19)

The coefficient of d(™+ m~1} in (adLf"1" \Θ) now is equal to ( - / L^)m+ ι δ™+ 1Θ,
so (adL)m+1(6>) = 0 implies that

Θ(x) is a polynomial in x of degree g m . (1.20)

Conjugating L with a suitable function of x we can also arrange that

L ^ ^ Ξ Ξ O (Liouville). (1.21)

Restricting ourselves to second order operators L, as we will from now on, we may
therefore take it in the conventional (Schrόdinger) form:

(1.22)

where the zero order term V(x) is called the potential Writing
i(6)), (1.23)

the part which is homogeneous in V of degree d is equal to the sum on the right-
hand side over all Z l9..., Zp such that Σ 'even = d. Because ad Vdecreases the order of
a linear differential operator in x and addj increases it by at most one, this part has
order at most equal to Σ ίodd - Σ ' e v e n = Σ h - 2 Σ Uen = m + 1 - 2d. In particular,

we see that the coefficient of d™ in (adL)m + 1((9) does not involve V yet.
Using that

[^,c(x)] = 2c'(xR + C"(x), (1.24)

it follows by induction over j that

PΣ Σ 2 ; - Y ; ' W % . ^ (1.25)
r = 0 s = 0 \Sj

The part of (-adL) m + 1(<9) which does not involve V is obtained by putting
7 = m + l , p = 0, co = Θ, s=j — r = m+\—r, hence j + s = 2(m+ 1) — r ^ m + 1 in
(1.25), and we conclude that it vanishes if (1.20) holds. In particular, (adL)m+1(Θ) is
already of order ^m— 1 if (1.20) holds.
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The coefficient of d™"1 in ( — adL)m+1(<9) is now linear in F, and equal to the
highest order coefficient in

Σ (ad^)m- io(-adF)o(ad^) j(6)). (1.26)

Now using that

, x lower

(~adV)dx = Σ (q) V{r)- dq

x~
r = q- V d*'1 + order, (1.27)

r=ι\rj
terms

the coefficient of d™~1 in ( —adL)w + 1(<9) comes out as
m

V 2m~j - (/' V 2J

7 = 1
m~j/m A

J Σ ( . F ( ί + 1 ) <9(m~°

J = I I (proof by induction on m). (1.28)

1 = 0 \ I

= 2m[(J V'Θ'){m+1)-(m+l)' V'Θ{m+1)- J VΘ(m + :

= 2m ( jF 6)/) (m+1) if <9(m + 1 ) = 0.

Here we have used, in the second equality, the binomial identity

mγ\ fm~Λ _Ύ m + Λ

So (adL)w+1(<9) is of order <m-\ if and only if (1.20) holds and J F Θ' is a
polynomial of degree ^ m, that is,

(P\
F = ( —7 I for some polynomial P of degree m. (1.29)

This implies, in particular, that Fis rational, with at most m—\ poles, at the

zeros of Θ\ At each pole p the coefficient of in the Laurent expansion for x -»p

has to vanish, and the same is true for the coefficient of— in the Laurent expansion
x

of F(x) for x-^ oo. These properties express the fact that the primitive J F of F is
rational as well.

The rationality of F makes the differential equation (1.2) holomorphic on the
entire Riemann sphere Cu{oo}, having only finitely many singular points, each of
which is of finite order. The further determination of F, in the next sections, will be
carried out by studying the asymptotic behavior of the solutions at the singular
points, starting at GO, which is always an irregular singular point [unless F(oo) is
finite and λ= F(oo)].
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However, before doing this, we conclude this section by mentioning some
further partial results which can be obtained directly from the equation
(adL)m+1(<9) = 0. Some of the lengthier proofs are only indicated, the later
developments will not depend on them. These results, however, served as an
indication for us as to which way to go. The equation (adL)m+1(<9) = 0 is
equivalent to a system of polynomial equations in the coefficients of Θ and of the
polynomial Pin (1.29). To solve this directly for arbitrary m seems to be a hopeless
task, because the complexity increases very rapidly with increasing m. See Sect. 7
for more comments on this.

Continuing the calculations of (adL)m + x(<9) in the way we obtained (1.29), one
can prove that

(adL)w+1(<9) is already of order ^ m - 3 if (1.20), (1.29) hold. (1.30)

Moreover, its coefficient of d™~3 is equal to zero if and only if

\&" - J F—f(ί(F 2 )) Θ' + (j($ V)2 Θ')' is a polynomial of degree ^ m .

(1.31)

A consequence of (1.31) is that

ί (F 2), like j F, is rational. (1.32)

For m— 1, (1.20), (1.29) imply that Fis a constant, which after a translation in λ
can be taken equal to zero. One verifies easily that the common solution space of
(1.2), (1.3), where A = A(λ, dλ) is of first order and Θ = ax + b is one-dimensional and
consists of the multiples of

a±{k)e±ik\ k2 = λ, (1.33)

where a±(k) is a function of k which determines A.
For m = 2, (1.20), (1.29) imply that, if deg<9 = 2:

F(χ) = C + b (Bessel potential) (1.34)
(x a)

or F(x) = -~2 after a translation in x, respectively λ9 over α, respectively b. If

a = b = 0 then x h-> ψ(kx) is an eigenfunction for the eigenvalue λ = k2 if and only if
ψ is an eigenfunction for the eigenvalue 1, so it is obvious that we can interchange
the role of x and k:

IV UI — V ίiίί V UI IT ίnίΎ u\ — 1I")( u~γ\ i\ ^ Ŝ

If, on the other hand, degΘ = 1, then

F(x) = α x + β (Airy potential). (1.36)

Here a translation in x by - transforms an eigenfunction for the eigenvalue 0 to an

eigenfunction for the eigenvalue λ, so again it is obvious that there is a second order
equation (1.3) with Θ(x) = x. In fact, the Airy potential can be obtained as the limit
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of the Bessel potential by taking

c = ^ α 3 α, b = β—^aa and letting α->oo. (1-37)

Both for the Bessel and the Airy potential, A = A(λ, dλ) therefore can be chosen
such that the common solution space of (1.2) and (1.3) is two-dimensional.

For m = 3 it turns out that the equation (adL)m+1(<9) = 0 does not allow any
new potentials beyond the Bessel and Airy ones. This can be seen for instance from

(1.32) (which is not too hard to verify if m = 3): if V= , Cγ

 xΎ + / °2

 x 9 , t h e n V2

(x-a,)2 (x-a2)
2

has a term £=-, so necessarily Ci=0 or c2 = 0 if you want the
x — ax ψγ — a^

primitive of V2 to be rational.
For a while we thought that the Bessel and Airy potentials might be the only

ones, but then a lengthy calculation showed that for m ^ 4 two new cases appear
(normalized by translations in x, respectively λ):

Case A:

w (x + f 1 / 3 ) 2 ^ (x + ω ί1/3)2 ^ (x + ω2t1/3)2

= - 2 δ 2 l o g ( x 3 + ί), ω = e 2 π ι 7 3 , (1.38)

with the eigenfunction

X^ + ί

satisfying the differential equation

(1.40)

the common solution space of (1.40) and (1.2) being one-dimensional.

Case B:

4Λ;2 (x + i |/ί) 2 (x-/ |A) 2 ?

with the eigenfunctions

.. „, . . . 3x2-t

x2)

where ψ is any solution of the Bessel equation

(1.41)

(1.42)

φ(x, λ) satisfies the differential equation

a f c 2 ~ 5 F ) ] ^ = ( χ 4 + 2 ί χ 2 ) ^ ' (L44)

and the common solution space of (1.44) and (1.2) is two-dimensional.
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Recognizing (1.38) as the first of the families of rational solutions of the KdV
equation, as described in Airault et al. [3] and Adler and Moser [2], put us on the
right track. Especially, when the next few families turned out to allow equations of
the form (1.3), too, we became convinced that this could not be just a coincidence.

On the other hand, (1.41) certainly does not satisfy the KdV equations, which
showed us in an early stage that "rational KdV" is not the full answer to the
problem.

The potential (1.38) already appears in the paper of Bargmann [4] on
reflectionless potentials. The existence of differential equations in k, however, is
new even in this case.

2. F(oo) is Finite

Assume that L= — dl + V(x) and the non-constant Θ = Θ(x) satisfies
(adL)m+1(Θ) = 0. As we have seen in Sect. 1, this equation follows from the
existence of a non-zero family of eigenfunctions φ(x, λ) of L satisfying (1.3) for a
suitable mth order linear differential operator A = A(λ9 dλ). In (1.20), (1.29) we have

(P
seen that Θ is a polynomial of degree ^ m and V is rational, of the form V = ( —
for a polynomial P of degree ^ m. ^ "

We assume now also that F(oo) is finite, which certainly is true if deg(9 = m. By
a translation in λ we can arrange that F(oo) = 0, which implies that actually

\ as x-^oo, (2.1)

because J V is rational. Writing

λ = k2, fce(C, fc#0, (2.2)

the classical theory of irregular singular points applied to x — oo leads to the
following results (see for instance Olver [19, Chap. 7]). Define the sectors

; \x\ large, ε<arg/c + argx<π-ε},
(2.3)

; M large, - π + ε<arg/c + argx<-ε},

where ε>0, but arbitrarily small. Then there are unique solutions x \-> φ*(x, k) of
(L—k2)φ=Ξθ with the asymptotic expansion

ψUxΛ)~e±ίkxΣaf(k)χ-j as |χ |-oo in S±(fc), αo(fe)=l. (2.4)
J = O

This expansion, due to Poincare [20], can be term wise differentiated with respect
to x. Expanding

V(x)~ Σ Vrx~ι as x-^oo, (2.5)
1 = 2

(which is even a convergent power series in 1/x for large |x| because V is rational)
one can determine the af recurrently by

j p ( ) J (2.6)
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So for each p ̂  1, α * (fc) is a polynomial in — of degree rg p, without a constant term.

The coefficient of ί — I is equal to

4,P=U (/(/" 1)-V2)/(p\(±2ίf). (2.7)

The asymptotic expansion (2.4) can now be termwise differentiated with respect to
both variables (x,/c), and is actually valid for the analytic continuations of
x *-* Φn(χ> k) i n Λe larger sectors,

; \χ\ large, - π + ε<arg/c + argx<2π-ε},
(2.8)

; \x\ large, - 2 π + ε<argfc +argx<π-ε} .

One of the confusing facts here is that S *(fc) overlap themselves and the analytic
continuation of φ *(x, fc) for a growing argument of x does not necessarily coincide
with the analytic continuation for decreasing argument. (Another confusing fact
being that the sectors move along as k turns around the origin.)

Now one can choose to continue xh-*φ^(x,k) analytically for decreasing
argument of x and x ι-> φ^(x, k) for increasing argument to the single valued
analytic functions

xh-»°<^0c,/c), respectively x^0φ~(x,k), (2.9)

both defined in the sector

S°O0(k) = {xe<£; \x\ large, - π + ε<arg/c + argx<π-ε} . (2.10)

Because °φ^(x,k) is exponentially increasing as |x|->oo in S~ and °φ^(x,k) is
exponentially decreasing there, °φ^ and °̂ ~ are linearly independent and
therefore form a basis of solutions of (L—k2)φ = 0.

Continuing x h-> φ^(x, fc), respectively x i—> φ^(x, k) analytically for increasing,
respectively decreasing, argument of x, one obtains single valued analytic
functions

x H π ^ ( x , t ) , respectively x ι—> π^~(x,/c), (2.11)

defined in

Sπ

oo(k) = {xe<E; \x\ large, ε<argk + argx<2π-ε}. (2.12)

Clearly, S^(fc)uS^(fc) is a full (punctured) neighborhood of oo on the Riemann
sphere Cu{oo}. On the other hand, S^(fc)nS^(fe) has two connected components,
the Sj(/c), respectively S~(fc) of (2.3). Using that °φ+, °φ~ and πφt,yή are a basis
of Ker(L— fc2), and using the validity of (2.4) in the larger sectors Sj(fc), it follows
that there are constants σ*(fc)eC such that

k).φ + (x,k) in Sί(fc),

fe) ^-(x,fc) in S-(fc).

σ (̂fc) are the so-called Stokes multipliers for the irregular singular point oo. There
is a partial relationship with the monodromy M{£} = analytic continuation of
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solutions as x turns around clockwise with large \x\. Indeed, on the basis of
°φ + ( , k), °φ~( -, k) in S2,(fc), the second relation in (2.13) gives

for some c(k), d(k) e (C. Because the Wronski determinant is constant, d e t M ^ = 1,
so we also know that

d(fc) = l+c(fc).σ-(fc). (2.15)

Now let J 1 be the space of functions of x which are bounded in the sector
S*(fc), keeping k close to a fixed fc0φ0. The term wise differentiability of (2.4) with
respect to k shows that

δ { V ί ( 5 fe)e^ ± for all j ^ O . (2.16)

The analogous asymptotics for the differential operator (L—k2)m+1 of order
2(m+l) yields that

d im(Ker(L-/c 2 ) m + 1 n^ ± ) = m + l . (2.17)

Because Θ is a polynomial, Θ °φ^( , fe)e^±, we can apply Lemma 1.3 to
conclude that

Lemma 2.1. There are unique linear differential operators B±(k, dk) of order ^ m in
k9 with coefficients depending on k9 swc/z that

BHKdJoφUx,k) = θ(x).Όφ±(x9k)9 (2.18)

ami α similar conclusion holds with °φ^ replaced by πφ^.

Corollary 2.2. Let x i—• φ(x, k) be a non-zero family of solutions of (L—k2)φ = 0 and
B = B(k, dk) a linear differential operator of order rg m such that

B(k, dk)φ(x9 k) = Θ(x) φ(x, k). (2.19)

Then B is conjugate to either B+orB~by means of a non-zero function of k.IfB+ is
not conjugate toB~ by means of a non-zero function of fc, then φ is necessarily of the
form c(k) °φ^(x, k) or c{k) °^~(x, k) for some function c of k. In this case, the
space of common local solutions of (2.19) and (L — k2)φ = 0 is one-dimensional. If B +

is conjugate to B~ by means of a function of k then the space of common local
solutions is two-dimensional.

Proof. Because V£(*, fe), °^~( , fe) is a basis of Ker(L—k2), we have

φ(x,k) = c + (k).°φ + (x,k) + c_(k).°φ-(x,k)

for suitable functions c+9 c_ of k. Now write

= c + Θφ+ +c_Θφ~ =c +

Now

Bc+φ+ -c + B+φ+ eKer(L-fc 2 ) m + 1 nj2 + , c^B~φ
eKer(L-/c 2 ) m + 1 nj2~,
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and these latter spaces are complementary; we conclude from Bc + φ+ —c+B + φ +

= c_B~φ~ -Bc-φ', that Bc + φ+=c + B + φ+, c^B'φ~ =Bc_φ~.
Because the eigenvalue parameter Θ(x) in (2.18) is not constant as function of x,

the space of functions of k, spanned by the functions k-+°φ^(x, k), with varying x, is
infinite-dimensional. So in the same way as we proved (1.9) => (1.10) it follows that
Bc+ —c+ B+ andc_ - B~ = B c_. Because c + ,c_ are not both equal to zero, the
first conclusion in the corollary follows. If c + ,c_ are both non-zero, then
B+ =c+ι -B c+ =(c+ 1 c_) B~ -(el 1 c+), proving the second statement. Now
let φ = c+(k)φ+ + C-.(k)φ~ +0 be any other common local solution. If B is
conjugate to B+ by a function, but not to B~, then c_ =0, c+ φθ, B c+ =c+ B + .
Together with B c+ = c+ B+ we get that B+ commutes with c+/c + . Because the
order of B + is positive, this implies that c+/c+ is a constant, as is well-known. If B+

is conjugate to B~ by a function, then B is conjugate to both B+ and B~ by some
functions. In this case it is allowed that c + φ 0 and c _ φ 0, but the same argument as
above gives that c+, respectively c_ is a constant multiple of c+, respectively c_.
This proves the last two statements.

Now, writing

B±(fcΛ)= Σ Bίί* :)^, (2.20)

Θ(x)= Σ Θr-xr

9 (2.21)
r = 0

the substitution of (2.4) in (2.18) yields, collecting the coefficients of xq\

f a |
Σ B+-+s+β)\qΎ ^J) {±iγ+'-dlaf{k)= Σ a*Lq{k) Θr. (2.22)
j,s \ S J r = Q

Because α^(/c)=l, Eqs. (2.22) from q = m,m—\, downwards to g = 0, determine
Bn>B*-u .,BQ successively. For q = mwc get

β±(/c) = ( ± 0 ~ m 6>m (2.23)

Assuming that B(k, dk) is truly of order m, that is, Bm(k) φ 0, it follows that
Θm φ 0. In other words, the finiteness of F(oo) is equivalent to the property that the
order of B is equal to the degree of Θ.

Furthermore, B^ is a (non-zero) constant and recalling that af is a polynomial

in - of degree ^ j , one gets by downward induction on p:

Bp(k) is a polynomial in - of degree ^m — p. (2.24)

It follows that Eq. (2.18) also extends with respect to k to the Riemann sphere
(Cu{oo} with singular points only at k = 0 and k=co, both of finite order. At fe = 0
the singular point is regular and, for the generic value of x, the singularity at k = oo
is irregular.

The common solutions φ of (2.18) for B+, say, and (L—k2)φ = O have a unique
analytic continuation along any curve y in the complex two-dimensional domain

D = {(x,fc)eCx(C; x is not a pole of F and /cφO}. (2.25)
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For (x, k) e D, let Sf[Xtk) be the space of germs at (x, k) of common solutions of (2.18)
and (L—k2)φ = 0. Then Corollary 2.2 can be phrased differently, saying that the
&[χ,k)9 (x> k)eD form a holomorphic vector bundle ίf over D of complex dimension
1 or 2, the analytic continuation of solutions defining a flat holomorphic
connection in £f. A priori the system of differential equations (L—k2)φ = 0,
(B — Θ(x))φ = 0 makes that φ is uniquely determined by the vector w(x, fc)
= (dι

xd
J

kφ(x,k))9 ί = 0,1, 7 = 0,1, ...,m— 1 at any point (x, fc) in D. It satisfies two
differential equations of the form δxw — R(x, fc)w, dkw = S(x, k)w. The compatibility
conditions (of curvature type) apparently cut down the dimension of the solution
space from 2m to one or two.

The last generalities of this section concern the asymptotics for fe-> oo. Writing

af(k)= Σaj;a.k-S, (2.26)
s = O

m — p

B*(k) = ΣB^-k-', (2.27)
s = 0

we can compare the powers of - in (2.22). The constant term yields
K

±B± o (± i f = Θq for all q, that is Σ B±o(±ixf = Θ(x). (2.28)
q = O

Comparing the coefficients of fc"1, using that k~ι never occurs as ds

kk~ι for an
integer / (unless 5 = 0, Z= 1), we get

* = Σ ar_qXΘr,

which, using (2.28), simply amounts to

B~Λ=0 for all $. (2.29)

This means that (2.18) is a perturbation of a constant coefficient equation by

terms of order 0 ί -p- I. If t = Θ(x) is a regular value of Θ, that is

\k J

Θ(xj) = t for m different Xj e C , (2.30)

then (2.28) gives that the unperturbed equation has a basis of solutions (considered
as functions of k) given by

e±ίχy\ j = l , . . . , m . (2.31)

Choosing |x| so large that x becomes extremal among the xj9 the aforementioned
theory of irregular singular points applied to (2.18) yields that φ± also has an
asymptotic expansion of the form

φ±(x,k)~e±ίkxΣ otf(x)k~l as fc-*oo, (2.32)
1 = 0

in a direction in which e±ιkx decreases fastest among the e±ιkXj. Comparing (2.4)
and (2.32) yields

^l V-V AJ Uj,l Λ ? \Δ.DJ)
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the convergence of which, for |x| sufficiently large, can be obtained from (2.6). The
result is absolute convergence if |x| > |p| for all poles p of V.

An expansion of the form (2.32) is called a Bloch function, Baker function, or
WKB-approximation, depending on the background of the author. Because the
expansion can be differentiated termwise with respect to x, the equation
(L~k2)φ = 0 leads to

+ 2id,αι

±

+1(x)= -d2

xaHx)+V(x)aHx). (234)

Because also

αf+10c)->0 for x->oo, for all Z^O, a^(x) = l, (2.35)

the a* can be recursively determined by simple integrations. The first few are

( ί F ) W ( 1 3 6 )

(2.37)

±2i-α3

± - - i F + if V' V-M VfHl V2. (2.38)

On the other hand, Eq. (2.18) yields

Σ
j,J,L

( 1 3 9 )

for all Z^O. The equation for / = 0 is just (2.28). This makes the terms on the right-
hand side of (2.39) for J = 0, L=l drop out against the left-hand side. Introducing
the notation

βϊ(x)=ΣB£p'(±ixy, (2.40)
j

(2.39) can be written in a somewhat more compact form:

01*00 + Σ Σ (±O μ - p δ Γ % ± W ^_,(x) ( / " ~ P ~ 1 ) ^ 0 . (2.41)
μ^i o^p^μ \ μ-p }

Because jSjf =0 by (2.29) we see that (2.41) determine the α,τ successively because
the coefficient of αf_ ^x) in (2.41) is + i dxβ$(x) (/-1) = ± i (/-1) Θ'(x). By
induction we get

a?(x) = ^ % l r for some polynomial P * . (2.42)
(Cy (x))

In particular, each <x*, r ̂  1, is rational with poles at most at the zeros of Θ\ From
(2.36) we recover that J F is rational, and then from (2.38) that f V2 is rational as
well; compare (1.32).

3. The Rational KdV Potentials

Let L= - d2

x + V(x) and Θ = Θ(x) satisfy (adL)w+ \Θ) = 0. As in Sect. 2 we assume
that deg(9 = m, so we may assume that F(oo) = 0. However, we will restrict
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ourselves now to the case that the operators B+ and B~ in (2.18) are not conjugate
to each other by a non-zero function of k.

Lemma 3.1. The finite singular points of the equation (L—k2)φ = 0 are regular, that
is

V(x)~- ~2 as x-+p for each pole pe<L of V. (3.1)

(x—p)

Proof. Suppose that p e C is a higher order pole of V:

V(x)=Σcr(x-p)r, with C μΦθ, μ<-2. (3.2)

The theory of irregular singular points (cf. Olver [19, Chap. 7]) this time looks as
follows. Choose a square root cιj2 of c . For each integer j define the sectors

S+.= <xe(C;|x-p| small,

/
|jarg(x-p)<π

S-j=Le<£;\x-p\ small, ( 3 ' 3 )

|jarg(x-p)<-ε + 2π/j.

Then there are unique solutions x κ-» φ^j(x, k) oϊ(L—k2)φ = 0, with the asymptotic
expansion

ί r + l + ί

Σ Ar(x-p)2 -(x-p)α

* Σ d^(k2)'(x — py12 as x-»p in S^j. (3.4)

Here Ao = c*/2 / ί — + 1 ), the other Ax depend neither on λ = k2 nor on the choice of

the sign. ω ± does not depend on /c2, ω+ -\-ω~ = — — if μ is odd then in fact

ω+ =ω~ = ——. Finally, rf0

 = l (normalization convention) and the dr for

r < — μ + 2 do not depend on fe2, the others are polynomials in k2 of degree
^r/( — μ + 2). Again, the expansion (3.4) actually remains valid for the analytic
continuation of x f-* φpj(x, k) to the larger sectors,

small,

| j a r g ( x - p ) < 2 π - ε

(3.5)
'-.= <jχeC;|x — p\ small,

and in the overlaps the two solutions form a basis of Ker(L-/c2). Also the
expansion (3.4) can be term wise differentiated with respect to x and k.
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Now let Άpj be the space of functions of x which converge to 0 as x-±p in the
sector Spj. Then

(3.6)

To see this, write φ(x,fc) = φ(ί,k) with t = cll2(x-p)2+1 li~ +1J . Then

^ )], (3.7)

so (3.6) follows from a classical perturbation argument for ί->oo. Because
obviously

^ ± χ , fc) e J2± , β . ̂ / , fc) 6 J 1 , (3.8)

we can apply Lemma 1.3 to conclude that there are linear differential operators

Bpj(Kdk) such that

The assumption that B J and £~ are not conjugate to each other now implies
(Corollary 2.2) that φ^j is a multiple of (the analytic continuation of) either φ^ or
φ^. By a suitable choice of the square root of cμ we can arrange that

φ+{x9k) = c(k).φ+(x,k) (3.10)

for some function c of k.
Now let y(t) = (x(t), fc(ί)), ί running from 0 to 1, be a curve in the domain D of

(2.25), such that \x(t)\ remains large and argfe(ί) + argx(ί) ΞΞ f, so that x(t) e S^(k(t))
[see (2.3)], for all t. If k(0) = k, fe(l)= -fc, then the analytic continuation of φ^
along y arrives at another solution of (L—/c2), which apparently is <̂ ~, and which is
a solution of (B^ — Θ)φ = 0. Now y is homotopic to <5 = keeping x constant and
letting k in turn around the origin to — fe, followed by ε = keeping — k fixed and
letting x turn in the opposite direction. Since analytic continuation along ε keeps
us in Ker(L— /c2)nKer(jB~ — Θ)φ, the conclusion is that analytic continuation
along δ maps

Ker(L-/c2)nKer(β+-<9) into Ker(L-/c2)nKer(J5~ -Θ).

However, the sectors Spj do not depend on k and it is easily seen that φpj is
invariant under analytic continuation along δ. Because (3.10) is preserved under
analytic continuation, we arrive at a contradiction.

Lemma 3.2. Around each finite pole p of F, all eίgenfunctions of L are single-valued.

Proof. At a regular singular point p, that is, when (3.2) holds with μ = 2, one has the
following possibilities.

(A) If c_2 = l2~l with 21 φZ, then (L-k 2 )^ = 0 has a basis of solutions

^p

±(x,fe) = (x-p)* ± I Σ d±(k2) {x-pY, do = l, (3.11)
r = 0

where the power series has a positive radius of convergence. The coefficients dr are
determined by the recurrent relations [obtained from the equation
( L - f c 2 ) # = 0 ] :

= "Σ 4-^-2-s, r ^ l , (3.12)±
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where we have written cs = cs if s φ 0, c0 = c0 — k2 = c0 — λ. It follows by induction
that d2j is a polynomial in λ = k2 of degree <*/, as well as d2j-+3, for j e Έ^ 0 (^ = 0).
The series (3.11) can be termwise differentiated, also with respect to k.

Now let lp be the space of multi-valued holomorphic functions of x in a
punctured neighborhood of p, the analytic continuation of which, after turning
around p once, gets multiplied by e

2ni{^±ι\ Clearly,

d{φϊ( , k)εM± , Θ ^ ( , fe)6 J2± , (3.13)

so, in particular,

(3.14)
Now ΆpnΆ~ - 0 (02πί<± + I>φe2πi<±-i) because 2/^Z) implies that equality has to
hold in (3.14). So we can apply Lemma 1.3 to conclude that there are linear
differential operators B^(k,dk) such that

k, djφ±(x9 k) = Θ(x) φϊ(x, k). (3.15)

Now as in the last part of the proof of Lemma 3.1 we get a contradiction once again
because φp(x9k) remains unchanged if k is moved to —k.

(B) Now assume that c_2 = l2—\ with 2leZ^0. In this case φ* of (3.11)
survives as a solution, called the recessive solution. However, φ~ has to be replaced
by

-p).φ;(x,k). (3.16)

Here the d~ for \^r^2l are determined as before by (3.12). Furthermore,

2l c(k)= 2kV<*2~i-2-s. (3.17)
s= - 1

d2ι can be chosen arbitrarily (reflecting the fact that one can add an arbitrary
multiple of φ~ to φ~\ and d~ for r>2l are then determined by

r{r-2ΐ)d;= "Σ £s'dr_2_s-c(k)'2(l + r) d;. (3.18)

If φ(x9 k) is any non-zero solution of (L—k2)φ = 0, (B(k, dk) — Θ(x))φ = 0, then
either φ(x, k) = α(/c) ^/(x, fc) or φ(x, k) = β(k) φ~ (x, fc) for a <̂~ as described above.
In the second case, going with x around p and using that Θ is single-valued around
p, we get, apart from the equation (B — Θ) βφ~ = 0, also the equation (B — Θ)
• β(e2πiii±l)φ; +2πic(k)φϊ) = 0. Multiplying the first one with e

2πi{*±l) and sub-
tracting it from the second one, we see that (B — Θ) aφp = 0 with α(fc) = β(k) c(fe).
So if c(fe) φ 0 then there is always a non-zero multiple ^ of φ* which satisfies
(B — Θ)φ = 0. Again, turning k to — k leaves ^ invariant, and we arrive at a
contradiction if we take B = B^. So c(fc) = 0.

However, from (3.12)~ we see that d2j for j<l is a polynomial in /I of degree j ,
with a positive coefficient in front of Λλ Considering the term in (3.17) with s = 0we
get that, if Z e Z, c(A) is a polynomial in 2 of degree Z, with a non-zero coefficient in
front of λι. So c = 0 implies that Z=-j + vpJ vp G Z> O, excluding the possibility that the
eigenfunctions are double valued around p.
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Remark. The last argument also shows that no non-zero multiple φ of the recessive
solution at p satisfies an equation of the form (B — Θ)φ = 0.

Proposition 3.3. Let V be an arbitrary meromorphίc function in a neighborhood of
p e C, with Laurent expansion

V(x)= Σ cr-(x-p)-. (3.19)
^ -2

d2j-1 = 0 for all integers j such that 1 <*j ^ vp. (3.23)

Then all eigenf unctions of L= —d^ + V(x) are single-valued around p if and only if

c_2 = vp(vp+l) for some v p e Z > 0 , (3.20)

and
C2j-1 = 0 for all integers j such that 0 ̂  j ^ vp. (3.21)

Finally, if this is the case, then every eigenfunction φ has a Laurent expansion of the
form

J oo

φ(x) = (x — p)'Vp - Σ dr (x — p)r, (3.22)

with

Proof. The proof of Lemma 3.2 has already shown us that Z=i + vp for some
vp e Έ> 0, so c_ 2 = Z2 — \ = vp(vp +1). Also that d2j, for 0 ̂ j g vp, is a polynomial in λ
of degree j , with positive leading coefficient.

Let Ό be the smallest integer; such that O^j^vp and c 2 j - i +0. On the right-
hand side of (3.12)~ for r = 2j—l there appear only terms with s odd ^ 2 / 0 —1, so
r — 2 — s even ^2(j—jo—l), or with s even ^ 0 , r — s — 2 odd 5Ξ2; — 3. By
introduction over j it follows that d2j-1=Q for l ^ j ^ j 0 and that d2j-1 is a
polynomial in /I of degree ^ j —/0 — 1 for j 0 < j ^ vp. The only terms containing
^j-jo-i a r e c 2 j o _ 1 'd2{j^jo_ί) and (c0 — λ) d2j-3. It follows, again by induction
over j , that the leading coefficient in d2j-1 is equal to c2jo _ x times a strictly negative
number, using that the coefficient in front of the left-hand side of (3.12)" is negative
if r = 2/ — 1, l^j = vp-

Now the right-hand side of (3.17) for Z=^ + vp contains terms for s odd
^ 2/o — 1, the leading one being c 2 j 0 _ x d2~(Vp _7o), and for s even ^ 0, for which the
leading one is (c0 — 2) d2v _ x. We see that c is a polynomial of degree vp —j0 in λ,
with a leading coefficient equal to a positive multiple of c2jo _ x. If/0 = vp, <i2 Vp _ x = 0,
but still c is a non-zero constant. The conclusion is that c = 0 implies (3.21), which in
turn implies (3.23).

If finally (3.21), and thus (3.23), holds, then on the right-hand side of (3.17) for
/ = i + v;,5 either s is odd ^2vp— 1, or 21 —2 —s is odd ^2vp— 1. In both cases

Theorem 3.4. Let V be a rational function with F(oo) = 0. Then the following
properties are equivalent.

a) 4̂ZZ eigenf unctions of — δ 2 + V(x) are meromorphic in (C.
b)\ All eigenf unctions of — <32 + F(.x) are of the form eιkx-a + (x,k)

+ e~ιkxa~{x, k) with x \-+ a±{x, k) rational and bounded at infinity.
c) At each pole p of V, (3.19)-(3.21) hold.
d) F is obtained from F = 0 by finitely many rational Darboux transformations.
e) The potentials in the KdV-flow starting at V remain rational.
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(v+l)v
f) V is obtained from ^—> w z ί ^ v a n inte9er = 0, by applying the flows in the

KdV hierarchy. x

Proof, a) o c) is Proposition 3.3. If a) holds then the analytic continuation of
x ,_> e~i±ίkx)φ^(x, k) to SJ(/c) in (2.8) is bounded at oo. Because it is single-valued it
follows that φ*(x, k) = e±ίkx a±{x, k) with x \-> a±(x, k) rational and bounded at
oo. This proves a) o b). d) => a) follows from the description of Ker(L—λ) as the
Q-image of Ker(L — λ\ if L is obtained from L by a rational Darboux transfor-
mation. See (0.4H0.7). We now prove a) >̂ d). r-

Because x = oo is a regular singular point for ( — dl + V)φ = O use that V(x)

(i\ Ί
= Ol~2J because of c) , the solutions φ, which are meromorphic in (C, now also
have finite order at oo, so they are rational. Using their single-valuedness it follows
that

v(v + l)
2— a s ^-^^^ for some v e Z ^ 0 . (3.24)

Comparison with (3.19) shows that

v(v+l)= Σ vp(vp + l). (3.25)
ρe<E

p pole of V

Now let ^ o eKer( — dl + V) be recessive at oo, that is, ^0(x)~x~v for x->oo.

Then -2\p ) - - 2 ( — ) = _ - £ as x-^oo. So the potential
\Φn) \ x J x2

(3.26)

obtained from V by means of the Darboux transformation with the solution φ0,
will satisfy

F ( χ ) ~ ^ ^ as x-^oo, (3.27)

with v(v+l) = v(v+l) —2v = (v—l)v, that is,

v = v - l . (3.28)

Because V is rational, F(oo) = 0, and V satisfies a) again, the procedure can be
repeated, and after v Darboux transformations with eigenfunctions for the
eigenvalue 0 which are recessive at oo, we end up with a potential such that v = 0.
However, because vp(vp + 1) > 0 for each pole p of V on the right-hand side of (3.25),
it follows that now V has no poles anymore: it is a polynomial and because
F(αo) = 0, V = 0.

Because in the above notation, φ0 = ί/φ0 is an eigenfunction for — d2

x + Ffor the
eigenvalue 0 and the Darboux transformation applied to V with φ0 gives V back,
we see that V is obtained from V— 0 by applying v Darboux transformations,
each time using an eigenfunction for the eigenvalue 0 which is dominant at oo.

Finally, the equivalence among d), e), and f) is one of the main results in Adler
and Moser [2] and Airault, McKean, Moser [3].
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A different proof can be obtained from Segal and Wilson [23], starting from the
simple behavior of the eigenfunctions as a function of k (rather than ofx).In fact, we
have:

φ*{x,k)H±ikrv•(δx-»ϊ(x))° ...°(dx-vt(x))e±ik*, (3.28)'

with vx(x),..., vv(x) rational functions of x. This follows from the description of the
new eigenfunctions after a Darboux transformation, preceding Theorem 0.1. In
particular, the amplitudes a^(x,k) = φ^(x, k)/e±ikx are polynomials in k'1 of
degree gv.

Remarks. Because of the property f), we got into the habit of calling the potentials
V described in Theorem 3.4 as the rational KdV potentials and the number v in
(3.24) could be called the order of V.

Now let V be such a potential, φ0 an arbitrary non-zero eigenfunction of
~ ~ v(v+1)

— dl + V for the eigenvalue 0 and V as in (3.26). Then V{x) ~ ^— as x -»oo with

v = v 4-1 if Φo is dominant at x = oo and v = v — 1 if φ0 is recessive at x — oo. A special
case occurs for v = 0, because then the Darboux transformation leaves V=0
invariant if we take φ0 recessive at oo. For the general φ0, the parameter in V
represents a translation. Letting φ0 approximate the solution which is recessive at
oo, the translation parameter goes to oo and V converges to 0. Later Darboux
transformations transfer this to the statement that every potential of order v — 1
can be approximated by potentials of order v, which will be denoted by v->v — 1.
See Sect. 7.7 for an alternative proof. Denoting the relation of being related by a
Darboux transformation by a dashed double arrow <—->, we get the following
diagram

Diagram 3-1

The number v here is also equal to the number of parameters in the family of
potentials of order v. For refinements of this diagram (see Sect. 7.7).

If V is obtained from V as in (3.26), define the vp, p a pole of V in the same way as
the vp are defined for V. New poles of V9 that is, poles p which are regular points of
F, appear at the zeros of φ0. These zeros are simple: a solution φ of a second order
differential equation such that φ(x) = φ'(x) = 0 at a regular point x is identically
zero. It follows that v̂  = 1 at each new pole p. If p is also a pole of V, then v̂  = vp + 1
if φ0 is recessive at p, and Vβ=vp-ί otherwise. Because the generic element φ0 of
Ker( — dl + V) is not recessive at any pole p of V, we see that after the generic
sequence of rational Darboux transformations, vp = 1 for all poles p, and with each
transformation, all poles of V are eliminated and replaced by new ones at the zeros
of φ0. So among the rational KdV potentials of order v, those of the form

2
V(χ) = Σ 7 2̂"> & a subset of C with \v{y +1) elements, (3.29)

form an open dense subset. The conditions (3.19)—(3.21) now read

Σ , 1 v3 = 0 for all pe@. (3.30)
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In Airault-McKean-Moser [3] the set of configurations 0> of points p in C
satisfying (3.30) is called the locus. It is proved there that the closure (in the space of
rational functions) of the set of potentials Fin (3.29) with 9 in the locus, is equal to
the set of potentials satisfying e) in Theorem 3.4. It is also shown there that for each
V in e), after flowing it out with KdV, it immediately becomes of the form (3.29),
with 0> in the locus. This proves that the latter potentials form a dense subset in a
quite different way.

Note that (3.19H3.21) means that in general

V(x)= Σ V^Vp+^2 (3 3 1 )

with & a finite subset of C, and vpeΈ>0 for peg? being such that

Σ - / ^ \ t / λ = 0 f o r 1^J^VP and each peSP. (3.32)

This gives a description of the closure of the locus, implicitly asked for in [3].
In Adler and Moser [2], the rational KdV potentials of order v are described as

(3.33)

where θ(x) = θv(x) is a polynomial defined by a recursive formula in v, cf. (7.1). If V
is as in (3.32), then we can take

f l ) . (3.33)'
P

In Sect. 7.1 another description of θ(x) found by Sato will be used.

Theorem 3.5. Let V satisfy any of the equivalent conditions a)-f) in Theorem 3.4, The
eigenfunction φ^(x,k) in (2.4) satisfies an equation of the form B±(k,dk)φ^(x,k)
= Θ(x)φ^(x,k) if and only if the polynomial Θ has the property that

Θi2j-1)(p) = 0 for all l ^ v p , for each pole p e C of V. (3.34)

Proof. From Proposition 3.3 we know that

d2Γ\(x-py*'Φl(x,k)\=v^ for l ^ v (3.35)

This remains true if φ^ is replaced by B±φ^)> by applying B(k, dk) to (3.35). So, if
B±φ^ = Θφ^, then also

^ " 1 [ ( x - p ) v ' θ(x) ̂ (x,fe)L = o = 0 for l ^ v (3.36)

Expanding

~P) ) ? ( 3 > 3 7 )

(3.36) can be written as
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In view of the remark following Lemma 3.2, c)oφ0 and (3.34) now follows by
induction on j .

Conversely, now assume that (3.34) holds, which implies (3.36) in view of (3.38).
Let B± =B±(k,dk) be the unique differential operator satisfying (2.22) for

q = m, m — 1,..., 0. In view of b) of Theorem 3.4, this means that

with xι-*l?±(x,fe) rational and R±(ao,k) = 0. (3.39)

Because φ^(x9 k\ and therefore also Λ* (x, k), only has poles at p of order <; vp, we
can write v _ 1

RHχ,k)= Σ V Σ R£r(k)'(x-pY~yp- ( 3 4 °)

Expanding e ± ikx at p, we get that the coefficient of (x - p)2j"* ~Vp in the expansion
of e±ikxR±(x, k) at p is equal to e±ikp times

l f * -
(

times R±β(fc), ? Φ p ,
(3.41)

if 2/ - l ^ v . .

Now (3.35), (3.36), (3.39) imply that the expressions in (3.41) have to be equal to 0
for all integers; such that l^j^vp.

Dividing the equations by (±ik)2j~Vp and using

(±ikγ^1-rRp

±

9r = S^r (3.42)

as the new unknowns (notice that vp— 1 — r^O, so R^,. is a non-positive power of
±ίk times S*r), we get

27-1 i

Σ 7^-j ^ s t r = ° i f 2 / < v p , 7 ^ 1 ,

times the
(3.43)

Consider the vp x vp matrix

A(vp) =

1

3!

1

5!

1

1

0!
1

2!

1

4!

1

.)! (2v,-2)!

0

1

Ϊ!
1
3Ϊ

0

1

0!

1

2!

0

0

1

Ϊ!

0 ..,

0 ...

1
0 ! "•

1

(3.44)
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and let A be the (Σ vp) x (Σ vp)-matrix obtained by putting the A(vp) as blocks along
the diagonal, the rest being zero. If we write S± for the vector of all <S*r, then (3.43)
is an equation of the form

(A + B±(k))S±=0, B±(k) = θ(^\ as fc-^oo. (3.45)

So, if A is invertible, then A + B±(k) is invertible for large |fc| and we conclude that
S± =0, implying that (B±(k, dk)-Θ(x))φ*(x, k) = 0 for large |/c|; but then for all k
because of the analytic dependence on k.

A is invertible if and only if A{vp) in (3.44) is invertible for each p. On the matrix
for vp = oo we perform the following column operations. Remove the last non-zero
entry of each row, which is to the right of the diagonal element, by subtracting a
suitable multiple of the column immediately to the left of it. Repeating this

procedure one ends up with a lower triangular matrix, with 1, -, ——, , etc.,
on the diagonal. So,

p) = l ~ v ^ 3 1 " v ^ 5 2 ~ v ^ . . . (2/-iy" 1 ~ v ^ . . . . (2v ί , - l ) " 1 >0. (3.46)

This completes the proof of Theorem 3.5.

Remark, det ̂ (v) > 0, for all v ̂  1, are the Hurwitz inequalities for the coefficients of
oo I

ex — Σ —-xk which, if ex would be a polynomial, would express that all its
/c = o k\

zeros have negative real part. These inequalities would follow from Hurewitz's
n {

theorem [15] if, for each n, all zeros of Σ τ~,χk ^ a v e negative real part. This,
k = o /c!

however, is already false for n = 5. Asymptotically for n~+ oo, about ί n of
the zeros have positive real part, cf. Szegό [25]. ^

The space M = Mv of polynomials Θ such that (adL)m+1(Θ) = 0 for some m ̂  0
form an algebra. For the proof, use that (adL)(P β) = (adL)(P) Q + P (adL)(Q).
If L= — dl + V with F(oo) finite, then this can be phrased as follows: the space J > ±

of operators B±=B±(k,dk) such that B±(k,dk)Ψ^Λ) = Θ(x)φ^(x,k) for some
Θ = Θ(x) obviously forms an algebra, the mapping I? 1 -*Θ is a homomorphism:
<^±->Jί, which, as we have seen, is bijective, so the algebras 3#± and M are
isomorphic. In particular, &± is commutative. More precisely:

Proposition 3.6. If Boe^± has positive degree, then ^ ± is equal to the space of all
operators B = B(k,dk) which commute with Bo.

Proof. We have Boφ^ — Θo{x)'φ% with degΘ o >0. From the asymptotics for
x, /c-»oo we see that the large eigenvalues t of Bo are simple. But B leaves
Ker(B0 — Θ0(x)) invariant, so Bφ^(x, ) = Θ(x) φ^(x, ) for some 0(x), for large
x. But this proves that B e J 1 .

It has been proved by Schur [22], using fractional powers of ordinary
differential operators as in Gelfand and Dikii [9], that in general the algebra of
differential operators which commute with a given Bo of positive degree is
commutative. It is also finitely generated, cf. Giertz et al. [10].
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If V is a rational KdV potential, then the algebra 3$± apparently is isomorphic
to the algebra &v of polynomials Θ satisfying (3.34). That these form an algebra
can be checked directly.

Writing ma = {fe C[x] f(ά) = 0},αι-> ^vnma is a bijection from C onto the
space of non-zero prime ideals in 38 v exhibiting the latter as a rational curve ^v.
For any set of generators Θl9...,Θn of j y the map x\->(Θ1(x),...,Θn(x))
represents Ήv as an algebraic curve in C". The curve Ήv is singular exactly at the
points coming from 0>\ it therefore seems that we are not quite in the framework of
Krichever [17]. It is also not too hard to prove that 38V is isomorphic to 3%v, (as
algebras) if and only if there are a, be(C, αΦO, such that v'ap+b = vp for all pe^.

With a modification of the proof in Hartshorne [14, p. 310], one can show that
the minimal number of generators is 5Ξ3.

v(v + l)
In the most degenerate case V(x)= ——%—, v e Z > 0 , 8%v has two generators

X

[Θ(x) = x2 and Θ(x) = x2v + 1'] in contrast with all other Bessel cases where 38 v has
only one generator. (See the last remarks at the end of Sect. 5.)

Let V be a rational KdV potential of order v. As discussed in the remarks
following Theorem 3.4, V can be approximated by rational KdV potentials V of
the same order but such that v̂  = 1 for all poles p of V. In the limit ̂ vp(vp +1) of the
poles p of V come together at the pole p of V. Now

J>~ = {Θ &{p) = 0 for all poles p of V}, (3.47)

and a "confluent Vandermonde matrix" argument yields that

]im@f = {Θ; Θij)(p) = 0 for l ^ ' ^ v i v . + l) for all poles p of V}. (3.48)

A simple continuity argument shows that in general

limJ^cJV> (3.49)

so the inclusion is strict as soon as v p >l for some pole p of V. In fact, the
codimension is equal to Σi vp( vp —1)

P

In particular, the minimal degree of a nonconstant Θ in £%v is smaller than in
0$γ, which means that if we search for V as a solution to (adL)m+1(Θ) = 0 with
increasing m, then the "degenerate" V will turn up earlier in the process. (In fact, the
minimal degree is ^ X vp +1, but is not a function of the vp only, see Sect. 7.6.) In
terms of the Adler-Moser polynomial θ in (3.33), the V are characterized by the
property that their θ have simple zeros. So in the space of rational KdV potentials
V of order v the ones with vp > 1 for some p form a hypersurface determined by a
discriminant equation (= the complement of the "locus" of Airault, McKean,
Moser [3]). This hypersurface usually has singularities, in particular, at the Bessel

v(v + l)
potential ^— fr°m which they branch off. In terms of the equations

(adL)m+1(<9) = 0 for increasing m, the effect is that at a certain stage singular
families of B appear which are then later "smoothed out" by embedding them in
higher dimensional families. This is one of the confusing phenomena if one tries to
solve (adL)m+1(<9) = 0 for increasing values of m, which also occurs in the "even
case."



Differential Equations in the Spectral Parameter 203

In Sect. 4 it will be proved that if V is a rational KdV potential and if there is a
differential operator B(k,dk) of positive order and a Θ(x) such that
Ker( —d* + F(x) —λ)nKer(B(fc, dk) — Θ(x)) is two-dimensional, then V(x)

v(v+l)
= 2— > ^hs B e s s e l potential. So the rational KdV potentials, except the Bessel

x
ones among them, are precisely the potentials V such that there is a one-
dimensional (but no two-dimensional) common eigenspace. [In Sect. 5 it will also
be proved that if V(co) = oo, then V is the Airy potential with a two-dimensional
common eigenspace.]

4. The Even Case

Again, let L= —dl + V(x) with V(co) = 0 and Θ = Θ{x) with deg(9 = m satisfying
(adL)m+ 1{Θ) = 0, but this time we assume that there is a function c = c(k) such that
the operators B* of order m in (2.18) satisfy

B~{k,dk) = c{k)-OB+(k,dh)oc{k). (4.1)

Lemma 4.1. After a suitable translation in the x-variable, Θ and V are even
functions of x,B+ =B~ and c is a constant. Conversely, if V is an even function and
m is even, then there is an even Θ with deg<9 = m such that (adL)m + 1(<9) = 0 and the
corresponding operators B± satisfy B+ =B~.

Proof. By induction over p one gets that the polynomials ap(k) in -, defined
recurrently by (2.6) with a^{k) = l, satisfy

a;(k) = a;(-k). (4.2)

It follows that ds

ka;(k) = (-l)s(ds

ka+)(-k\ so from Eqs. (2.22) for
q = m,m-l, ...,0, which determine the coefficients Bf(k) of B±(k,dk), we get

B7(k) = (-lYBl(-k). (4.3)
s /s\

Using that ds

k o c = Σ (^c) ° δs

k~
r, (4.1) and (4.3) give

o\rj

r $c(fe) for all j . (4.4)
/

Reading this equation for j = m, we get

(-irB;(-fc)=fl;(fc), (4.5)

which implies that m is even because B^(k) = (±ΐ)~m. Θm is a constant, see (2.23).
Reading (4.4) for j = m -1:

( - l Γ " 1 ^ 1 ( f c ) = B;.1(fc) + c(fcΓ1 Γ - | . β m m akC(fc). (4.6)

Now (2.22) for q = m-l, using that ^(fe) (±i) m = 0m, yields that B^^k)
= (±ϊ)1 ~m - Θm-! is a constant as well. Combining this with the evenness of m, (4.6)
now reads

3,c(/c)=-~ %M/c). (4.7)
n J
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This means that c(k) depends exponentially on k. By a translation in the x-variable,
we can arrange that

0 » - i = O , (4.8)

a normalization which immediately leads to

c is a constant, B~(k,δk) = B+(fc, dk), (4.9)

Bj~(k) = (—l)jBj~( — k) for all j = m,m—1, ...,0. (4.10)

m — p

In view of the notation Bp(k)= Σ B^s k~s [see (2.27)], this means that
s = 0

Bp,s = 0 for p + s odd, or

.(ΐxy = (-l) s -j3 s

+ (-x). (4.11)
def j

Because β£(x) = Θ(x)9 (4.11) for 5 = 0 just means

Θ is an even function of x: Θ(x) = Θ( — x). (4.12)

Now the coefficients af(x) in the asymptotic expansion (2.32) for ̂ *(x, fc) as
fc-> oo, were determined recurrently from the j8s

+(x) by the formula (2.41). Inserting
(4.11) one obtains by induction over I:

αz

+(x) = ( - i y α z

+(-x) for all x. (4.13)

In view of V(x) = 2/ δ^α^ (x) [see (2.34)], we have proved that V is an even function
of x as well.

For the last statement, take Θ(x)=Ί(Θ(x) + Θ( —x)). B+ =B~ now follows
because a; (k) = ( - l ) p < (fc) [use (2.6)], so αp

+ ( - fc) = ( - l)pa+(k). Now (4.3) can be
read off from (2.22).

Remark. Another aspect of (4.10) is that B + (k,dk) actually is equal to a linear
differential operator A(λ, dλ) in λ = k2, with coefficients that are rational functions
in λ, that is, have no square root behavior in λ. In order to see this, note that

H Σ j . ι λ ,
1 = 0

where the otjj are universal coefficients, determined recurrently by

(4.14)

Now we can write
U/2]

B+(Kdk)= Σ ΣB+s aιrk-°+J-2ί d{-\ (4.16)
j , s ί = 0

j + s even

which proves the statement because — s + j — 2ί is even where j + s is even.
From now on we assume that B+ =B~ ( = B).
From Corollary 2.2 we see that the local solutions of (L—k2)φ = 0,

(B — Θ(x))φ = 0 form a two-dimensional complex vector space. In the description
following (2.25), £f is a holomorphic two-dimensional vector bundle; the analytic
continuation of solutions defines a flat holomorphic connection in ίf. Since ^ is
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spanned by the analytic continuation oϊ°φ^0,°φ^0 and these functions, for k fixed,
form a basis of solutions of (L—k2)φ = 0,£f(xJί) can be parametrized by the vector

for which we have the first order linear differential equation

0 1

J(x)-k2 0,k) = P(x,k)-v(x,k), P(x,k)=[Ί,,_Λ , 2 J (4-18)

Having a connection means that we also have a first order linear differential
equation in the /c-direction

dkv(x,k) = Q(x,k)-v(x,k), Q{x,k)=(a{*'kl ί f ' ί f ) , (4.19)

for a suitable a, b,c,d; the flatness condition, equivalent to the two-dimensionality
of the common solution space of (4.18), (4.19), is expressed by the compatibility
condition

(4.20)

Following the method of Flaschka and Newell [8, pp. 87, 88], we shall first
prove that (4.19) holds with a,b,c,d being rational functions of x. Defining the
fundamental solution

°ΦJX, k) = ( ° ί ; £ ' k\ Oφ

oj-
X/ kί) < 4 2 1 >

[see (2.9)], it is obvious that

Q(x9 k) = δ ^ Φ J x , k) o Oφjx, k)~ι in the sector S°J,k). {All)

Because the operators L(x,dx) — k2 and B(k,dk) — Θ(x) are single-valued for
(x, k) e D, meaning that Sf is a holomorphic vector bundle over D (that is, there is
no need to pass to some covering of D\ it is a priori clear that Q is single-valued on
D. In particular, in (4.21) we could have also replaced °φ^ by πφ* and gotten a
representation like (4.22) in S^(fe). We will now investigate the asymptotic
behavior of the right-hand side of (4.22) for x-> oo in S%(k), respectively S^(fc) (with
°ΦO0 replaced by %Φ^). Because S^(k)uS^(/c) is a full punctured neighborhood of
oo, this will then provide the asymptotic behavior of Q(x9k) as x-»oo.

Because the trace of P in (4.18) is equal to zero, the determinant of °Φ00(x, k) is
constant as a function of x. Because °Φ*(x, k)~e±ίkx, dx°φ^(x, k)~ ±ik e±ikx as
x->oo in S^(fc), it follows that

det°Φ00(x,fc)=-2ffe. (4.23)

Simplifying the notation somewhat, we get

•w TX 1 / Skφ
+ dxφ~— δkφ~ dxφ

+ —dkφ
+ φ~-\-dkφ~ φ +

0(x k\ =
y ι ' J -2ifc \dtdj+-dj--dkdj--dj+ -dkdxψ

+-φ-+dkdxφ--φ\
(4.24)
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In view of (2.6) for p = 1 we get, for x->oo in S^(fc), respectively S^(fc),

and inserting this into (4.24) it follows that

(\ \
as x->oo. (4.25)G)

Now let p be an irregular singular point for ( — d% + V(x) — k2)φ = O, that is
assume that V satisfies (3.2). The same argument as in the proof of Lemma 3.1
shows that φpj satisfy differential equations of the form (Bpj(k, dk) — Θ(x))φptj = 0.
Corollary 2.2 now gives the existence of functions cpj(k) and constants
ίP±,;,+Λ±,j\-> s u c h t h a t

Φίj = <β) Φh = *L + °ΦΪ + ί̂ . - °φ- . (4.26)

On the larger sector

Spj=\xe<£;\x-p\ small, ε + 2π;<arg^ / 2+ί l + | j arg(x-/?)<2π-

(4.27)

the analytic continuations oϊφpj still satisfy the asymptotic expansion (3.4). Now,
writing

Z+ aJT- /' ( 4 2 8 )

xΦpJ SχφpjJ

the relations (4.26) mean that

°Φao(x, k) = Φpj(x, k) o T, (4.29)
for a "transfer" matrix T which is independent of x and k. Hence dk°°Φoo

= dkΦPtjo T, and so
O(x k) = d,°Φ o°φ~ί = dΊφ . o φ i (4 30)

which is a matrix like (4.24), but with φ ± replaced by φpj and some function of k as
a factor in front. Because the exponential factors from the asymptotic expansion
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(3.4) cancel each other, it follows immediately that Q(x, k) = O(\x — p\κ) for x-+p in
Spj, for some κeIR. Using that the union of SpJ cover a full punctured
neighborhood of p, the conclusion is that x ι-» Q(x, k) is meromorphic at p.
[Actually, x h-> b(x, k) is regular at p, using that ω + +ω~ = — μ/2>0.]

Because at a regular singular point p all solutions φ (and therefore the analytic
continuations of °φ *, too) satisfy estimates of the form φ(x, k) = O(|x—p|κ) as x-»p
in any sector, one concludes immediately that x h-> Q(x, k) is meromorphic at the
regular singular points as well. Summarizing, we have proved the rationality of
x h-> Q(x, k)9 announced after (4.20).

Next we analyze the compatibility condition of (4.20):

dyb = d — α,
(4.31)

dxc=-2k + (V-k2)(α-d),

δxd = (V-k2)b-c.

Summing the first and the last equation we see that α + d does not depend on x.
More precisely, because

ΎrQ(x, k) = δk{άet°Φx(x, k)) • (det°Φm(x, fe))"1 = 3k(-2ifc) •(-2iky1=k~ι,

using (4.22), (4.23), we even have

α + d = k ~ 1 . (4.32)

Now (4.31) leads to α=-ψxb^\k~\ d=\dxb+\k~\ c = {V-k2)b-\d2

xb,
showing that the whole matrix Q(x, k) can be expressed in terms of the function
b{x, k), which in turn satisfies the differential equation

-^b + 2(V-k2) δxb + δxV b + 2k = 0. (4.33)

From this equation it is obvious that x ι-> b(x, k) can only have poles at the
poles p of V. Writing

V(x)~cμ-(x-pr, b(x,k)~bp(k)-(x-pY for x^p, (4.34)

with μ£-2(jVis rational!), β<0, cμφ0, bp(k)φ0, the leading term on the left-
hand side of (4.33) is

if μ<-2
and (4.35)

2)Clι)-(x-Py-3 if μ=-2.

So the conclusion is that

μ=-2 and cμ=y(β-2) = l2-± with / = i ( l - ) 8 ) > i . (4.36)

In other words, x \-+ b(x, k) can only have poles at regular singular points p for
( — dχ + V(x) — k2)φ = 0, the monodromy around which has an eigenvalue ± 1, of
algebraic multiplicity 2.

Furthermore, all eigenfunctions of — dl + V(x) are single-valued around the
poles of b. The generic φEKQΪ(L— k2)nKQΐ(B — Θ(x)) can be written as φ(x,k)
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= y(k) -φp{x, fe), where y(k) φ 0 and φ~(x, fe) is as in (3.16). Now turning x around p,
φ(x,k) is changed into φ(x, fe) + y(fe) c(k) 2πί-φp(x,k). So if c(fc) + 0 (which is
always the case for large |fe| if leΈ), it follows that y c-φp eKer(L—fe2)
nKer(£ — Θ(x)) is linearly independent of φ.

If we replace the common eigenfunctions °φ^, respectively °φ^ in (4.21) by
y-c-φp, respectively φ = y φ~, we get a fundamental solution Φp(x, fe), °Φoo(x, fe)
= Φp{x, k) o T for a transfer matrix Γ which does not depend on x and fe, so that
Q(x, k) = dkΦp(x, fe)oφp(χ, fe)"1, as in (4.30). Replacing the functions φ+, respec-
tively φ~, in the upper right corner of (4.24) by γcφ*, respectively y-φ~,we see
immediately that b(x,k) = 0(\x — p\-\log(x—p)\), so xh+b(x,k) has no pole at
x = p. That ϊ = i + v ί , ,v p eZ > 0 now follows in the same way as in the last part of the
proof of Lemma 3.2.

Remark. A similar argument also says that at the poles p of x h-» fr(x, fe) there is no
y(fe)φθ such that γ-φ+ eKer(L-fe 2)nKer(£-<9(x)).

We now turn to the asymptotics as x->oo for b. Using (4.25) we may write
(using that b and V are rational):

b(x,k)=y+ Σ bs(k).χ-\ V(x)= Σ Vr x~r. (4.37)
r>2

Substituting this in (4.33) and collecting the coefficients of x -s-ί .

2k2-s-bs=~-Vs+ι+ Σ Vr bt (r + 2t)-$(s-2)(s-l)s ba-2, (4.38)
rC r , ΐ

r + t = s

which determines the bs recurrently. We read off that bί=0, b2=jrjV3=^0
1

because Fis even, fo3 = —j F4, etc. By induction one gets that bs = 0 for s even, bs(k)

x A(x, fe)
~3) for s ^ 3 Now b(x fe) ?x

is an odd function of fe for 5 odd, bs(k) = O(k~3) for s ^ 3. Now b(x, fe)— —=
K LJ\X)

where A( , fe) and # are polynomials with B independent of fe because the poles of b
are all poles of F, which do not depend on fe. From Λ(x, k) = B(x) Σ bs(k) x" s ,

one sees that the coefficients of A{ , fe) are linear expressions in only finitely many
of the fcs(fe), so we may conclude that

b(x,k)=*-+O(k~3) as k-+oo. (4.39)
fe

By induction we also get that bs is a polynomial in - of degree ^ 5, and the same
K

argument as above shows that b is a polynomial in -.
K

But then the degrees of bs ί as polynomials in - 1 cannot increase indefinitely.
V fe/

Because the coefficient βs of fe~s in bs satisfies

l)s) βs-2, (4.40)
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we see that necessarily

V2=^(s-2)s for some odd s > l , (4.41)

unless bs = 0 for all 5, that is,

b(χ,k)=y, V(x) = -^, the Bessel potential. (4.42)
K x

From now on let us exclude the Bessel case. From (4.39) it follows that the only
zero of x i—• b(x, k) which does not move as k varies is x = 0. Because dxb(x, k)

= - + O(k~3) for k->oo, this is a simple zero. Because the poles of V do not move

with fc, it follows that V has, except at x = 0, only poles at the poles of b. From (4.33)
one then reads off that if x = 0 is the pole for V, then it is a pole of order 2:

K(x)~^=Γ- for x->0. (4.43)
X

Now ( — dl + V(x))φ = O, the equation for eigenvalue 0, has a regular singular
point at x = oo, and from (4.41) we see that the monodromy around oo (that is,
going around a circle enclosing all the poles of V) has — 1 as its eigenvalue. Because
all the eigenfunctions (and therefore those for k = 0, too) are single-valued around
all poles p φ 0 of V, the monodromy around 0 is the same. Necessarily therefore

c_2 = /2— \ for some IEΈ>0. (4.44)

We can now summarize the conclusions in

Proposition 4.2. After a suitable translation in the x-variable either V(x) = —^
(Bessel) or x

I2-1 v (v + 1 )
1/ΎY^ — 4 - ^* ———— \A)hpγp / P 2 ^ ^ Λ v P 77 ^ v — v

W ~ X2

 Pe&(x-P)2' ^ 0 > VPe/L>^ V-P~VP

and & is a finite subset of C\{0}, symmetric around 0. (4.45)

Furthermore, all eigenfunctions of — <92 + V(x) are single-valued around all the poles
of V. Given (4.45), this last property is equivalent to

Remark, The last argument in the proof of Lemma 3.2 gave that around x = 0 the
eigenfunction is a multiple of φ~(x, k) [in (3.16)] with p = 0, with c(k) a polynomial
in λ = k2 of true degree /, so the monodromy around x = 0 (and therefore also

/ — 1 c(k)\
around x = oo) is of the form ( ) on a suitable basis of eigenfunctions.

Proposition 4.3. // V is a potential as in (4.45), (4.46), then it can be obtained from
—-

— - by μ Darboux transformations, using at each step an eigenfunction for the
2
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eigenvalue 0 which is dominant at x = 0. The potentials obtained in this way form a
(l-\-2μ)2—-

smooth μ-dίmensional family having ^ ~ ^n its closure. Conversely, every
r/?2 1 X5£

potential obtained from γ^ for some J£eZ^0 by finitely many rational
X2

Darboux transformations, is of the form (4.45), (4.46).

Proof. Assume (4.45), (4.46). The equation (— δl + V(xj)φ = 0 has a regular singular
point at x = oo. The monodromy around oo is the same as the monodromy around
0, and therefore has eigenvalue —1. It follows that

(I2~ϊ)+ Σvp(vp+l) = L2-i for some LeZ* 0, (4.47)

obviously L>1 if 3P^φ. Let φ0 be the solution which is recessive at x = oo:
φo(x)~x*~L as x-»oo. φ0 is an eigenvector for the monodromy around oo, and
therefore also for the monodromy around 0. That is, it has no logarithm terms as
x->0, and it is a multiple of a function of the form (3.11) for p = 0. Because φ0 is
meromorphic at the other poles p e & of F, the conclusion is that dxφ0(x)/φ0(x) is
meromorphic at all poles of V and has finite order of growth for x->oo, so it is
rational. The potential

V(x) = V(x) - 2dxldxφo(x)/φo(x)l, (4.48)

obtained by applying the Darboux transformation using φ0, is again rational.
Because L2-i+2(±-L) = (L- l ) 2 ~ i we get

f2-1

V(x) ^ for x-+oo with L = L - 1 , (4.49)

and because l2-i + 2(i±l) = (l±\)2-{\

V(x) j± for x-*0 with Γ=/±l . (4.50)

x
Noting that V is even, the function φo(x) obtained from φo(x) by analytically

continuing φ0 as x walks around 0 to — x, and then reflecting back, is again a
solution which is recessive at oo. So φ0 is a constant multiple (in fact, ± i times) of φ0

and the Darboux transformation with φ0 instead of φ0 leads to the same result. It
follows that V(x) is an even function of x again.

Finally, the eigenfunctions for — d2

x + V(x) (for the eigenvalue k2) are given by
(dx — ΦΌ/Φo)φ{x> fc) if Φ(x, k) are the eigenfunctions for — d2

x + V(x), so they are
single-valued around all the poles p + 0 of V. Therefore, V is again a potential
satisfying (4.45), (4.46).

Now

= - 2 ( L - ± 0 < 0 ,

so after finitely many applications of this procedure we arrive at a potential V
satisfying £ v̂ (v̂  +1) ίΞ 0, which, in view of v^(v? +1) >0 for all p, just means that

P . Γ 2 - t
$ = φ, that is V(x) = —2^" f o r s o m e

X
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Because ί/φ0 is a solution of ( — d2

x + V(x))φ = 0 and the Darboux transforma-
tion applied to V using ί/φ0 gives V back, we have proved that V is obtained from
if2—1

^ f°r s o m ^ ^ ε Z ^ 0 by finitely many rational Darboux transformations.2

Conversely, that any rational Darboux transformation leaves the set of potentials
satisfying (4.45), (4.46) invariant is now quite clear in the light of the above
arguments: for a Darboux transformation to be rational it is necessary to take an
eigenfunction which at the same time is an eigenvector for the monodromy, that is,
it does not have logarithmic terms.

We now prove that if we apply μ Darboux transformations, with μ < ££, to V(x)
5£2 -

^ , taking at each step any eigenfunction for the eigenvalue 0 which isX

dominant at x = 0, then we arrive at a potential V such that
I2-1

i) V(x) ^ as x->0, l=^-μ, and
x

ii) The solutions of (— <32 + V(x))φ — 0 have no logarithmic terms and have the
asymptotic expansion

φ ( x ) ~ t x * - ι + u-χi+ι + O(χτ + ι + 1 ) as x - » 0 . (4.51)

The proof is by induction on μ. Note that if V is the potential obtained from V
by means of the Darboux transformation using φ, then the image of dx — φ'jφ\
Ker(-3 2 + F)->Ker( — dl + V) is one-dimensional because (dx — φ'/φ)φ = O. So
(only) for the eigenvalue 0 it is not true that all eigenfunctions of — d2

x + V are
obtained by applying dx — φ'jφ to the eigenfunctions of — d2 + V. In this case one
proceeds somewhat differently: one checks that φ=l/φ is a solution of
( — dl + V)φ = 0, and a linearly independent one ψ is obtained by solving the
Wronskian equation φ- dxψ — dx$- ψ = 1. The result is

as= χ + χ
L — Zl t

which shows at the same time that no logarithmic terms appear and that (4.51)
holds with other constants instead of t,u, and with / replaced by /—I.

However, the formula also shows that approximating the recessive solution at
x = 0 of (— dl + V)φ — 0 amounts to letting ί->0, thereby choosing v of order t. But
this is the same as approximating the recessive solution at x = 0 of (dl + V)φ = 0. So

i f 2 - 1

any sequence of rational Darboux transformations starting at γ^~ can be
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replaced, with the same final result, by first performing a sequence of Darboux
transformations using only recessive solutions at x — 0, and then a sequence using
only dominant solutions at x = 0. Because the recessive solutions of

2
x

— d2

xΛ 2Γ^)Φ a r e equal to φ(x) = const x*+se, it leads again to a Bessel

potential V(x) = j - ^ with JS? = Jδf +1. This proves the first two statements of
the proposition.

Remark. In terms of (4.47), the potentials V described in the first two sentences of
Proposition 4.3 satisfy L=l + 2μ, where μ denotes the number of parameters in the
family.

Starting at the Bessel potentials (L=l), the solution of (dl + V)φ = 0 which is
recessive at x = 0 is dominant at x = oo. Performing the Darboux transformation
with this solution leads to (L, L) —-> (L+ 1, L+ 1). The solution which is recessive
at oo, is dominant at 0: (L,L)—-> (L—1,L—1). All other solutions (the generic
ones) are dominant at both x = oo and at x = 0: (L,L)--> (L+1,L—1).

Because each of the recessive solutions (at x = 0 or at x=oo) can be
approximated with dominant ones, it follows that both (L+1,L+1) and
(L— 1,L— 1) can be approximated by the (L+1,L—1) potentials. This will be
denoted by the arrows (L+1,L-1)—>(L+1,L+1) and

At an (L, /)-potential which is obtained by applying a Darboux transformation
with a solution φ0 of the previous equation, which is dominant at both x = oo and
at x = 0, we get that φ$ x is a solution of the equation at hand, which is recessive at
both x=oo and at x = 0. So from such (L,l) we have only the Darboux
transformations (L, ΐ) ---•» (L— 1, /+1) if one uses the doubly recessive solution, or
(L,/)---+ (L+l,/—1) in all other cases, because all other solutions are doubly
dominant.

Because (L,/)—>(L,/ + 2), respectively (L, /)—> (L-2, /) transfers under
(L, 0 — * (L+ 1, /-1) to (L+ 1, i-1) —* (L+ 1, /+ 1), respectively
(L+ 1, /— 1) —> (L-1, /— 1), we get the following diagram:

0.0 2.0 4.0 6.0 8.0 10.0 12.0

L ( V ( x ) r ^ - f o r x — oo )
—- x z

Diagram 4-1
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The limiting relations —> give two connected components: the (L, /) with L and

/ both even, connected with — - — ,̂ and the (L, Z) with L and / both odd, connected

3 1
with-Ί%—2' These are denoted by closed, respectively open, dots in the diagram. A

T" X

rational Darboux transformation interchanges the two components. Note that if
we allow translations in the x-variables, then the limiting relations are enriched. If
the pole of V, around which the eigenfunctions are not single-valued, runs to oo,
one arrives at limiting potentials V for which all eigenfunctions are meromorphic
and the common eigenspace Ker( — dl + V— λ)nKQr(B — Θ) is two-dimensional,
so V(x) = v(v + l)/(x — a)2 for some veZ^ 0 , αeC. In order to actually get these,
one can make a translation which shifts one of the peg? to the origin and then let
all the other poles run to oo by applying a homothety x\-+ ε-x. This leads to V(x)
= vp(vp + l)/x2. In the procedure of (4.51), vp becomes maximal if, after the first step,
we take φ to be recessive at p at each next step leading to vp = μ. So v(v +1)1 x2 can be
obtained as a limit of translated potentials of Diagram 4.1 with L=2v or L=2v +1.

For another refinement of Diagram 4.1, see Sect. 7.5.

5. The Even Potentials Work Too

We now turn to the question of whether the non-zero eigenfunctions φ(x, k) of
- dl + V(x), with V as in (4.45), (4.46), actually do satisfy a differential equation
(B(k, dk) — Θ{x))φ — 0 of positive order.

According to Proposition 4.3 we may assume that V is obtained from

- — ^ 2 — - by μ Darboux transformations, at each step using an eigenfunction for

the eigenvalue 0 which is dominant at x = 0. It will be convenient to view ^ — -
I2 — — x

as obtained from — ^ - by μ Darboux transformations, defined by eigenfunctions

for the eigenvalue 0 which are recessive at x = 0. Therefore, we can write

φ(x,k) = k-2fί(dx-v2μ(x))o...o(dx-υ1(x)).ψ(kx), (5.1)

where each vt(x) is rational in x, independent of k Γ actually of the form
ΣvjXx~~xjr)~1~\ a n ( l Ψ i s a non-zero solution of

r J
y O. (5.2)

[See (1.35) for the appearance of kx in tp.]
This time, in contrast to the rational KdV case, e~ikxφ(x, k) is not a rational

function of x. Instead, at each step working away a second order derivative acting
on ψ in (5.1), using (5.2), we get that φ is a linear combination oϊψ(kx) and ψ\kx)\

φ(x, k) = α°(x, k) ψ(kx) + β°(x, k) ψ'(kx), (5.3)

where the coefficients α°(x, fe), β°(x, k) are rational functions of x I and polynomials

1\ ^
in- ]. The coefficients in such a representation are uniquely determined because of

k)
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Lemma 5.1. ψ(y) and dyψ(y) are linearly independent over the field of rational
functions of y.

y

Proof. If dyψ(y) = R(y)ψ(y) for a rational function R, then ψ(y) = exp J R(z)dz,
combined with the asymptotics for y->αo as treated in Sect. 3, gives us ψ(y)
~c+ - eιy or φ(y)~c_ e~ιy as y->oo in suitable sectors (c± constants). It follows
that R(y)~ ± ί4- Σ cky~k a.sy->co9 which in turn implies that ψ is single-valued.

But for (5.2) the monodromy has — 1 as its only eigenvalue. This is a contradiction.
As we have seen in the proof of Proposition 4.3, Vj(x) = dxφj(x)/φj(x) is an odd

function of x. Here ( — d2. + VJ{x))φj = 09 V} is an intermediate potential in the
sequence of Darboux transformations. Since α°(x, k), respectively β°(x, k), arise
from the terms with an even, respectively odd, number of dx's in (5.1), we get

α° is an even function of x and k, α°(x, k) = l + 0(x ~2) as x -• oo ,
(5.4)

β° is an odd function of x and k, /J°(x, fc) = 0(x~x) as x->oo .

Our next step is to write

d{φ(x, k) = αj(x, k) ψ(kx) + J8j(x, k) - ψ'(kx), (5.5)

where the α7, jβ 7 are recursively determined by

I2—1

^ j j j j (5.6)

By induction on j it follows that ocj(x, k), /J7'(x, k) are rational in x and polynomial in
k. Furthermore, x f—• αj(x, fc) is even and x ι-> /^(x, k) is odd. [Also: αj(x, — k)
— ( _ 1 VnH V &Λ β Ύ V _ iΛ — ( — 1V + ! /?JY Y ^ 1

Lemma 5.2. For every even polynomial Θ of degree m there are unique Bj(k),
j = m,m—1, ...,0, such that

m

Σ Bj(k) (xj(x,k)-Θ(x)-(χo(x,k)-*0 as x-+oo, (5.7)
j=o

and

Σ Bj(k) βi(x, k ) - Θ(x) - β°(x, k)->0 as x-±oo. (5.8)
.7 = 0

The Bj(k) are polynomials in - of degree ^ m —j.

K

Proof. From (5.6), (5.4) we see by induction over j that

a 2 r (x, fc)~(- l) r -x 2 r , 0ί2r'1(x,k) = O{x2r~2) as x->oo, (5.9)

β2r~1(x,k)~(-l)r-χ x2r-1, B2r~2(xΛ) = O(x2r~3) as
Assumed that the B} for j > 2r have been determined such that the left-hand

sides of (5.7), (5.8) are both O(x2r) as x-> oo. Then in view of (5.9), the condition that
(5.7) is 0{xlr~1) is a linear inhomogeneous equation for B2r, involving the Bj only
for j > 2r, and with the coefficient in front of B2r equal to (— ί)r. On the other hand,
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(5.8) is automatically O(x2r"1) since it is an odd function of x; βj and β being odd
and Θ being even.

Next assume that the Bj for j >2r— 1 have been determined such that the left-
hand sides of (5.7), (5.8) are both C^x2 '"1) as x-»oo. Now (5.10) shows that the
condition that (5.8) is O(x2r~2) is a linear inhomogeneous equation for B2r-\
involving the Bj only f o r y > 2 r - 1 and with coefficient in front of B2r_1 equal to
(— I)1""1. On the other hand, (5.7) is automatically O(x2 r~2), since it is an even
function of x: αJ, α, and Θ all being even.

We now investigate the poles on the left-hand side of (5.7), (5.8).

Lemma 5.3. The x ι—• α ̂ x, fc), x i—• βj(x, k) forj^O can only have poles at the poles

p + Oof V.

Proof. Writing 0 = (— d2. + V(x) — k2)φ as a linear combination of ψ and ψ' with
rational coefficients, and using (5.3), (5.2), we get

/ /2_i\
°xP ' 1 v 2 }P —£K'VXOC — U. [JΛΔ)

ί(X°\
From this second order system for I 0 J it is obvious that α°, β° can only have

poles at the poles of V. We now have to show that they are regular at x = 0 in spite

I2~ϊ
of the singularity of the system there. Note, however, that V ^ is regular at

x = 0 ( this is the reason for viewing V as obtained from ——- as in the beginning of

\ β° d β°
this section j , so the only problem is the term —3 ^y- in (5.11). Write

/ xx

0 /• 1 \ ^-\ 0 / \ 7 — 2 / 0 /" \ 1 / c 1 'ί \

OC ( X , t\) ~~ / , OC T ( X )/v , 0CQ( X ) Ξ̂ Ξ 2 5 I j , l jl

β°(x,k)= Σ β°j(x)k~2j~ι. (5.14)

Then (5.11), respectively (5.12), read
2 I iΛί ~Γ ^u χfJ j _|_ -̂  "T" ̂ (^ί "4^ I 5 2 I ~ = ? V ^ /

_ ^ . + ί K - ^ lj8?-2δ xα9+ 1 = O. (5.16)

Keeping in mind that α?+ x(oo) = 0, /f?+ ^oo) = 0, (5.15) determines /??+1 given α?
and j8j_i, whereas (5.16) determines aj+ί given j57 . So starting with α§ = 1,' these
equations can be used to determine all the 0$, β° and thereby α°, /?°. If now /??_ x is
regular at x = 0 then, because it is odd as a function of x, it can be written as

c' x () (ex}
C-X + O(x3). Because —3 ^-^ = 0, we read off from (5.15) that β* +1 is regular

x x
at x = 0 if αj and β°_1 are regular at x = 0. Because it is obvious from (5.16) that
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α°+ γ is regular at x = 0 if β? is regular at x = 0, by induction we get that α°, β° are
regular at x = 0 for all;, proving that α°,/?° are regular at x = 0.

That α 7, βj can only have poles at the poles p φ 0 of V now follows from the
inductive formulae in (5.6). Observe that x ~ xβj is regular at x = 0 if β 7 is regular at
x = 0, because jS 7 is odd in x, so necessarily has a zero at x = 0 then.

Theorem 5.4. Let V be as in (4.45), (4.46). The non-zero eίgenfunctions φ(x, k) in
(5.1) satisfy an equation of the form B(k, dk)φ(x, k) = Θ(x)φ(x, fc), if and only if the
polynomial Θ is even and satisfies

Θ(2j~1)(p) = 0 for all l ^ j ^ v p , for each pole PG(C\{0} of V (5.17)

Proof. The necessity is proved in the same way as the necessity of (3.34) in Theorem
3.5. Also the sufficiency can be proved along the same pattern as in the proof of
Theorem 3.5, but for this more explanation is needed.

Let α(x, k), respectively j8(x, fc), be the left-hand side of (5.7), respectively (5.8).
From (5.11), (5.12) it follows that α°, β° have poles of order ^ vp at the poles p φ 0 of
V9 and from (5.6) we see that the same is true for α 7, βj for all;>0. Now (5.7), (5.8)
and Lemma 5.3 can be combined into the statement that

α(x,fc)= Σ V a p . r ( * ) - ( x - p r v ' , (5.18)

β(χ,k)= Σ V'Σ'βP,r(k) (x-Pγ-*'. (5.19)

From Proposition 3.3 we know that

dlj~K(x-vyp φ{xMx=P = V for l ^ ^ v p , pe0>. (5.20)

This remains true if φ is replaced by (B(k, dk) — Θ(x))φ, assuming that Θ satisfies

(5.17). Here we take B(k, dk)= Σ BXfydί, with B.{k) as in Lemma 5.2. It follows

that
, k) φ/(fcx))L=p = 0

for l£j£vp9 peg?. (5.21)

Expanding ψ, respectively ψ\ at x = p, and inserting (5.18), (5.19), we get
2./-1 k2j~1~r

) = 0 if 2 ; - l g v . , ^ l , (5.22)

and

( 2 _ t _ Γ ) , Ψ\kp) + O { k ή t i m e s

<s>(M or
with g.ίΦp, if 2/-l^vp, j^vp. (5.23)
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Now one gets by induction over t, from (5.2):

^ ^ V W , (5.24)

W{2t+ υ ω = ° ( ^ ) VOO + ((-1)' + O (^Jj φ'(y), (5.25)

where the order symbols represent polynomials in - and the asymptotics is for

y-»oo. Inserting this in (5.22), (5.23), which we multiply by kVp~2j (- l)j, and
where we substitute

«,.„*•—(-D---V, I
/? . 7rvp-l-(2ί-l)/ 1\~ί_η,

Pp,2t-1 K \~ L) —yP,2t

and

1 fcv-i-« Zi - l i " 2 " 1 } ' (5 27)

to get

ψ'(kp)

0 (5.28)

for \<j<vmpe0t. Here we have used the convention that —- = 0 if u < 0, and by

ίί\Γ\
O ( - ) l ) we mean an expression which is linear in the ypj,δpj, where

\kj \oj ' ' 1

0 ̂ 7 ̂  vp — 1 and p runs through ̂ , with coefficients which are polynomials in -
without constant term.

The point now is that if we apply Lemma 5.1 to the left-hand side of (5.28) as a
function of fe, the fact that yPtr9 δpr are rational functions of k implies that (5.28)
gives twice the number of original equations:

for l ^ ̂ Vp
There are now as many equations as unknowns, ypr, δpr, which can be written

in the form

as k-+oo. (5.30)

Here ε is the vector of all yp>n δpr. sd = I I with A as in (3.45). Because A is

invertible [cf. (3.44), (3.46)], J / is invertible, si + &{k) is invertible for large |/c|, so
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ε = 0 for large \k\. But this implies that (B(k, dk) - Θ(x))φ(k, x) = 0 for large |fe|, hence
for all k by analytic continuation.

The same observations that follow Theorem 3.5 apply here. For a given non-
zero family φ(x, k) of eigenfunctions of L= — d2

x + V(x\ the operators B(k, dk) such
that B(k,dk)φ = Θ(x)φ for some Θ form a commutative algebra # F , isomorphic
to the algebra Mv of even polynomials Θ satisfying (5.17) by the map B i—• Θ. &v is
also equal to the space of all B = B{k, dk) which commute with a given Bo e &v of
positive degree.

Furthermore, every potential V as in (4.45)-(4.46) with vp > 1 for some peg? can
be approximated by a potential V of the same class but with vp = ί for all poles p φ 0
of V. The limit of 01 v as F-» V is equal to the set of even polynomials Θ such that
ΘU)(p) = 0ϊor 1 <y^v p (v p +1) for all poles pφO of F and is strictly smaller than
0βv. In particular, $v has elements of smaller positive degree than the $y or
lim S&γ. Introducing the analogue of the Adler-Moser polynomial [see (7.2.2)]:

θ(χ)= Π (x-pfv^ + 1) (5.31)

or, using that θ is even, the simpler one

V(y)= Π ( y - p 2 ) * ^ + 1 \ θ(x) = η(x2), (5.32)

the potentials V for which vp > 1 for some p e ^ form a hypersurface, determined by
reading the discriminant equation for the polynomial η.

If vp=l for all pe0>, then, writing L = l + 2μ, there are 2μ(l + μ) poles. This
makes the minimal degree of a non-constant Θ equal to 2μ(/ + μ) + 2
=\L2 —\l2 + 2. If v p >l for some p e ^ , then this minimal degree is smaller; see
Sects. 7.2 and 7.5 for examples.

Finally, we make some remarks on the Bessel potentials V{x) = -^. Because
x

x2 e J*F, ^*F contains all the even polynomials. The only cases when J*F is larger,
that is, for which there exist B±(k, dk\ Θ such that B±(k, dk)φ* = Θ(x)φ* and B~ is
not conjugate to B+ by a function of fe, occur when c = v(v + 1) for some veΈ^0Λn
this case &V = {Θ; Θ{2j~1\0) = 0 for l^j^v}. The larger v, the higher degree
Θe$v must be in order that it not be an even polynomial. Θ(x) = x2v+X is the
lowest possible case. For the operator B see (7.4.14).

6. F(oo)= oo is the Airy Case

Now assume that (adL)m + 1(6)) = 0 for a non-constant Θ, and that K(oo) = oo.

Lemma 6.1. F(x)~a x + β as x->co for some α,/?e(C, αφ0.

Proof. The coefficient of 3£ in (ad(δ^ — F)) m + X(Θ) is a sum of terms of the form
l ) l ) k \ (6.1)

with non-negative integer coefficients, where
κ = Σ K = degree in K disregarding derivatives ^ (m + 1 — j)/2 (6.2)
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and

Λ = l + ΣKh — total number of derivatives on (9, V
i

= 2(m+l)-j-2κ. (6.3)

The proof is obtained by observing that (ad {d2

x - V))m+1 = (ad d2

x - ad V)m+\ and
can be written as a sum of compositions

... o ( - ad V)"14 o (ad dl)m3 ° ( - ad Vf12 o (ad <9^)mi. (6.4)

Then use the rules

idl, a&m = 2α'(x)<T' + α"(x)3>, (6.5)

- IV, fl(x)3>] = α(x) • ; Σ Q V®d>-ι. (6.6)

Because ad d\ increases the order by ^ 1 and — ad V lowers it, we need, in order to
get a non-zero contribution, that m2^mu m 4 ^ m 1 - m 2 4 - m 3 , m6^m1 — m2-\-m3

— m4 + m5, etc. More precisely, (6.4) applied to © is a sum of terms of order (in dx)

, Σ™even = κ> (6.7)

(6.2) follows.
To see (6.3), note that (6.5) implies that if adδj is applied (increasing m by 1) then

K does not change, whereas A is increased by 2 if j stays the same, and increased by
1 if j is increased by 1. On the other hand, applying — ad V (again increasing m by 1)
increases K by 1, A by i if j is decreased by i. In both cases (6.3) is preserved.

Next observe that Θ is a polynomial, so (6.1) can only be non-zero if l^deg<9.
Furthermore, the rationality of V allows us to write

V(x)~ Fpol(x)-f Σ c-rx~r f° r x->°Q with F p o l a polynomial,

which we assume to be of degree ^ 2. (6.8)

Using that the derivative of a constant is zero (and not a function of order x~x) we
get that (6.1) has growth order (for x-κx)) equal to

iff Z^degΘ, / ^ d e g F p o l for a l i i , (6.9)

and lower order in all other cases. Moreover, the coefficient of xτ in the expansion
for x-> GO is equal to a positive integer times the highest order coefficient of Θ times
the κth power of the highest order coefficient of V. By making a substitution of
variables x = const x, Λ = const Γ, one can arrange that the highest order
coefficient of V is equal to 1. Using (6.3) we see that τ = deg(9 — 2 ( m + l ) + j
+ K - (deg Vpol + 2), so if deg Vpol > 2, then τ is maximal if we choose K maximal.

If m is even, we take j= 1, κ= — and we see that

(6.10)
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m

gives a term <9' (F ( 2 ) ) 2 in front of dx in (ad(d2 — V))m+1(Θ) which has leading
growth order as x->oo and is not compensated by other terms, so we get a
contradiction with (adL)m+1(Θ) = 0.

If m is odd, we take 7 = 0, κ= —-— and we see that

Θ) (6.11)

m - 1

gives a term <9'-(F(2)) 2 F', which is not compensated and again we get a
contradiction. The lemma is proved.

By a substitution of variables x = const x + const, λ = const λ, we can arrange
that

F(x)~x + Σ Vr-x~r as x->oo. (6.12)

(That Vγx~ι does not occur follows from the rationality of J F.) x = oo is an
irregular singular point for ( — 3 2 + V(x) — λ)φ = 0, this time with the leading term
independent of λ. Define the sectors

S+ = { x e C ; |x| large, ε<fargx<π —ε},
(6.13)

S~ ={xe(C; |x| large, - π + ε<fargx< - ε } .

Then there are unique solutions x \-> φ±{x, λ) of (L—λ)φ = O with the asymptotic
expansion

as x-^00 i n S * , d$ = l, (6.14)

the expansion actually being valid in larger overlapping sectors in the usual way.
A by now familiar application of Lemma 1.3 leads to the existence of unique

A*(λ)9 s = 0,...,m such that
m

A±(λ,dλ)φ±(x,λ) = Σ AHλ)ds

λφ
±{x,λ) = Θ{x) φ±{x,λ). (6.15)

d e t s = 0

It follows immediately from (6.14), (6.15) that m is even and degΘ = m/2.

Lemma 6.2. A + (λ, dλ) = A~(λ,dλ).

Proof. Indeed, for one choice of the square root of x in the asymptotic ex-
pansion (6.14) the coefficients are uniquely determined from the equation
(— <32 + V(x) — λ)φ = 0. Then the single-valuedness of V shows that substituting the
other square root one again obtains a formal expansion which satisfies the same
equation. This shows that

d-(λ) = (-\γdr

+(λ). (6.16)

On the other hand, (6.14), (6.15) lead to
in _L c _μ j \ m/2

Σ 4 + i W K+i) ί + i ^ i W = Σ β r 4-,W (6.Π)
j,s \ S / r = 0

0<s<m
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These equations for q = m,m— 1, ...,0 determine the Af for j = m,m— 1, ...,0
successively.

Now changing the sign in + amounts to multiplication by (— 1)̂  on the right-
hand side and the same is true for each coefficient following the A*+s+j on the left-
hand side. So it follows by downward induction that Af = AJ for
j = m,m— 1, ...,0.

From now on write A(λ,dλ) = A±(λ,dλ). A somewhat closer look at the
recurrent relations for the coefficients d*(λ) in (6.14), which come from
( — dx + V(x) — λ)φj = 0, shows that the d*(λ) are polynomials in λ (of degree <; 2r).
It then follows from (6.17) that the coefficients of A are polynomials in λ as well. So
this time the spaces ^Xty) of germs at (x, λ) of common solution φ of (L—λ)φ = O,
(A — Θ(x))φ = 0 define a holomorphic complex two-dimensional vector bundle 9*
over ((C\{poles of V}) x <C. The analytic continuation of solutions defines a flat
holomorphic connection in ίf. As in the even case, (4.18)—(4.33), we get for

{X>λ) \ - O(x λ) ( **'λ) \ O(x λ) - (a{X'λ) b{x>
κdxφ(x, λ)J " ΰ ( X ? λ) \dxφ(x, λ)J' y ( X ? λ) ~ \c(x, λ) d{x,

where α, b, c, d are rational functions of x, satisfying the compatibility equations.

(v(£_λ J) (6.19)
Writing these out, we get this time

dxa = c — (V— λ)b, dxb = d-a,

dχC=-\+(V-λ)(a-d), dxd = (V-λ)b-c.

One can write β(x, λ) = dλΦ(x, λ)o Φ(χ, λy1, where Φ(x, λ) is the fundamental
solution

From (6.14) we see that detΦ(x, λ)-+ — 2 as x-^oo, and because x i—• detΦ(x, λ)
is constant (trace P = 0):

detΦ(x,A)=-2. (6.22)

So a + d = TτQ(x,λ) = dλdetΦ(x,λ)/detΦ(x9λ) = O. Inserting this in (6.20) then
leads to the differential equation

'b + \=0. (6.23)

From Q(x, λ) = dλΦ{x, λ) o Φ(χ, λ)~ι one also sees that

b(x,λ)=-%{-dλφΐ -φj+dλφr .φ+)-+-i as x-^oo, (6.24)

again using (6.14). So we can write

bs(λ)x~8 as x->oo, (6.25)
s>ί
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the series actually being convergent because of the rationality of x i—• b(x, λ).
Substituting (6.25), (6.12) in (6.23) and collecting the coefficients of x~σ~\ we get

- Σ Kr 6 σ_ 1_Γ ( 2 σ - r - 2 ) + ( σ - l ) P ς - 1 for all σ ^ l . (6.26)

Now suppose that F r φ0 for some r ^ 2, let r 0 be the smallest such r. It follows
that bσ = 0 for σ ^ r 0 , and b r o + 1 + J is a polynomial in A of degree j with non-zero
coefficient in front of λJ.

Now from (6.23) we see that b can only have poles at the poles of V, which do
not depend on λ. So the rational function x ι-> b(x, λ) can be written as b(x, λ)+l
= A(x, λ)/B(x), where x i—• y4(x, /I) is a polynomial and B is a polynomial not
dependent on λ. However, A(x, λ) = B(x) X b£λ)x~s shows that the (finitely

many) coefficients of the polynomial x f—• A(x, λ) are linearly dependent on only
finitely many of the bs(λ), so the coefficients of x h-> A(x9 λ) are polynomials in λ,
with a finite maximal degree. This is in contradiction with the appearance of
arbitrary high powers of λ in the coefficients of the expansion of A(x9 λ)/B(x) for
x-»oo. The conclusion is that Vr = 0 for all r ^ 2 , and we have proved:

Theorem 6.3. If (adL)m+1(<9) = 0 for a non-constant <9, F(oo) = oo, then V(x)
= ax + β for some constants a,β (the Airy potential).

Because we have seen that in the Airy case there is a second order equation
A(λ, dλ)φ = Θ(x) φ with Θ(x) = x, cf. (1.36), we get that in this case the algebra 8%v

of allowed Θ's consists of all polynomials Θ. The operator A corresponding to Θ ispy

then equal to Θ ( ad\ H jSα I.

7. Some Illustrative Examples

The purpose of this section is to display a number of examples of the theory
presented so far, as well as to illuminate some points that have received only
limited attention in the general treatment.

Most of these computations have been carried out with the assistance of
Vaxima - a symbol manipulator at Berkeley. The help of the computer in this
regard has been significant: both in providing an independent check on some of
the results obtained by pure thought, as well as in producing a mass of
"experimental data" which motivated and guided the development of the theory.

It is important to realize that, even for the computer, most computations are
impossible. For example, with Vaxima we were able to solve for all the solutions of
adL m + 1 (Θ) = 0 for m = 4. This provided a good start only because we could
recognize the KdV equation lurking in the background. The same direct approach
for m = 6 would be impossible for the computer; however, we present here a
complete analysis of m = 6 which uses a very small part of the theory developed
above plus the power of the computer (see Subsect. 7.3).

The examples given below are important because we do not have a general
expression for B(fc, dk) even when the vp = 1 for p e 0*. In this case the possible Θ
were given explicitly. An infinite sequence of operators J3(fc, dk) is given in Sect. 7.4.
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See (7.4.7), (7.4.12), (7.4.13), and (7.4.14). When vp > 1 for some p e 0> we do not have
a very useful description of all possible Θ - except for (3.34) and (5.17) - and we
certainly do not have an explicit expression for the corresponding B(k, dk).

7.1. The KdV Case

7.1.1. The θ Functions and the Potentials. In Adler and Moser [2] the potentials V
obtained from V=0 by v rational Darboux transformations are given by taking
Vv = — 2c^(log0v), and solving θv from a recursive system of first order differential
equations; see Sect. 7.2 for more details. At each step one integration constant is
added as a parameter in the θv. Then they prove that the Vv are the same (modulo a

translation in x) as the flow-outs of V^0)(x) = ^— by the KdV hierarchy, and

that the time variables of these KdV flows are related to the integration constants

in θv by some birational transformation.
An explicit formula expressing θv directly in terms of the time variables of the

KdV-flows has been found by Sato, see Date et al. [7], Segal and Wilson [23], or
Kac [16, Chap. 14, exercises]. The recipe is to consider the character

of the irreducible representation of GL(v,(C) characterized by the partition
[1,2,..., v] of \v{v + 1), as a function of the

Pi = trace {g*)= £ ( ^ .

Here εl9..., εv denote the eigenvalues of g e GL(v, C). It turns out that χ depends
only on the p2j-i with 1 gj ^ v. It is a weighted homogeneous polynomial of degree
v̂(v +1) in these variables if we give p2j-1 the weight 2/ - 1 . Putting p1 = x one gets

θv and p2j~i is the time variable for the (j—l)st KdV-flow, l^j^v. (One may
consider translation in x as the 0th KdV-flow; this has to be added to get the full
family of rational KdV potentials.)

The first few 0's are given by (up to a multiplicative constant):

+ 9p5x -

= x15 -35p3x
12 + 252p5x

10 + \Ί5pjx9 -2025pΊx
8 + 945p3p5x

Ί

6 ^ 6 - 14175p3p7x
5 ^ 5

+ Ί0S75p2

3p7x
2 - 59535p3p

2

5x
2 + 99225p5p9x - 91125p2x

-1 lO2Splp5x - 55l25p2

3p9 + 85050p3p5pΊ

The difference between this function and the one that would be obtained from the
Adler and Moser [2] method, as slightly modified in Ablowitz and Airault [1], is
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given by

Applying the Adler-Moser recipe to obtain the potentials from the "theta-
functions," i.e., the expression

F ( x ) = _ 2 ϋ
one obtains

6x4-hl2p3x 6x 4 +12p 3 x
2 W = ( x 3 - P 3 ) 2 = Θ2

2(x) '

V3(x) = ^—

We stop here since the numerator in V4(x) would already take seven lines.

7.1.2. The Operators J5 + (fc, dk) and the Functions Θ(x), φ±(x, k). We will exhibit
here the results of picking Θ(x) according to the recipe [cf. (3.34)]

Θ\x) = const -θ(x),

and computing the operator B + (k,dk) corresponding to φ + {x,k) according to
Lemma 2.1. This recipe gives the minimal positive degree for B(k, dk) if every zero of
θ(x) is simple, i.e., vp= 1, and this happens for generic values of the parameters.

In all these examples we have

1 1 1 \

r vv,.v,-. — , {/A.I)

an exact expression which was useful in our computations, see Date et al. [7] and
Segal and Wilson [23]. Compare also (3.28)'.

(a) From 62 = x — p3 we get Θ2(x) = x — 4p3x, and B (k, ok)= [ —ok + γj

+ 4ip3dk [compare (1.40)].
(b) From θ3 we get

—p5x
2 -35plx- —

and B + (k,dk) is

63 / . 1\/. 1\ ... , . 35 iff. 2\/. 2\Ύ 35
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Notice that in these two cases we can associate to each term in Θ a monomial in
B+(k, dk). This gets more complicated in the next example,

(c) From 0 4 we get

n 165 o 231 fi 2475 4

1925
- -γ~plx2-(20Ί9p2-24Ί5p3pΊ)x,

and the operator B+(k, dk) is given by

165 ( 8 56 6 336 5 840 4 7560 2 25200 3528

3 2 7 0 θ 2 360
kJk T 4 uk I " τ5

6 6

+ (20Ί9p2-2475p3pΊ)idk.

In contrast with the examples given earlier, the term in B+ with coefficient p\
cannot be paired to any term in Θ 4 .

7.2. The Even Case

We present the first few examples in this family.

7.2.1. The θ Functions and the Potentials. The Darboux transformation from one
potential to a new family of potentials requires the introduction, at stage fc5 of an
eigenfunction φk with eigenvalue equal to zero.

Adler and Moser noticed that setting

A θ k + l

the desired recursion relation among the successive φk can then be written as

θ2

k. (7.2.1)

They further noticed that the rational solutions of KdV are obtained if one starts
with 0O = 1, Θ1(x) = x, and then puts V(x)= -2(logθkγ. We have found that the
same idea can be applied in the even case. If one puts θ0 = 1, θγ(x) = x 1 / 2 , and makes
one more change [see (7.2.2) below], we get θ0 = 1, ΘL =x1/2, Θ2 = x2 + tv Another
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application of the recursion relation (7.2.1) with ί t φ 0 would produce a
logarithmic term which in turn would produce [see (7.2.2)], a nonrational
potential V(x). Therefore, we restrict tx to be zero and pick a new integration
constant t 2:

15 „ 15ί2 , , 5 ,
X +~ΓX +tX t

Now setting both t1 = ί 2 = 0, we get

525x25'2 , 35t3x
13/2 3t4x

9/2

2048 8

and finally

33075x18 19845ί3x
12 945ί4x

10 15ί5x
8

6 ~ 262144 + 2048 + 256 + 32 32

63f3M4 , , , 2 9 φ 2 49ί|

Setting some t{ = 0 amounts to taking a step of the Darboux transformation
with a recessive solution, while allowing tt φ 0 makes use of a dominant one.

Thus the method here is exactly the same as that described in Sect. 4.
Once the "theta functions" are obtained, one can adapt the Adler-Moser recipe

to produce the corresponding potentials, with only one modification: the addition

of the term — —- .̂ More explicitly, the potentials will be computed by
4x2

1
(7.2.2)

The first few examples follow:

T/ r.Λ _ 1 T/ r.Λ _ 3 τ / , Λ _ 1 4(x - tx)

r 3 W ~ 4 x 2 x 2 T (3x4 + 4ί2)
2 '

16(225x1 4-900i2x
1 0- 1560ί3x

8 +15600

C2 + i4400^χ2 + 640ί^3)/(15x8 + 120ί2x
4 + 32ί3x

2 - 80ί|)2,

V5(x)= - - ^ + A +72x2(826875x2O-21168000ί3x
14-9676800ί4x

12

+ 203212800ίix8 + 20643840ί3ί4x
6 + 2359296î %4 + 321126400^x2

+ 22020096φ4)/(l 575X12 + 26880ί3x
6 -
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7.2.2. The Operators B(k,dk) and the Functions Θ(x). Here we use the 0's
described above to exhibit one of the differential operators B(k, dk) predicted by the
general theory. The recipe for Θ is, except for a multiplicative constant [cf. (5.17)],

Θ\x) = Π (x2 - xf)x with xt zeros of θ, xt + 0.

This gives, as in Sect. 7.1.2, the minimal positive degree for JB(/C, dk) if every zero of
θ(x) is simple.

Since this time around we do not have a nice exact expression for the
eigenfunctions φ±(x,k) but, on the other hand, we do have a two-dimensional
common eigenspace, we have used for φ(x9 k) the solution of(— 3 2 + V— k2)φ = 0
that is recessive at x = 0. The computation of B was then carried out with Vaxima
using the readily available Taylor expansion of x " 1 / 2^(x, k) (at x = 0) up to a high
enough order. More precisely, φ can be expressed in terms of Bessel functions and
their derivatives, and then these formulas are used to obtain the Taylor
expansions.

(a) From Θ2 = x2 + ti9 we get 0 2 = x 4 + 2ί 1x 2, and

^ 15

* 4k:

(b) From 03, we get Θ3 = x6 + 4t2x
2, and

(c) From 04, we get

and for B(k, dk)

^ 63 \ 5 80 J Λ, 1 \ 16 / ^ 15 \ 2

(d) From θ5, we get

1 4 14336 , 2 512 6 448

and for B(k, dk)

^ 99 \ 7 1 4 3 3 6 , / ^ 3\ 512 / ^ 35 \ 3 448

Γ Λ 8 51 6 306^, 7965 ^ 1845 a , 1395 ^ 70335^ 3856545]

\ k k2 k k3 k 8fc4 k k5 k 16/c6 k 8/c7 k 256k8
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7.3. The Cases m<,6 (V(ao) = 0)

Here we give an account of a computer assisted approach to determine those V(x)
such that B(k, dk)φ(x, k) = Θ(x)φ(x, k) with m = order B ^ 6.

The cases m— 1,2,3 have been handled in Sect. 1, so we only look at m = 4, 5,6
here.

We use the notation of (2.4), (2.5), (2.20), (2.21), (2.22), so that

V(x)= Σ Vxχ-\ Θ(x)= Σ
l>2 r=0

and

We consider solving (2.22) for all values of q ^ m, including negative values, and the
sum for B is only formal. Using the relation

one rules out V2 = 0 and concludes that once θn 1 ̂  r ^ 6, and Vb2^l^6, are found,
then P(x) and thus F(x) are determined.

The bulk of the work consists of exploiting the equations resulting from
Bp(k) = O, p= — 1, — 2,..., — 5, needed to make B into a differential operator.

For an illustration, from β_1(fe) = 0 we get

Θ1V2 + Θ2V3+...+Θ6VΊ = O, (7.3.1)

3-Θ3V2) = O, (7.3.2)

(V2 ~ 6)(F2 - 2)(3 F3Θ6 + F2Θ5) = 0. (7.3.3)

The equations from J5_2(/c) = 0 are already too messy to give here. They can be
used to prove the following:

Lemma 7.3.1. The linear homogeneous equations in θu ..., θ6 arising from B_i(/c)
= £_2(/c) = 0 have a non-trivial solution if and only if

(4V2Vt-3Vi)(V2-2)(V2-6)(V2-ψ)(V2-ψ> = 0. (7.3.4)

This shows that there are five cases to consider. In each case we use 5_p(/c),
p = 3,4,5. The summary below ignores the instances V(x) = a/(x — b)2, i.e. a Bessel
potential.

I. Only the first factor in (7.3.4) vanishes: this leads to the potential V3(x)
in Sect. 7.1.1 with p3 = s3, p5 = s5.

II. F2 = 2: gives nothing (i.e. only a Bessel potential).
III. V2 = 6: leads to V2(x) in Sect. 7.1.1.
IV. V2=ψ. leads to V2(x) in Sect. 7.2.1.
V. V2=ψ. leads to V3(x) in Sect. 7.2.1.
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7.4. One Step from Bessel

In this section we will exhibit, for each m e Z > 0 , m^6, a potential V and a
corresponding differential equation B(k, dk)φ = Θ{x)φ of minimal positive order

(v-l)v
equal to m. Let V0(x) = — i — be the Bessel potential. The eigenfunctions for the

X

eigenvalue 0 of — 3 2 + Fo are, up to a constant factor, given by

φo(x) = t-xί~v + x\ respectively φΌ(x)^x1-\ (7.4.1)

(For v=j this has to be replaced by t'Xlj2\ogx + x1/2, respectively x1/2logx.)
Because

2 v - 1 ) 5 (7.4.2)

we see that ΦΌ(x)/Φo(x) is rational if and only if 2v ε ΊL (and t = 0 if v=^), which we
assume from now on. Of the two v's giving rise to the same (v - l)v, we will choose
the positive one.

Applying the Darboux transformation we get the new potential

V(x)=V0(x)-2(\ogφ0(x)Y={v~2)(?~l) -2(log(ί + x 2 v - 1 )r . (7.4.3)
x

In the examples in 7.1 and 7.2 we recognize these as the families where all the
parameters, except the one with the highest index, are equal to zero. Assume from
now on that v >\, t φ 0. Then V(x) has 2v - 1 non-zero poles, at the (2v - l) t h roots
of — t, and each of them has vp = 1, i.e. the coefficient is equal to 2.

Now Θ\ according to Theorem 3.5, respectively 5.4, must have zeros at the
poles, that is,

X) ( 2v-ι)'R(x) (7.4.4)

for some polynomial R(x). Furthermore, if v ε Z, the derivatives at x = 0 of Θr of
order 2j — 2, 1 rgj gjv —2, all have to vanish, whereas for vφZ we have to add the
condition that Θ is even. In both cases the R of minimal degree with these
properties is R(x) = const x, that is, the Θ of minimal degree and with leading
coefficient equal to 1, is equal to

Θ (x) — x 2 v + 1 -f (v+τ) t x2. (7.4.5)

Note that in the KdV case the order 2v 4-1 is lower than one would expect from just
counting the number of equations in (3.34). There are 2v — 1+v — 2 = 3v — 3
equations for Θ\ so one would expect 3v —2 as the minimal order.

The eigenfunction φ +(x, k) in (2.4) is given by

ΦXx, *)= jSfc(3χ- ̂  ~ i2Ί^^~) • ψ(kx)> ( 7 A 6 )

(y l^V

where ψ(y) is the eigenfunction of — d2 H ^— f° r ^ e eigenvalue 1 such that

ψ(y)~eiy a s y-^oo? y^kx, xeS^(k) [cf. the remark preceding (1.35).]
From the proof of Lemma 2.1 it is obvious that the unique differential operator

Bt(k, dk) such that Btφ^ = Θtφ^ depends smoothly on ί, so that we can expand

00
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Multiplying the equation Bφ = Θφ by t + x2v~ι in order to get rid of t in
the denominator, and collecting equal powers of t, we get [using that

f o r

ik \ x x,
(7.4.8)

(7.4.9)

C-TΓ) \ψ(kx) = O,

(7.4.10)

(7.4.11)

Observing the asymptotics for x-»oo in (7.4.11), we get that B{0) has order
2v +1. Then from (7.4.10) that B{1) has order 2, from (7.4.9) that £ ( 2 ) - 0 and finally
from (7.4.8) by induction on; that Bu) = 0 for;>2.

Recognizing —I dx )ψ(kx) as the eigenfunction for the potential
IK y X J

(v —2)(v —l)/x2, obtained from Vo by using ^0(x) = x 1" v, we see from (1.35) that
necessarily

/ 1\ / Λ. OλΛ. 1 \ \

(7.4.12)

1 / v\
On the other hand, τr[dx Ixp(kx) is the eigenfunction for the potential

ϊ/C y X J
v(v +1)1 x2, obtained from Vo by using ψo(x) = x2. So if v e \ + Έ> 0, that is, we are in
the even case, 2v +1 is even and we conclude:

if V6| + Z: > o . (7.4.13)

If v G Z > 0 , the rational KdV case, we get

(7.4.14)

For the proof, divide (7.4.11) by x2v + 1 x2v~ \ and observing that, with kx = y, one

has — dk = dy = -dX9 we have to prove that —I dy J ψ(y) is an eigenfunction, for

x K i y y j
the eigenvalue 1, of the operator
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/ A ί A ί V
Now \dv+- )[dv \ψ{y)=[δlJr-^ϊ-

L^)ψ{y)=-ψ{y). Using that ψ(y)
\ yj\ yj \ y y)

v-l\
\ )x(y)> where χ is the eigenfunction, for the eigenvalue 1, of

^ (v —2)(v — 1) t Λ „ „ i . -, .

-3^H 5 , the result follows by induction on v.
y y
Now Theorems 3.5 and 5.4 show that the Θ in (7.4.5) and B = B{0) +1 B{1)

according to (7.4.12), (7.4.13), (7.4.14), satisfy (B-θ)φ+=φ+, so (7.4.10) has to
hold. Conversely, one can give a direct proof of (7.4.10) by induction on v, which
then yields an independent check on Theorem 3.5, respectively 5.4.

7.5. Two Steps from Bessel: The Cusps

Let V be as in 7.4.3. Applying the recipe following (4.51), the generic element of
Ker( — δl + V), modulo a constant factor, is given by

f Y3-2v , t 2 , y 2v+l ,

2v+l

where s is the integration constant. The potential obtained from V by the Darboux
transformation defined by φ0 is equal to

γ(χ) = (v~3)(v-2) _ 2 ( l o g ξ{χ))f/ {Ί52)

with

We recognize all the families in 7.1, 7.2, with at least two parameters, all of which
except the last two are equal to zero, as being of this form.

Solving ξ(p) = 0, ξ'(p) = 0, we find that ξ has a multiple zero at x if and only if

' — " " • • " ( 2 » - 3 H 2 v + 1 ) - * * ' - ( 7- 5 4>

and

p = ε if VGZ>0 (KdV case),
(7.5.5)

respectively p = ± ε if ve^ + Z > 0 (even case).

These multiple zeros p can only be triple zeros because they are obtained from
applying a Darboux transformation with a φ0 which is recessive at a pole p + 0 of V.
There we had vp = l, so v p ^2. It follows that for the minimal order m of the
differential equation in k we get, if t φ 0,

m ̂  4v — 1, respectively m ̂  4v, off the cusp (7.5.4),
m 1 ™ (7.5.6)

if V G Z > 0 , respectively ve^ + Z > 0 ,
-2 on the cwsp (7.5.4), both in the KdV case and in the even case.

(7.5.7)
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We do not have a general formula for the Θ and B of minimal order either on or off
the cusps.

But in the cases v = 2, v = 2\ we give these minimal Θ and B below. The case
v = 2 corresponds to θ3 in 7.1 with the parameters p3, p5. The cusp condition reads
in these parameters: p3 = p3. Writing p3 = s3, p5 = s5, the triple pole is situated at
x = s. The corresponding Θ and B(k, dk) are:

x) = χ6 - f s2x4 - 14s3x3 - 9s4x2 + 60s5*, (7.5.8)

-14ίs3 dl-—2
L 'k

-6<to s3 t. (7.5.9)

The case v=j + 2 corresponds to F4 in 7.2 with the parameters ί2, ί3. The cusp
appears at ί 2 = - 3 ί2, ί3 = 30 ί3. Then

• + • • + •

The Θ and B of minimal order are:

© = x

8 _56ί 2 x 4 + 192ί3x2,

^ 63 Y _ J ^ 249 ^ 249

7/c3

2385

112k4

192ί3 - δ 2 -
1

(7.5.10)

(7.5.11)

(7.5.12)

Because of their different behavior, the cusps should be distinguished from the
vertices with μ = 2 in Diagram 4-1 in the even case. Adding the cusps leads to a
refined diagram as below. For clarity we only have drawn the potentials obtained
from Bessel by at most two rational Darboux transformations, and we have
deleted the dashed arrows, keeping, however, the arrows which indicate
approximation.

A similar diagram can be drawn in the rational KdV case. In 7.7 the situation is
described for the potentials obtained in ^ 4 steps from V=0.

Diagram 7.5-1
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7.6. The KdV Case with Parameters P3,p5,pΊ

In this section we return to the potential V(x) arising from

Θ4(x) = x10-5p3x
Ί + 63p5x

5-225p7x
3 + 3l5p3p5x

2 -lΊ5plx + 225p3pΊ-l89p2

5.

In 7.1 we have given, for any value of the parameters (p3, p 5 , pΊ) an explicit formula
for an operator B(k, dk) of order eleven such that Bφ = Θφ. We now investigate for
which p3,p5,pΊ one can find an operator of lower order.

Most of the computations up to (7.6.14) were carried out using Vaxima. Most
of those from (7.6.15) on were done directly by hand.

We use the eigenfunction φ+(x,k) [see (7.1.2)] and we consider the equation

j ( )+ (7.6.1)

for the unknowns Θr and Bp{k).
The advantage in conjugating B(k,dk) by the function fe4 is that (7.6.1) is

equivalent to a finite number of conditions: if one multiplies the difference
between both sides of (7.6.1) by e~ikx one obtains a polynomial in x of degree 21. The
vanishing of the coefficients of the powers running down from 21 to 10 determine
the operator B(k, dk) and the vanishing of the remaining ten coefficients imposes
relations among the Θr. For example, from the coefficient of x 9 one gets the
relations

ΘΊ=-20Θ10p3,

Θ5 = l3$Θlop5-660ΘllP

2-32Θ8p3,

Θ3 = -700Θ ί O p Ί + ( 9 2 4 0 0 ! l P s + 224Θ8)p5-7S0Θ9pj-30Θ6p3, (7.6.2)

The analysis of the remaining relations (those from xs, 0 ^ s ^ 7 , since x8 gives
redundant information) among the Θr depends on the possible vanishing of p3.

We first dispose of the case

p 3 = 0 ("two steps from BesseΓ). (7.6.3)

Assume first that p5 φ 0. Then one can solve all the "remaining relations" to obtain

Λ -206> 1 0P?

56>10p7

2 3 1 β l l P i - 1 0 g 1 0 p ?

2P" ' (7.6.3')

6 2 i e 9 P $ - 2 4 7 5 θ l l P ! P 7 - 1 5 0 β l o P ?
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Θ10 = Θlί=0 implies Θr = 0 for r ̂  1, that is, Θ is a constant. So the order of the
operator is at least 10. For order 10 we get [see (7.6.3')] the necessary condition

3pj—pl = 0 (the "cusp in two steps from BesseΓ). (7.6.4)

If we take p5 = 0, i.e. consider

p 3 = p 5 = 0, pΊ + 0 ("one step from BesseΓ),

then the "remaining relations" give

ή ( 2 ψ ή (7.6.5)
and the order is at least 9. An operator of order 9 is given in Sect. 7.4.

From now on assume that p3 φ 0.
From the coefficient of xΊ one gets to solve for <96, <94, Θ2 in terms of the Θn

8 ^ r ^ 11. Combining with (7.6.2) we get, for example,

ΘΊ=-20ΘίOp39

9 p 3 8 9

Pi Pi

Θ5=- 660(9 iγp% + 138<910p5 - 32(9 8 p 3 .

The remaining expressions are too long to report here. Since they all give Θn

1 ^ r ̂  7 as linear combinations of Θn 8 ̂  r g 11, we conclude that the degree of a
nonconstant Θ is at least 8. Under the assumption of order 8, that is, Θ9 = Θ10

= Θιί = 0, the remaining relations (those from xs, 0 ^ s ^ 5 , since x6 gives
redundant information) simplify considerably and turn out to force

Pj = tj, j = 3,5,7, for some t e (C. (7.6.6)

Conversely, if (7.6.6) holds then all equations can be solved and an operator of
order 8 exists. This confirms Theorem 3.5 neatly: in this case θ has a 6-fold zero at
x = t: vt = 3, and the remaining zeros are simple. So (3.34) represents 3 + 4 = 7 linear
relations for Θ\ so Theorem 3.5 predicts the existence of a non-constant Θ of
degree 8. When (7.6.6) holds one can also produce operators B(k, dk) of order
higher than eight. We ignore the case (7.6.6) from now on.

We proceed to identify the cases when we have operators of order ten and nine,
with p 3 φ 0 . Set < 9 n = 0 in the "remaining relations" (from xs, 0 ^ s ^ 5 ) and
consider first the case

Vl=pl (Pj = t\j = 3,5). (7.6.7)

This gives <98, Θ9 in terms of Θί0 and shows that if Θ is nonconstant the order is 10.
Moreover, we are forced to choose

pΊ = βf (7.6.8)

with β a solution of

25jB3 + 54j82 +1920+104 = 0. (7.6.9)

This equation has one real root (= —0.618).
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When pi φ pi one can use the first of the "remaining equations" to solve for Θs,
and then one sees that all the "remaining equations" reduce to a pair of linear
homogeneous equations for Θ9,Θl0, namely mlιΘ10 + mί2Θ9 = 0, m21Θ10

+m22Θ9=0, with

? -15ptp5p
2 + 53p|p |p 7 - p | p 7 - 20p |p | - 8p?p?),

18p6

3p5pΊ-7p6

5-24p5

3pl + 3pi°),

m22 = 9(2&p2p5p
3

Ί - 41p 3 plp? + 5pf p2

Ί + Ίp\pΊ -19p5

3p
2pΊ + 26p4

3pi - 6p9

3p5).

For a non-trivial solution of this pair of equations we need

= 0. (7.6.10)

Notice that for p 3 = 0 we get A = lp\{p\ — 3/77), and that for p3 = ί3, p5 = ί5, p 7 = /ft7,
we get that A = 0 is equivalent to j8 = 1 or (7.6.9). It is also clear that a solution with
Θ10 = 0 requires

mί2 = m22 = 0. (7.6.11)

At this moment we use the weighted homogeneity of θ in x = Pι,P3,p5,pΊ to see
that the equations for Θ are equivalent along each complex curve

s ^ (p 3 s 3 ,p 5 s 5 ,p 7 s 7 ), se(C\{0}. (7.6.12)

(This corresponds to the homothety X K X S and therefore is equivalent to the
algebras of <9's being isomorphic. See the remarks following Proposition 3.6.)

Because we have already disposed of the case p3 = 0, we may therefore take
p 3 = 1. Then the resultant of Eqs. (7.6.11) for pΊ is given by

- 0 , (7.6.13)

and for each solution p5 of (7.6.13) there is a unique solution p7 of (7.6.11) (with

Multiplying p5 with ω such that ω 3 = 1 leads to another solution on the same
curve (7.6.12). Equation (7.6.13) turns out to have four real roots for p 3 and pl = \
corresponds to (7.6.6). So apart from p3 = p5 =0, pΊ φ θ and (7.6.6), there are three
more curves (7.6.12) along which there is an operator of order 9, and each of these
contains a point with p 3 = 1 and p5,pΊ real.

The real solutions of (7.6.8), with p3 = 1 and p 3 + 1 are given by the pairs

(p5,pΊ)^( -0.395,0.777),

(p 5,p 7)^(-5.538,5.265), (7.6.14)

(p5,p7)£(0.152, -0.500).

Summary 1. B(k, dk) of order 10 requires (7.6.10). For order 9 one needs (7.6.11)
(this includes p3=p5 = 0) and (7.6.6) is necessary for order 8.
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We now turn to an interpretation of Eqs. (7.6.10), (7.6.11) in terms of the
geometry of the roots of 04. The first point is that the equation A =0 is also the
resultant of Θ4(x) = θ and 04(χ) = O, as can be checked directly. It can also be
concluded from Theorem 3.5: if 0 4 has ten simple zeros p (vp = 1 for all p) then Θ\
having the same zeros, is of degree ^ 10, deg<9 ^ 11. Conversely, multiple zeros of
θ4 lead to the existence of Θ of lower degree, as observed at the end of Sect. 3.

Any multiple zero of 04 has at least multiplicity three. This fact, discovered for
all 0's by Airault-McKean-Moser [3], see also (3.33'), may be checked directly by
showing that the resultant of 0 4 and 04 divides the resultant of 04 and 04. Now let 04

have a triple zero at t.
It is easy to see that t = 0 if and only if p3 =p5 = 0. This is the case of an operator

B of order 9, characterized geometrically by the fact that the poles of V form a
regular heptagon around the origin, where we have a pole with coefficient = 6. But
there is more: this is the only case where the remaining seven zeros of θ4 are simple
and we nevertheless have an operator of order 9. For the proof, divide θ4 by (x — f)3:

04(x) = ( x - t ) 3 . β f ( x ) , (7.6.15)

where we assume that Qt has seven simple zeros. If deg<9 = 9, then Θ'(x) must be a
constant multiple of (x-t)-Qt(x) and the condition ©'"(*) = 0 [cf. (3.34)] is

equivalent to — Q ί(x) | x = ί = 0. Combining this equation with 04(ί) = O, 04(ί) = O one

readily obtains t = 0 or (7.6.6), where the last case is ruled out by the condition that
Qt has only simple zeros.

Assuming from now on that t = 0, p3 φ 0, we may restrict t o p 3 = l, and then the

equations 04(ί) = O5 04(ί) = O can be combined to give the following parametri-
zation of A =0:

ίeC\{0}. (7.6.16)

Writing y(t) = (p5(ί)5 Pi(<0)> w e g e t / ( 0 + 0 unless t = 1, which is the point of A = 0
corresponding to (7.6.6), for which 04 had a sixfold zero. At this point the
hypersurface A=0 (restricted to the transversal section p 3 = 1) has a singularity
which is locally diffeomorphic to the cusp ξ3 = η5, a singularity of type E8 in
ArnoΓd's classification.

We get that A = 0 is smooth at p5, pΊ if there is only one t e C\{0} such that y(t)
= (P5>PΊ)' NOW each t such that γ(t) = (ps, pΊ) is a triple zero of 0 4 with coefficients

p3 = 1, p5, p7. Three of such t would, in view of Theorem 3.5, imply the existence of a
Θ of degree 8, which we know can only occur if (7.6.6) holds - which is another
configuration of one sixfold zero and four simple ones. Two such t imply the
existence of a Θ of degree 9, which brings us to the case (7.6.11). We know that there
are three curves of the form (7.6.12), each of which intersects p3 = 1, p5 and pΊ real.
Now p 5 ( ί ) e R , p7(f)e]R can occur in two ways: either ί e R or,

(7.6.17)



Differential Equations in the Spectral Parameter 237

In the last case we have a complex conjugate pair of triple zeros for 04. This turns
out to occur in two cases:

£^-0.965±1.479]/^ϊ, respectively t^0.532+1.951 j / ^ ϊ , (7.6.18)

corresponding to the isolated points

p5^ -0.393, /?7^0.777, respectively p5^ -5.538, p7^5.265

• ,U 1 A Λ 1 Λ 1 (7.6.19)
m the locus A = 0, p3 = 1, p5 and p7 real.

On the other hand, there is one self-intersection of the curve y(t), t e R\{0}, the
images for

t = tt^ -1.019 and t = t2g* 1.762 (7.6.20)
are equal to

(ps,p7) £(0.15,-0.50). (7.6.21)

At all these points A = 0 has an ordinary double point in the complex domain: it is
locally equal to the union of two smooth hypersurfaces with transversal tangent
spaces.

The locus A =0 in p3 = 1, p5 and pΊ real is sketched in Diagram 7.6-1 below.
Since (7.6.11), except from the case (7.6.6), has only three cases, these must

coincide with the double points described above. This is neatly checked by the
numerical values reported in (7.6.14), (7.6.19), (7.6.21). Noting also that A=0 is
smooth at P3 = p5 = 0, p 7 φ0, we get a further

Summary 2. B(k, δk) of order ^ 10 is equivalent to θ4 having multiple zeros.
Minimal order 9 occurs at (i) p3 = p5 = 0, pΊ φθ, where θ4 has one triple zero and
seven simple zeros and the discriminant locus A = 0 of θ4 is smooth; (ii) three curves
(7.6.12), where 04 has two triple zeros and four simple zeros and along which A =0
has ordinary double points. Minimal order 8 occurs at p 3 = ί3, P5 = t5, pΊ = f
(t φ 0), where θ4 has a sixfold zero and four simple zeros, and A = 0 has a singularity
of type £ 8 in a transversal section. At all other points of A =0 the minimal order is
equal to 10; there is one triple zero and seven simple ones and A =0 is smooth.

( 2 x 3 fV 4 x 1

10x1 (11

t —*-

Diagram 7.6-1. A = 0 for p 3 = 1, p5 a n d ρΊ real
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Remarks, i) Pi=p5 = 0, p 7 φ 0 is the exceptional case where a decrease in the
minimal order of B does not correspond to a change in the multiplicities of the
zeros of 04, or to a singularity in the discriminant locus of 04.

ii) (A = 0)\(p3 = p5 = 0) can also be parametrized by pj = λ{ + λj

2,j = 3,5,7 and
λί9 λ2 e (C. This is inspired by the interpretation in 7.1 of the p,- as the power sums of
eigenvalues of matrices. However, the equations, for instance for the double points,
do not look more manageable in these coordinates.

iii) If one wants to follow which configurations are met by a real potential
during the KdV-flow (p3 running, p5 and pΊ fixed) then, in view of (7.6.12), one has
to follow the curves t c> (p5 t~5,pΊ t~Ί) in Diagram 7.6-1 and see where they
meet A = 0.

7.7. Limiting Relations Among the KdV Potentials

If, in the definition of the 0V via (7.1.1) we write

Pi = qi + t\ fc=z\e/, t = εv9 (7.7.1)

then we see immediately that

dfet((e/'- \ S i , ; s v = ί2v-ι (det((β,)2'- \ y S ϊ _ ί

+ lower order in t,

det((β/" \ ^ J S v . t = f~ Hdetftβ/'- X ^ - ,

+ lower order in t.

Therefore

...,p 2 v_ 1 + ί2v-1) = θ v - 1 ( x , ^ . . ^2v-3)? (7.7.2)

showing in an explicit way that each potential of order v — 1 can be approximated
by potentials of order v, as expressed in Diagram 3-1.

Let us now consider in more detail the limiting relations between the various
configurations which are possible for potentials of order ^ 4. We know that the
corresponding θ has, in general position, one, three, six, or ten simple zeros. We
denote such configurations by l x l , 3 x 1 , 6 x 1 , 10x1. When we have two
parameters we can also have (^3 = ̂ 5) one triple zero and three simple zeros: we
denote this by

1 x 3

3x1*

Finally, for the case of three parameters (see 7.6), we can have the configurations
denoted by

1 x 3 1 x 6 2 x 3

7 x 1 ' 4 x 1 ' a M 4 x Γ

Using arrows to denote the approximation of potentials by motion of the
parameters as in Sect. 3, we get the following refinement of Diagram 3-1. The
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numbers in the circles denote the minimal positive degree of B(k, dk) and Θ. Like in
Diagram 4-1 the diagonal elements are the Bessel potentials.

©
1x10

v = o
Diagram 7.8-1

1x1 3x1 10x1
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