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Abstract. We consider an infinitely extended system of Brownian particles
interacting by a pair force —grad V. Their initial distribution is stationary and
given by the Gibbs measure associated with the potential V with fugacity z. We
assume that V is symmetric, finite range, three times continuously differentiable,
superstable, and positive and that the fugacity is small in the sense that 0 <
2<0.28/e{dg(1 —e™"®). In addition a certain essential self-adjointness property
is assumed. We prove then that the time-dependent fluctuations in the density on
a spatial scale of order ¢~ and on a time scale of order ¢ "% converge ase —»0to a
Gaussian field with covariance [ dqg(g)(e"”*#*1"f)(g) with p the density and y the
compressibility.

1. Introduction
A system of interacting Brownian particles is governed by the equations of motion

dix’{[)z -1 grad V(xj(t)—x[(t))-kia)}{t), (1.1)
t iFj dt

j=1,2,.... The particles interact by a pair force, —grad V¥, and are driven by white
noises (d/dt)w (t) independently for each particle. Physically such a system is best
realized by an aqueous suspension of polystyrene spheres with roughly 500 A
diameter [ 1, 2]. The spheres are charged, on the order of several hundred elementary
charges, and interact therefore by the screened Coulomb potential V. In addition the
spheres interact hydrodynamically through pressure forces mediated by the water.
This interaction is neglected in (1.1) which seems to be a good approximation for
volume fractions less than 0.01. Under this condition the random force on a
polystyrene sphere due to the bombardment by water molecules has a correlation
time of the order of 10~ %s. During this time span a sphere typically moves only
0.3 A. Therefore to suppress in (1.1) the velocities of the particles is a very reasonable
approximation.

Such a system of Brownian particles in equilibrium is investigated experiment-
ally by means of light scattering which measures directly the structure function
S(k,t). Here k is related to the scattering angle and ¢ is the delay time. Theoretically
S(k,t) is given by the spatial Fourier transform of the density—density correlation
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function for (1.1) in equilibrium. For small k and long ¢ one finds [3]
S(k, t) = ye =DK1, (1.2)

Of course, also large scattering angles and short delay times are measured, cf. [4]
and references therein for a recent theoretical investigation in this direction.

The physics behind (1.2) is very simple: Let us consider the time-dependent
density—density correlation function p,(q,t;0,0) — p*> with p the uniform bulk
density. This equals the average deviation of the density from p at time ¢ given that
there is a particle at the origin at time t = 0. Because the number of particles is
conserved, because (1.1) has no other conservation laws, and because the density of
particles is too low for a crystaline structure to form, we expect that the initial
disturbance due to the presence of a particle at the origin spreads out diffusely, i.e. we
expect that for large g, ¢,

p2(q,£0,0) — p* ~ 2nD|t]) "> exp [ —q*/2D]t|]. (1.3)

To fix the proportionality constant we integrate both sides over g. Then
fda(p,(g,1,0,0) — p?) = [dg(p,(g,t = 0;0,0) — p?) = x by the conservation of mass,
whereas the right-hand side of (1.3) is normalized to one. Therefore

p2(4,1,0,0) — p* = y(2nD|t])~**exp [—¢*/2D|t|] (1.4)

for large g, t. The Fourier transform of (1.4) is just (1.2).

We can even determine the value of the bulk diffusion coefficient D. Imagine that
there is a constant force (electric field) E acting in every particle. Then in the steady
state the entire system translates at constant velocity E. The mass current is therefore
J = pE, which implies that the static conductivity ¢ = p. The Einstein relation
connects diffusivity and conductivity as

D=a/y, (1.5)
cf. e.g. [42, Sect. 6] for a formal computation.

The correlations on a large scale are universal. The interaction potential
determines only the time scale through the static compressibility y. In particular the
dynamic critical exponent equals the one of y.

The aim of this paper is to prove (1.4) under suitable assumptions on V' and on
the density of particles. In fact we will not only show that for the structure function of
(1.1) in equilibrium

lim S(ek, ¢~ 2t) = yePK 1021, (1.6)
£—0
but we will prove that the density fluctuations on a large space-time scale are
Gaussian with covariance given by (1.4) together with (1.5).

2. The Main Result

The dynamics of interacting Brownian particles is governed by the integral version
of (1.1),

x{t)=x;—[ds% " grad V(xs) — x(s)) + wt), .1

0 iFj
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j=1,2,.... Here x(t)eR"is the position of the j* particle at time ¢, x; = x (0) its initial
position, and the w{t) are independent standard Brownian motions on R".

To have a name we set x = {x;|j=1, 2,...}e.#, where ./ is the space of all
locally finite particle configurations. We assume that the initial data, x, are
distributed according to a Gibbs measure p(dx) associated with the potential V with

fugacity z. Weset o = {w;(")j=1,2,...}€2 = X Q;, where 2, = C([0, o), R"), the
j=1

space of continuous functions on [0, co) with values in R*. £ is equipped with the
product of Wiener measures Q(dw).

Since the number of particles is infinite, the existence of dynamics, i.e. of global
solutions to (2.1),is not obvious. We follow the work of R. Lang [5, 6, 7], and assume

(A) Existence of Dynamics

(i) V is symmetric, i.e. V(q) = V(—gq),

(i) V has finite range R, i.e. V(q) =0 for |q| > R,

(iii) V is three times continuously differentiable,

(iv) V is superstable in the sense of Ruelle [8].
Then (2.1) have u(dx) x Q(dw)-a.s. a (unique) solution and define a stationary,
reversible Markov process [5]. We will exclusively consider this stationary process.
(In the nonstationary case even the existence of the dynamics is not understood
satisfactorily [9].)

Our object of study is the (stationary) density fluctuation field

G =" fexfe™?0) — pfdqf(eq)} 2.2)

for all teR and fe #(R") = &, the Schwartz space of rapidly decreasing functions. p
is the average density of the Gibbs state p. f'defines a spatial average over a region
with extension of the order ¢~ !. The prefactor "2 anticipates normal fluctuations.
Time is speeded up according to the scale invariance of the anticipated covariance
(1.4).

To control the limit of the fluctuation field as ¢ —»0 we need strong cluster
properties of the equilibrium measure u. We will prove these by a standard low
fugacity cluster expansion.

(B) Cluster Properties
(v) V=20,
(vi) the fugacity z of the Gibbs measure pu is in the range 0=z <0.28/e
fdg(1 —e™¥®).
By (vi) we are in the high temperature-low fugacity regime where the Gibbs measure
 is uniquely determined by V and z. Also note by (v), if V is strictly positive at the
origin, then V is superstable.

Remark. We did not find any simple strategy to avoid the assumption ¥ = 0 which
is used to bound e~ by one. E.g., the proof of the exponential L>-mixing for Gibbs
fields, cf. Lemma 4, gives a feeling for how crucially (v) enters.

Our condition on the fugacity range is not optimal. Because ¥V =0 the
alternating bound property of Ursell functions can be used to obtain an extra factor
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of e. By somewhat more careful estimates in Sects. 5 and 8 one could presumably
obtain our result within the full radius of convergence of the cluster expansion. Also,
in one dimension the cluster properties needed here should follow from the recent
work [10] for any fugacity 0 <z < co.

I take here the attitude not to complicate the dynamical issue by inquiring at
what generality the static property (8.2) can be established.

We regard ¢+ £8(+) as a &’-valued stochastic process. In fact, uniformly in ¢, &
lives with probability one in 5 _,_5,, a Hilbert space approximating ., and is
weak* continuous there. Therefore as path space for & we may choose
C(R, 5 -, _3), equivalently C(R, &”). The path measure for & is denoted by P°.

Our main result is the following

Theorem. Let the potential V satisfy (i) to (v) and let the fugacity z be within the range
(vi). Let P be the path measure of the density fluctuation field £i(f). Let P be the path
measure on C(R, # _, _ ), equivalently C(R, &'), of the stationary Gaussian process &,
with mean zero and covariance

EC(9)E() = [ dgg(q)x (e =141 )(q). (2.3)
Then in the sense of weak convergence on C(R, # _,_3)), equivalently C(R, "),

lim P* = P. (2.4)
e—=0
Remark. The proof of the theorem as it stands is incomplete at present. In addition
we need the generator L of the Markov semigroup to be essentially self-adjoint on a
certain set of smooth local functions. For a discussion of this point we refer to the
paragraph after Proposition 2, Sect. 6. J. Fritz [35] establishes the desired property
for dimension v < 3. For V' =0 the theorem was proved by A. Martin-Lof [11].
On a large scale the density fluctuations are Gaussian jointly in space-time with a
covariance suggested by the physical argument given before. This covariance defines
an infinite-dimensional, stationary Ornstein—Uhlenbeck process.
Let us define the structure function S(k, t) by

§dk| U 1PS(k, 1) = <3 f(xAD) Y f(x)> — (P [dqf(q))*. (2.5)

On general grounds, S(k,t)dk is a measure. It is the (distributional) Fourier
transform of the density—density correlation function.

Corollary. The structure function is jointly continuous in k and t, =0, and

lim S(ek, ¢ ~2t) = ye K102, (2.6)

e—0
The large scale behavior of equilibrium fluctuations is proved for zero range
processes by T. Brox and H. Rost [ 12] and for certain exclusion processes with speed
change by A. DeMasi et al. [13]. The ideas developed there are essential for the
present work. With our method also the dynamic scaling limit for time-dependent
Ginzburg-Landau models with a single conservation law (= Cahn-Hillard theory
[36] and Model B of critical dynamics [37]) can be proved provided the interaction
is small enough [38]. All these stochastic models have only a single conserved field
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and therefore the limit process is the same infinite-dimensional Ornstein—Uhlenbeck
process as found here. For models without conservation law one expects white noise
in space time [14] and has a more complicated short time structure [15]. An
interesting case is the voter model for dimension v = 3 treated by R. A. Holley and
D. W. Stroock [15], cf. also [16], which has no conservation law but long range
static correlations. The limit structure function in this case is (const/k?)
exp (—k?|t|/2).

A physically more relevant model in this direction is the anharmonic crystal
either with purely dissipative dynamics (Model A [37]) or with a single conservation
law (Model B [37]). If the nonlinearity in the interaction is chosen as in [39], then
under the same conditions as in [39] the convergence to an infinite dimensional
Ornstein—Uhlenbeck process can be proved [40]. Of course, the simplifying feature
is the absence of static and therefore also of dynamic renormalization. The
covariance of the infinite dimensional Ornstein—-Uhlenbeck process is given either
by k™ 2exp[—k?|t|/2] (Model A) or by k™2 exp[—k*t|/2] (Model B) for
dimensions v > 3.

A distinct problem is to study the motion of a test (tagged) particle in the system in
equilibrium. In the physics literature this is referred to as self-diffusion to contrast
with the bulk diffusion considered here. In the case of interacting Brownian particles
initially the tagged particle is placed at the origin and all other particles are
distributed according to the Gibbs measure with the external potential due to the
particle at the origin. Let all particles evolve then according to (2.1) and denote by
x(t) the position of the tagged particle at time t. Then M. Guo proves in his thesis
[17] that ex(e ~2t) converges to Brownian motion as ¢ — 0, cf. also [41]. Instead of the
cluster properties (v) and (iv) only spatial ergodicity of the Gibbs measure is needed.
For simple symmetric exclusion processes C. Kipnis and S. R. S. Varadhan [18]
prove the same result with the exception of the case treated by Arratia [19].

3. Strategy of the Proof

The proof employs two rather separate techniques

(i) the martingale approach to the convergence of stochastic processes worked
outin a form applicable to our problem by R. A. Holley and D. W. Stroock [20] and

(i) low fugacity cluster expansion as is well known from Statistical Mechanics
[21, Chap. IV]. The central point of this paper is to establish the link between (i) and
(ii). Since the entire argument is lengthy, we hope a short outline of the basic idea
may be of help to the reader.

Let us denote by 1, the spatial shift by g, i.e. for ¢: 4 - R1,¢({x;}) = ¢({x; + q}),
and by T, the Markov semigroup of the stochastic process {x(t; x, w)} = x(t; x, ), 1.e.
for bounded functions on .#

Tip(x) = [ Qdw)d(x(t; x, )  p(dx)-as. (3.1

We also denote ju(dx)q’)(x) by (¢ ). If we want to make the dependence on the
fugacity z explicit we write u, or {(->,. p = p(z) is the average density.
If one applies the martingale approach, in order to show that a certain error term
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vanishes, one is led rather naturally to prove that

1
lim jdq<¢Tth‘//> = }IdQ<¢7q¢o>_"dQ<‘/’7q¢o>; (3.2)

t— o0

where ¢, Y are local functions with average zero, o(x) = Y h(x;) with [dgh(q) =1,
7

and y = jdq(<¢orq¢0> — (o )?) is the usual compressibility, y = z(d/dz)p(z).

To understand how we tackle (3.2) let us first consider the simplified case with no
spatial integration (which after all reflects that we study fluctuations). Then we
would like to establish that

im {@pTp) =<pH><Y). (3.3)
t—= o0
By reversibility, T, is a self-adjoint contraction semigroup on L*(.#, u), and the
existence of the limit (3.3) follows from the spectral theorem. So we only have to
identify the T, invariant subspace of L*(.#, u) as consisting of the constant functions.
For this we establish that for any vy, peL*(4, p) such that Ty, = ¥,,

Wol(@In(A), x 4)> = {Wo ). 34)

Here, u(:|n(A), x 4c) is the Gibbs measure u conditioned on the number n(A) of
particles in the bounded region A and the particle configuration x,. in the
complement of A, i.e. u(:|n(A),x 4) is the finite volume canonical Gibbs measure
with given boundary conditions. If in (3.4) we let A TR, then, by the equivalence of
ensembles [22], the left-hand side of (3.4) tends to (¥, »<{ ¢ >, which establishes the
desired result.

To prove (3.4) let L ,denote the generator of the dynamics with the configuration
X 4o outside A frozen in and with particles inside A moving with Neumann
(reflecting) boundary conditions at dA under the external force produced by x 4.
Then formally

(WoLa®d? S<YoLa¥o > {PL4$> =0, (3.5

since {YoLWo> 4+ {YoL¥o) =0 with both terms negative. Let I', be the
projection in L*(.#, ) defined by the conditional expectation in (3.4). I", is the
projection onto the zero subspace of L, in LX (4, p). If we set ¢ = L, (¢ — I" 1),
then (3.4) follows. The missing rigor may be filled in along the lines of Sect. 6.

To imitate this approach it is natural to define a Hilbert space # as the
completion of local functions with the inner product

(PIY > =[da({pr > —<P><Y). (3.6)

Note that -|) is degenerate. Clearly, integrable decay of g = (Y7, > — (Y > ) is
needed for a reasonable large set of functions. 7, is a self-adjoint contraction
semigroup also in . Therefore we only have to identify the T, invariant subspace
P# of #. We will establish in Sect. 6 that for any ¥ eP# and any local ¢pe#,

Y u@In(A), x ) > = (Yl (3.7
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If one proves that in #

d n(A
lm MO ) 5~ i@ (M =0) =0 (38)
then, because n(A)/|A|= ¢, in H#, it follows that P# is the one-dimensional
subspace with representative ¢, and thus establishes (3.2).

Equation (3.7) accomplishes the reduction of the dynamical problem (3.2) to a
static one. Still, to prove (3.8) a good control over the equilibrium state is needed
which seems to be provided only through the cluster expansion. E.g. we will need a
sharp estimate on the correction to the local central limit theorem for the number of
particles in a region A.

4. Tightness

In the martingale approach one shows that any limit point P of {P°|0 <& <1}
satisfies a certain martingale equation which has a unique solution. Therefore we
first have to establish

Proposition 1. The family {P?|0 <& < 1} is tight on C(R, # _,_3,).

Proof. To prove tightness Holley and Stroock [20], cf. also [23], developed a
convenient criterion which is established in Lemma 1 and 2 below |
First let us define the Hilbert spaces #,, approximating S [24, Sect. V, 3]. Let

neN"be a multiindex, |n| = z n(j). Let hy(q) = ]_I h,(g;) with hy the k" normalized

Hermite function on R. We defme the Hilbert spaces H (m» MEZ, as the completion
of & with the inner product

A=A+ > =) QIH+ " fih)?, (4.1)
where (-,-) is the usual scalar product in L. Then
S CH o Koy 1y - . 4.2)
The topology of & is generated by the norms |||, in #,,, m=0,1,...,and
H oy = ;%(—m)‘ )
We introduce some further notation. Let F = — grad V' be the force. We denote

by F,, x, the " component of F, x;. f , = (0/0q,) f denotes the partial derivative with
respect to the o™ component. We use the summation convention for repeated
indices, e.g.

Af =1 >

o, B are always indices running from 1,...,v
T,, defined by (3.1), is a self-adjoint contraction semigroup on L*(.#, p) [5]. Let L
be its generator, T, = e, and (L) be the domain of L. On functions of the form

=H( f(x;)) with HeCFy(R)= C§y, feCG(R") = Cp, the C*-functions of
J
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compact support, L is given by
L(x) = HI(Zf(Xj)){%ZAf(xi) +3 .;.Fa(xj —x)fx))}
+EH (S DS oS o). 43)

We use the convention that &_ (f) = &%(f) regarded as a function on ..

Lemma 1. &(f) and E(f)? are in D(L).

Proof. Let ¢ = H™ (& e 2(L) with H™, feC%, and let H™ — identity as n — co.
Then in LA, ) lim ¢ = E(f)and lim L™ exists which by definition is LE¥( f).

The same argument applies to fe.# and &(f)> W
We compute

P()x) = 2LE(f)(x) = 8V/ZZ%Af(3xj) +4e? Z'Faz(xj —x;)(x; — Xy

iFj
. i dAf pedx; + e(1 — A)x;) (4.4)
0
and
Yo(N)(x) = e 2LE(f)*(x) — 26 2E(f)LE(f)(x)
= ") fof fex) =8 E(f o f )+ p[daS o L. 4.5)
Then
M0 = &) - [dsii(1.9) “6)
M3(£.0) = MY 07 = [ dsr £, @47)
are P*-martingales. We have the following bounds
Lemma 2.
ECE(N) S clff, (4.8)
EGS(f. 1)) S c(Af Af D, (4.9)
E(sup [y5(f,0)1)) S () S ofowr S5 S 50 +<AS S AL g S 50) (4.10)

0=t

uniformly in ¢.

Proof. Let {p, =p,p,,...} denote the correlation functions of the equilibrium
measure p [21, Chap. IV]. Then

EEH(N? < [daf(a)*[da,pa(q,,0) = p*| + o], (4.11)

by time invariance and Young’s inequality. The absolute integrability of p,(q,,0)
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— p?is proved in [21, Theorem 4.4.8] cf. also Lemma 4.
By time invariance

E(y,"(f,8)%) = < (). (4.12)

As with (4.11) we express the expectation in terms of correlation functions and use
Young’s inequality. Then

2
P S CALAD e sup (4]daulpalar,0)=p*l+4

1
+4(dqydq, [dAIF (q,)q:41p3(d1 + A2, 92,0)
0

— pp2(q2,0)|+8{da, | F(q:):4!1p2(q1,0) — p*|
1
+ jd%d%d‘hg)dMFa(Ql)‘hpFa'(%)CIzﬂ"

104(91,0,q2 + 43+ 29,,q5 + 24q,) — p2(41,0)p,(q,, 0)]
+ 4§d‘hd‘h]Fa(‘h)‘hﬁFa'(‘b)‘Izﬂ'lps(‘h» q,0)

+2[dqy|F(q1)d:5F(q1)4151p2(q1,0)}
S c(AfAf, (4.13)

where we used absolute integrability in the forth term [21, Theorem 4.4.8], cf. also
Lemma 4, and the boundedness of p,, p;.
To show (4.10) we only need an estimate on E(sup &(f)?). We follow the

0Lt
argument in [20]. To the martingale M(f, t) we apply Doob’s inequality and (4.13).
Then

E(sup &i(f)?) < 2E(sup Mi(f,1)*) + 215(?} deyi(f, t)2>
0

0sIst 0stst

SAEMY(f, 1)) + PRGN
Sc@fdql f(@) +14f (@) ™ (4.14)
We can now prove the support and continuity properties of &;.
Lemma 3. With probability one t+ e A (_,_ 5, is weak* continuous in # _,_,.
Proof. We have, using (4.14),
fE(OSgE IENE-v-3) = ;(2|7I + V)‘”‘3!E(Os<lf£> &ilhy)?)

<c(®Y Q7] +v) 7 < o0, (@.15)

A

To prove continuity a set of test functions dense in #, , 5 suffices. Let feCg,.
We have to show then the continuity of

te Y f(x(0) (4.16)
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for 0 <t < 1. But on the set M, = ., cf. [5, Definition 6], which is of full u(dx)x
Q(dw)-measure, the paths t— x(t) are continuous and there are only a finite
number of different particles in the support of f during the time interval [0, 7] ]

5. Convergence of the Generators

We investigate the limit of the martingales M4(f,t) and M5(f,t). We rewrite

M(f.0) = &) — idS(p/2x)£*(Af, o idS{(p/2x)§‘(Af, 9-1(L9) (51)

For fixed s (p/2))E5(Af, s)—v4(f, s) does not tend to zero, say in L*(., ), as £ — 0.
However, as noticed by H. Rost [25], the time average still should tend to zero.

Proof of the Theorem. Under the assumption

(C)lim ﬂE( > =0. (5.2)
=0

Jds{ 020249~ (1,9)

Under our conditions on the potential a theorem of T. Brox [26] states that
weakly on S _,_,,.

1@) &) =<0, (5.3)

where £(°) is the Gaussian process on #_,_,, with mean zero and covariance

C&N)e9)> =1[daf(9)9(9) (5:4)

(white noise). Therefore the starting measure has a limit as ¢ —0.
By tightness there exists a subsequence such that P°— P as ¢—0 along this
subsequence. Then, assuming (C),

M(f.0) = &(f0) — idS(p/2x)€(Af, 5. (5.5)

Mo(f,0) = M,(f,0)* — tp[daf .f .q), (5.6)

are P-martingales on C(R, 5 _, _3). This implies that M,(f, t) is Brownian motion
with variance p [dqf ,f ,(q) [27] and therefore, in view of (5.3) and (5.4), that P is the
infinite-dimensional Ornstein—Uhlenbeck process defined by (2.3), cf. [20, 28,
Chap. 4] ]

In the remainder of this section we reformulate the assumption (C) in such a way
that it becomes analytically tractable and we prove that p/2y is the correct coefficient
appearing in (5.2).

We set

1
Pap(x)= %Daﬂz o(x))+3 ‘;.Fa(xj —x;)(x; — xi)ﬂ(j;dié(/lxj +(1=A)x), (5.7)
with

1
Daﬂ = 501,82] de(po(q, O) - pZ) (58)
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Note that ¢,4(f) = [dqf(q)t,d.s is well-defined as a function in I2(M, ). Let us
abbreviate f)(g) =¢&"? f ,4(¢q). Then we define the error term

R(e) = [E< > (5.9)

and have to prove that it vanishes as ¢ 0.
We choose an arbitrary integer N and T = N ~'¢~?t. Then

wr (5 ona])

§t2?7£dtgd5<¢aﬂ( DT gbup ([p)D (5.10)

e—2t

2 j dsap(f)ss

n+1)T

IT dsy( S, )

Since T, is a contraction, the integrand is bounded uniformly and
llmR(£)<t2—2jdtj'dshm &y, (5.11)
e=0 e=0

where T can be chosen arbitrarily large.

The limit (5.11) yields ¢, which is not in I?(M, ). We avoid this by working with
the smoothened version ¢,4(h) with heCg, and normalized as [dgh(q) =1. The
bilinear form (hy, hy) { T,,45(h1)T,hup(h;)> (no summation) is continuous on
& x & and of positive type. By the nuclear theorem [24, Theorem V.12] and by the
Bochner—Schwartz theorem [29, Theorem IX.10] there exists a measure v, ,(dk)
such that

T pap(h)* > = [ Vg (k) (k) 2 (5.12)

Since T, is a contraction,

UTiapW)?> < {Doplh) ) = [vapldk) Rl . (5.13)
By (4.13) v,4(dk) = v,4(k)dk with a bounded and continuous density. Therefore also
Vap(dk) = v, (K)dk with ess-sup v,z, S supv,.
We return to (5.11). By symmetry the integrand equals {(T},_,,¢q5 (f$))*>.
Denoting |t — s|/2 for simplicity again by ¢t we have
AT fEP? ) = (T, puplhf D)
+ [(Tiag(f) ) — {(Tipaplhxf3))* 1. (5.14)
The second term equals
§ Vap(dk)e ™| T ogle™ TR)[2 (1 — | A(K)[2) < (sup vag) [ dk| T ugK)* (1 — | B(eR) ),
(5.15

and therefore vanishes as ¢ — 0 by the normalization of h. Note that { T,¢,,(h*f$)) >
= 0. The first term of (5.14) yields then

llfé e'[dqdq f .p(2a) f o p(eq) { < Tg TNty Tharp(h) > — { Paplh) > { () }
=[49'f (@) f 2 p(@) [da{{ T (W1, Ty (B)) = Dup) > b () >}, (5.16)
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It will be proved in Lemma 6 that for fixed t, g {T,du()t, T,y p(h)>—
{@ap(h) > Py p(h)), is absolutely integrable.
Inserting (5.16) in (5.11) we conclude that

1 T T
lim R(e)? <12 lim — [ ds [dt[dq'f @) f «p(d)
-0 T-w 10 0

§dq{{bupfW T, _7bup(B)> — DepW)>{byp(h))}.  (5.17)

To complete the argument we therefore have to show that

(€) }fn §da{{SupWT i1, () > — < Douy(h) ) b)) } =0. (5.18)

The remaining sections will deal with this problem.
Let ¢o(h) =Y h(x ) — (O h(x;)>. By Proposition 4, cf. Sect. 8, the limit (5.18) exists
J j

and equals

1 1
p §dq{ b phyt,do(h)) [dq{dyp(h),do(h)> =}RuﬂRa’ﬁ" (5.19)
Using the normalization of 4 we obtain
2R, =8,5§dq(po(q,0) — p?) + [ dgp1(q. 0)F (9)q,
+ %jd‘hd%[l)a(‘h »q2,0) — p(q;, O)P]Fa(‘h)‘hﬁ~ (5.20)

At finite volume A with periodic boundary conditions the grand canonical
equilibrium correlation functions {p 4 ; = p 4, P .2, .-} satisfy the second BBGKY-
hierarchy equation

J
b’q’*PA,z(‘h,‘h) = Ff(%“lz)ﬂmz(‘ln‘lz)‘*‘ /I‘d%Faf\(fh”113)PA.3(‘11"12"13),
la

(5.21)
where F# is the periodized force, cf. e.g. [30]. Since F4is odd and p, , is even,

0
W[PA,Z(‘IM‘IZ)_PAZ:]:F;‘(% —42)P4,2(q1,95)
la

+ id%Ff(‘h —q3)[P 4,3(1,92:93) — P 4,2(d1,93)P 4] (5.22)

Let A =[—L,L]". We multiply (5.22) by (L/n)sin(nq, /L) and integrate over q,.
Under our hypotheses on the potential V the truncated correlation functions have
an absolutely integrable bound uniformly in A. Therefore in the limit L — oo, setting
q, =0, we obtain

- 5aﬁId‘I1(Pz(‘11,O) - Pz) = Id‘hFa(ql)quz(quO)
+3§dq,dq;F (4,)4:503(d1,92,0) — p2(q:,0)0], (5.23)

which proves

R, =0. (5.24)
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Proof of the Corollary. The continuity ¢ follows from the continuity of t » T,. By
Lemma 5 S(k, 1) is in fact C* with respect to k. Given (C’) the proof of (2.6) follows
then along the lines of [12, Sect. 4] |

6. Construction of a Hilbert Space, Regularity of the Dynamics

We want to establish (5.18), which we proved to follow from (3.2). As explained in
Sect. 3 it is natural to define a Hilbert space s# with the (degenerate) inner product

CHlY> =[da({r > —Ld> <)), (6.1)

Since, at least formally, T, is a self-adjoint contraction semigroup in #, to prove (3.2)
we only have to show that the T, invariant subspace of & is the one-dimensional
subspace spanned by ¢(h). In this section we show that (6.1) is well defined on a
reasonable set of functions including those of the form T,¢ with ¢ local.

Remark. Let U(g) be the unitary group on L*(.#, y) induced by t,. According to the
spectral representation of U(g) = [e™E(dk), there exists a direct integral decompo-
sition of L*(.#, p) as §dks# (k) [31, Sect. XIIL 16]. Since [T, U(q)]1 =0, #(k) is
invariant under T,. The Hilbert space # equals #(0).

We will first prove an exponential L?-mixing for Gibbs fields at low density. Let
F ,cL(M, 1) be the set of functions depending on x only through x,, the
configuration x restricted to the region A and let # = U % 4, A bounded . d(A, A,)
A ={qeR'|d(g. A) < R}.

Lemma 4. Lety,e7 4, with<{y;> =0and A; be abounded region,i=1,2. Then there
exist constants a, ¢ > 0, depending only on z and V, such that

[ TS 1l 1, |y min {1, c| A, Je @M Aexp (¢ A e AiAd) ),
(6.2)

The proof of Lemma 4 relies on the cluster expansion. We follow the notation of
Ruelle and denote by ¢(x),, = ¢(x;,...,X,,) the m" Ursell (cluster) function. In our
estimates here and in Sect. 8 we need only the following three facts:

(i) (x),, is symmetric and translation invariant as a function on R,
(i) ¢(x),, =0 whenever the distance of one argument to all other arguments is
larger than R,

(iii)
fdx, -+ dx,| p(x),,] < (m—1)\C™ ! (6.3)
with C=efdg(1 — e V@)

We denote by =Z(A) the usual grand canonical partition function for the
bounded region A with fugacity z. Further specifications are added as arguments,
e.g. =Z,(A,n) is the partition function for n particles in A and = (A, x ,.) is the
partition function in A with the external potential created by the outside particle
configuration x 4.. We abbreviate

W(xd=Y T Vi—q. (6.4)

J=1gex,

vo(dx ) is etimes the Poisson measure with intensity one in the bounded region A.
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Proof of Lemma 4. We follow an idea of G. DelGrosso [32]. Let A;= A and let
d(A,,A,) = NR for some N = 0. We define R(x 4, U x 4,) through a ratio of partition
functions as

exp [R(x 4, 0x,4,)] = lim [E(A\(A; U A3), x40 UX42) E(A)]/

ATRY

TELANA L, x4 )E(ANA L, X 4,)) ) (6.5)

The logarithms of the partition functions are expanded in Ursell functions. The
integration region is divided up into A, A, and A\(A; U A,). Finally we let A TR”.
Then

© © © Zk+m+n

Rexaoxa)= 3 % % fimi

L[ dw)exp[—W((Wh>x4,)] Id

/T,\Al
T d@)mexpl—W((x)m Xa,)] = j d(x),,]
AN\A, A,
[ dWne((W) V() (V)n)- (6.6)
(AN

The terms with either m = 0 or k = 0 cancel. Therefore every Ursell function ¢ has to
be rooted in A, and in A, and, by (ii), the terms with n < N vanish. We bound
exp[— W] <1 and take the supremum over the w,-integration. Using (6.3) yields

0 k+m+n

lR(xA,uxAz)|<4|/le I

k=1m=1n=N k'
.Cktm+n-1 §C]/Tlle aN’ (6.7)
since, by our assumption, z C/(1 —2z C) < 1.
To prove (6.2) let p ,(x 4)vo(dx ,) be the Gibbs measure u restricted to A. Then
KYal= |jdexA)v0dxAJw(xA)wﬂxA)[#AluAJxAluxA)
#AKxA)ﬂAJxAZ]|§jvddxA)VddxA)hpﬂxAJ
T (X a ) B, (X 4 ) A, (x 4,) | €XP [R(x4,0x4,)]—1]
Syl <1A e *Nexp[c|A;]e™*N], (6.8)
where we used that |e® — 1| < |R|eR! |

The decay of {¢1,¢ ) for an arbitrary ¢ e L*(.#, p) is determined by how well ¢ is
approximated by local functions.

Skt m 4 n—1)

Lemma 5. Let {A} be a sequence of hypercubes centered at the origin and let
DAEF 4, (P 4> =0, such that

Upa—d)*) SclA™?, (6.9)
with c independent of A and 8. Then
[<prad>l /(1 +][q])2 2. (6.10)
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Proof. Let A, be a cube with side-length n. Let ¢,=¢,, and Y, =¢,—¢,_1,
¥y =¢,. Then

a3 <cn™ (6.11)
and, by Lemma 4,

I<pt, 901 =

<3 f Wl i 1,147t

-exp [c] A, e~ nint ]} <c(14]g|)> P W (6.12)
Let @, < LA, u) be the set of functions of the form

H(Zfl(le me(xjm (6.13)

m=1,2,...with H, f,...,[,€C&.

Lemma 6. Let p€D, ¢ ) =0. Then for any fixed t and any 6 > 0 there exists a
constant ¢ such that

<o, i I < (1 +1q]) ™" (6.14)

Proof. Let Q, be a hypercube centered at the origin with side-length 2r. Let
$peDonF,, for some r. Let x™(t;a,w) be the partial dynamics in Q, and define

¢ (a) = [ Qdw)p(x"(t; a, )), (6.15)
ae . We will show that
"+ D — ™, < cexp[—c,(logn)’], (6.16)
which proves the assertion by Lemma 5.

For notational simplicity let ¢(a) = Z f(a;)). The general case follows along
the same lines. Without loss of generality we may set t = 1. We follow the notation in
[5,6,7].

Let

Mno = {a, CO| max ” x(n)(t; a, CU) —a Ha,n
0=l
<lognfor all n2ny}n{a,w||al < oo} (6.17)

We have u x Q(| ) M,)=1. Now

nx1

TP —¢™)3 < J w(da) x Q(dw)| p(x"* (1; a,)) — (x"(1; a, ) )|

+ 2sup|H| | p(da) x Q(dw). (6.18)

ME

n
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Let n(A, t) be the number of particles in A at time ¢. Then the first term of (6.18) is
decomposed into n(Q,,t)=n and n(Q,,t) < n. On the first set we use Ruelle’s a priori
estimate to obtain an exponential bound. On the second set we have the bound, with
Lip(f) a Lipschitz constant for f,

(nLip(H) Lip(f))* A wda) x Q(dw)

[ max [x{""(L;a,0) - x{"(1;a,0)|
i:xﬁ")(l;a,u))eQ,

+  max  |x{""(La,0) = x"(1;a,0)[]
i:x?'+ ”(l;a,w)EQ,,

<cn? | p(da)x Qdow)[  max  |x"*(1;a,0) = x(L;a,w)]%  (6.19)
My ;€0 +10g(n + 1)
since on M, particles which at time ¢t =1 are in Q, had to be initially in Q, , 1540+ 1)-
We follow the same iteration procedure as in the proof of [5, Satz 2]. This yields for
0<t<1,
X2t a, 0) — X8 6, ) o p + 10gen + 1) S (g log n)* ¥~ D21og (n+ 1/(N,—1)!
(6.20)

with N, = cn/logn. By Stirling’s formula we obtain an exponential bound of (6.19).
For the second term of (6.18) we have to estimate u x Q(M;). In the proof of
[S, Lemma 2] it is shown that

HnXx Q({as CU’ max Ix(n)(t; a, O))— ala.n ; /2“}) § C1 €Xp [—_ CZ)“Z:L (62])
0<t<1
which implies
px QM) Sciexp[—cylogn)?] ®W (6.22)
Note that by Lemma 5, for ¢e# with (¢ > =0 the bilinear form
(Pl¢) =Tlim {(|A|7Y? [ dqr,$)*) = [dq{dpr,0> 20 (6.23)

ATRY A

is positive semidefinite. This makes the following definition meaningful.
Definition 1. For ¢,yeF let
COlY) =[da({dt > —{P><P). (6.24)

We define the Hilbert space # as the completion of # with scalar product {-|->

modulo {¢|{¢|¢)> =0}.

Recall that by reversibility T, is a self-adjoint contraction semigroup in L?(.Z, ).
By Lemma 6 for ¢ P, = # we have T,pe#.

Lemma 7. T, is a strongly continuous self-adjoint contraction semigroup in .

Proof. Let ¢, yeZ,with (¢ ) = (> =0.Then by Lemma 6 and the symmetry and
translation invariance of T,

(OITY> =[dg<¢pt, Ty ) = [dq{Tipt > = {T.d|¥>. (6.25)
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Since T, is a contraction,

<o T > |* = lim ((|A |~ 1<qufq¢§dqf W)y

ATRY

Slim A" ‘(qurqd) AT < qufql// )0 =Lold> YY) (6.26)

ATRY
Since Z, = #, the claim follows |

Lemma 8. Let L with domain 9(L) be the generator of T, in #. Then 2, = 2 (L) and
on 9,

A

0
=3V 4600+ Y Floey—x)5— L) (627)
J iFj ja
Proof. Let L be the generator of T, in L?(.#, y). Then by [33, Lemma 3] Z,, is in the
domain of L and on 9, L is given by (6.27). Therefore for ¢pe€2,,

(T —Lo= &L~ Lo (629

in L?(#, ). Clearly, the argument of Lemma 6 extends to L¢ and shows that
q- (T L¢1,T,L$) is uniformly integrable for 0 <s,s’ <t. Therefore the right-
hand side of (6.28) tends to zero in # as t -0 |

Technically it is much simpler to study convergence in L*(.#, u) rather than in #.
Fortunately, because of Lemma 4, there is a simple relationship.

Lemma9. Let {A} be a sequence of hypercubes centered at the origin. Let ¢ ,e F ,
such that

lim |A |{ ¢4 > =0. (6.29)
ATRY

Then
lim (¢ 4[¢ 4> =0. (6.30)
ATRY

Proof. By (6.2)

{PalPa> éIdQI<¢A74¢A>“<¢§1>I
<<$>Jdgmin{l,c|Ale "1 Dexp(c| A e M1}
<c|lAKP%, (6.31)

which tends to zero by assumption n

The crucial link between the dynamical problem (3.2) and a static one will be
established in Lemma 11, (7.9). This inequality is first proved for nice functions and
has then to be extended abstractly to (L) = #. For this purpose we need

Proposition 2. 9, is a domain of essential self-adjointness for L in A .
Proposition 2 is proved by J. Fritz [35] for v <3 and for the class of potentials
satisfying (i) to (iv).
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The essential self-adjointness is a well known problem in the dynamics of
infinitely many particles [34]. Physically, it means that a small change in the
boundary conditions for the partial dynamics results only in a small change in the
dynamics of the particles close to the origin uniformly in the volume. For this
property, the existence of the equilibrium dynamics by itself does not seem to suffice.

Essential self-adjointness means that for any ¢€%, and t 20 we can find
functions ¢™eZ, such that

lim ¢® = T,¢ (6.32)
and
lim L™ = T,Lo (6.33)
in #. The natural candidate for ¢™ is T ¢ defined by
TP ¢(x) = | Qdw)p(x"(t; x, w)), (6.34)

i.e. by the Markov semigroup of the partial dynamics in the hypercube Q,. This
choice is adopted in [34, 35]. Furthermore with this choice, by Lemma 9, we only
need to prove convergence in L2(.#, ) with some control on the convergence rate.
By (6.16) and Lemma 9,

lim T™¢ = T,¢ (6.35)
in & and formally,
LTM¢ — LTW¢ + TWL™p — T,L, (6.36)

with T = e Since for Q, large enough L"¢ = L¢, the second difference tends to
zero in # as n— oo, The first difference contains only contributions near the
boundary of Q,. They correspond to the change of the expectation of the local
function ¢ at time ¢ due to small changes in the initial conditions near the boundary
of Q,. One would expect that for Q, large the boundary should only slightly
influence the center and therefore this difference should be small.

A technical difficulty is that, because of the sharp cut-off in the definition of the
partial dynamics, T¢ is not in the domain of L. Fritz avoids this by defining the
partial dynamics through a smooth cut-off.

In our particular case it is of advantage to use quadratic forms. By Lemma 10 the
quadratic form associated with L in &# for ¢€%,, is

—{PILp> = p[dq[dq {(Dy,T®) (DeyTy$)Dolxo=0- (6.37)

Here a configuration is written as (xo =0, x,,X,,...). D,, is differentiation with
respect to x, and < ), refers to expectation over (x, x,,...) in the Gibbs measure
a0

with the external potential ) V(x;). Because of the two spatial integrations ¢ =
=1

J
T"¢ is in the form domain of L in s#. One has to show then that forms

—{¢" = ¢"™L($™ — $™)> -0 (6.38)
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as n, m — o0. For this the influence from far away regions still has to be estimated.

7. Identification of the Invariant Subspace: Dynamic Part

We denote by Ps# the subspace of 5# invariant under T,. By the spectral theorem for
any ¢peH

lim T,p = yePH (7.1)

t—

exists. For ¢e9, let us define the conditional canonical expectation in the bounded
region A as

I A¢(x) = i@ n(A), X ) (7.2)

for given number n(A ) of particles in A and boundary condition x ,.. The aim of this
section is to prove

Proposition 3. Let yePs#. Then for any peF
UITpd > =LYld). (7.3)

We first prove an identity. Let D, denote the differentiation with respect to the «
component of p.

Lemma 10. Let qbe@o and A be a hypercube. Then
ququ (2 D, 18D, 1,¢(x)> = —<PIL). (7.4)

(Al per s
Proof. To keep notation simple let ¢(x)= H(Z f(x%)). The general case, ¢ =

H f1,...,Y. f), is proved in the same fashion. Then
,Aﬂ@hw<zzanmnb o P

PEXA

=i Iquj"dq Y Lo+ @) f ofx; + q)H (fo +q)H’ (Zf(x +47)>. (1.5

JvceA

Note that the integrand vanishes for either g or ¢’ sufficiently large. Let r be the side-
length of A. Then (7.5) equals

jdqjdq YL fudxj D o+ +rk)H(Zf(x +9))

kez® JXEA

HQE St q +1h0)) (7.6)

|A]

’Aljdqjdqz<rq+rk{ z f,oz(xj+q_ql_rk)

jixgA —q —rk

Sadx)H fo +q—q —rk)H Zf(xl))}>
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IAIqu §dq<2f (x;+a)f H(Zf(x +q))H Zf(xm
= —qu<fq¢>L¢>, 1.7)

where translation invariace is used.
To prove the last step we choose some A, not necessarily the hypercube
considered before, sufficiently large such that 7,¢, pe% ,. Then

Yl 9 e )H' (L f (i )H (LS ()

= fﬂ(dxm)fﬂ(dxﬂxm) Z f,az(xj + q).f,a(xj)H,

JixjgA
QS+ @)H' Q. f(x)
== jﬂ(dx Ac)j#(dx alx Ac)fqd)(x)]-f/\(}b(x)
= <Tq¢)L¢ > ‘

The boundary terms vanish, since the normal derivatives of ¢, 7,¢ at dA are zero by
the assumption on A n

(7.8)

Lemma 11. Let A be a hypercube. Then for every ¢ € (L), the domain of L in 5, and
every ye Dy, D(L 4) with D(L ,) the domain of L , in L*(M, 1)

COILAY Y STAIKPILG Y YL Y >. (7.9)

Proof. Let ¢(x) = H(Z f(x)), Y(x) = Zg ). Since Y e Z(L ,), the normal deriva-
tive of g at 0A has t(; vanish. Then, because ved(L,),
(HILLY =1 dej'#(dXAc (dx 4] x Ac)
Y [+ q)g fo +9) G(Zg N2 (7.10)

ije/\

Let {A,, k=1,...,|]A|/|A|} be a partition of A into hypercubes of the same size.
Then, with y, the indicator function of the set A,

COILYY*=[LC L [dafulx;+ g L) H QLS (xi+ 4G Qg(x))> 1

j'x €Ak

A A
|IA1||Z< >2<||A1||Z<{Zqum {06+ OHQf0xi+4))]

'{Z LadX)9.q(x ,-)G’(Zg(xi))} >+ R,

I//:l <Z [X{ daralx)f ol + DHE S (5i+ 0))] >

=

< iz: [ZXAk X,)9.5(x))G'( Zg(x) >+R1
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_14]

2 Y 9.94x)G (Zg(x
|A1| )xeAk
Jdgfdg' < Y fax;+ @) f L+ @VHQf(xi+ g)H QS (x; +9))>
Jix Ay i i
+R, +R,. (7.11)
By Lemma 10
CHILAY Y S[A(=<HILPIIC Y 9.u9.4X; G(Zg(x,) >+ R+ R,
]xeA
=|A|{PIL> YL Y ) + Ry + Ry, (7.12)

since YeD(L 4).
We have to show now that the error terms R, and R, tend to zero as the partition
becomes finer and finer. We have

|A]
k= A%

- <{Z§quAk(xj)f,a(xj + Q)H/(Zf(xi +9)}
1A% )9.x)G (L g(x)) }* ] (7.13)

SV ICY [daSx+ 9 L )H [ (xi + 9)G (R g(x))>?

Jix Ay

We consider one fixed A,. If n(A,) = 0.1, the difference vanishes. If n(A,) = 2, we
estimate each term seperately by Schwarz’s inequality as {(*)*> u({n(A,) = 2}). The
first factor is bounded by const |A,| and the probability to find more than one
particle in A, by const |A, |2 Therefore

Al 1A]
AL 1A

IR =

12 (7.14)

The second error term is bounded as

A
IR zl<,'71, <z[zquxAk<x M+ H 1 +q>1>

~< Y fdqfdq'f (x;+ q)f (x; + ¢)H'( fo +49))>]

Jix Ay

< 2 [Z XAk(xj)g,p(xj)Gl(Zg(xi))]2>
IA1[ZIA (=< @ILg>)| <Z [ 1 4x)9.4(x)G (Zg(xi))]z>

=Y 9494(x ng} 2. (7.15)

Jix Ay

The terms inside the absolute value signs vanish for n(A,) =0, 1. For n(A,) =2 we
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estimate each term separately by Schwarz’s inequality as for R,. This yields

Al [A]
1AL 1AL

IR, = const|A,||A, ¥ (7.16)

As the partition {A,, k=1,...,]A|/|A,|} becomes finer and finer, |A;|—0, and
therefore R, R, —0. Clearly, the same argument applies to H(} f1,...,Y. f,.).
We have shown that for any ¢e€2, and y€eZ,nZ(L ,),

COILAY Y2 STAICPILG D YL A ). (7.17)

Since, by Proposition 2, 9, is a domain of essential self-adjointness for L in #, the
claim follows ]

Proof of Proposition 3. Foranyt > 0and ¢pe #, T, (L) by the spectral theorem.
Therefore by Lemma 11

(THILAY Y S|AKTILT, o <YLY ). (7.18)

Again by the spectral theorem lim { T,¢|LT,¢ > = 0. Therefore for any Yy e P# and
any ¢e2(L )N D,, N

CYIL ¢ =0. (7.19)

Since 24N 2(L ,) is a domain of essential self-adjointness for L , in L*(#, u), the
validity of (7.19) extends to all peF n (L ,), because for a sequence of uniformly
local functions the convergence in L*(.#, y) implies the convergence in # by Lemma
4. Let T, , = e"+'. Then for ¢p€D,, T, ,¢peF N %(L ,), and therefore

CYILAT, 49> =0. (7.20)

By the spectral theorem T, ,¢ is strongly differentiable in L*(.#, u) for t > 0. Since
when taking the derivative of T, ,¢ all functions remain uniformly local, this implies
the differentiability of t - (Y| T, 4,¢ ) for t > 0. Therefore for every ¢p€2,,

d
G ITa®d> =0 (7.21)

for t > 0, which by continuity implies

YT 400 =Yg (7.22)

Since the diffusion process with generator L , is non-degenerate for every given
n(A) and x 4., we have

lim T, ,¢ =T 4 (7.23)

1=

strongly in I*(.#, ), which by uniform locality implies the same convergence in #.
Taking then the limit ¢t —» co in (7.22) proves the claim |
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8. Identification of the Invariant Subspace: Static Part

Recall that ¢4(h)(x) = Zh(xj) <Zh )> with heC%,. We complete the identific-
ation of the T,-invariar;t subspace of # and prove
Proposition 4. Let e Ps#. Then, for some h,

V¥ = do(h). (8.1)

Since in # ¢o(h;) = Polh,) whenever [dgh(q) = [dgh,(q), P# is a one-dimensional
subspace of #.

Let Z, be the set of functions of the form H(n(A,),...,n(A,)), m=1,2,..., with
HeCg, and bounded regions A;, i =1,...,m. Proposition 4 is a consequence of

Lemma 12. Let ¢peP,. Then along a sequence {A} of hypercubes centered at the

origin
1, nA)
lim | I" s — - uz(¢>) A’ (82)
ATRY >
By Proposition 3 for every t,l/EPJf and ¢peF
I 4> =LYl (8.3)
Therefore by Lemma 12 for ¢peZ,
. n(A) 1 d 1
Ylg) =lim <t// W—p>4 a‘ﬂz(ff))=_<‘//[¢o(h)><¢o(h)|¢> (8.4)
AR X az b

with jdqh(q) = 1. Since 50 = A, Proposition 4 follows.
To prove Lemma 12 we use Lemma 9 which relates the convergence in 5 to the
one in L*(,p). Therefore we have to show that along the sequence {A} of

hypercubes
. 1 d A 2
lim |A I<[u(¢>!n(/1 ), X pe) = ;Z’d‘gﬂz(@(% - p)] > =0. 8.5)

AR

We follow the strategy of [13] and prove (8.5) in two steps.
Before let us define the fugacity as a function of the density for given boundary
conditions, p > z(p, x 4.), implicitly by

n(A)
Hepx 4o AT X

We will also need the inverse function, z p(z, x 4), defined by

p <n(/1)
A
Since (8.6) and (8.7) refer to finite volume, for given x 4., both functions are strictly

increasing and their range is [0, co]. At infinite volume we write z(p) with inverse p(z)
as defined before. To distinguish the fugacity of the Gibbs measure u under

Ac> =p. (8.6)

xAc> = p(z, X 4). 8.7)
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consideration we denote its fugacity from hereon by z, and its density by p, = p(zo)-
z,, has to be in the range defined by B(vi), i.e. 0 < z, < 0.28/C = Z. The corresponding
density range is 0 < p, < p.

Step 1. We want to smoothen the dependence on the number of particles and on the
boundary conditions by transferring it to the fugacity, i.e. we want to show that for
large A

(A ), X pe) = Bagrianan xol @1X ) = a0 D) (8.8)

If |(n(A)/|A]) — pol is sufficiently small, z(n(A)/|A |, x 4c) 1s inside [0, Z] and we can
use the cluster expansion. The second equality reflects only that the grand-canonical
expectations depend exponentially little on the boundary conditions. The first
equality is more delicate and requires a control over the error term in the local
central limit theorem for the number of particles in A uniformly in the boundary
conditions. If [(n(A)/| A |)— p,| is not small, the theory of large deviations applies.
We summarize Step 1 as

Lemma 13. Let pe Py with{$ > = 0. Along a sequence { A’} of hypercubes centered at
the origin,

lim [A [{[u(P|n(A), X oc) — HaniayALx AC)(d’)]z >=0. (8.9)

ATRY
Step 2: We expand )4, ,.(#) around p,. Then the zeroth term vanishes as
A TR". The first order term gives the desired limit and the higher order terms vanish
as A TR". We collect this as

Lemma 14. Let e F, with{¢$» = 0. Along a sequence {A } of hypercubes centered at
the origin,

. d n(A) 2

/l‘l:gv IA I < [#z(n(/\)ﬂ/l |,xAc)(¢) - a;#z(po)(d))(m - po>} > =0. (8 10)

Before proving Lemma 13 and Lemma 14 we state two general facts which will
be of use later on.

Lemma 15. Let A be a hypercube and Ay = A. Then for 0 <z <z
d\" d\"
() o2

d
‘d_zp(z’ X oYX pc) — EP(Zy X pc)

SclAlT, (8.11)

m=0,1, 2, and

| Aol
<c—ry (8.12
4] :
where c is a constant independent of A, Ay, X 4c and X 4,.

Proof. Recall that A ={qeA|d(g,A)<R}. We define also A°={geA|
d(g,0A) > R}. From the cluster expansion, cf. Sect. 6, we have

1
p(Z, xAC) =7

[A ]

Zn+1

8

Jdyo [ dy)nexp [ — W (oUW X 4 1o U (),)-

o nl A A

(8.13)
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Therefore

@ 0 Zn+m

P x ) —p() S — Y Y

IA |m=1n=0 nim!

{ dyoll [ _dComexpl—W(X)m x40

~ ] d09n] [ 000 (W 0))

+ 25 2 dyofdl oo o)) (8.14)

[A1nSon! s{s0
In the first term, since m = 1, the Ursell function yq - {(y U (X),,(y),) equals zero in
the set {geA |d(q,0A) = (n + 1)R}. We taken then the supremum over y, in the set
where the Ursell function differs from zero and use (6.3). The same procedure applies
to the second term. Let the side-length of A be 2NR. Then (8.14) is bounded by

2z Nt
T2, (ECI1 =20 QRYTNY = (N =n—1)]
+—2—Z— i (ZC/(I—ZC))"|A0| +£IA\AO|(1/(1—ZC))§C|A |~ (8.15)
|A =N A

since 0 < z < z. The bound on the derivatives is proved in the same way.
If the configuration in A, is also fixed, we have from (8.13)

d d

EZ‘P(Za X 4o YU X pe) — EP(Z: X pe)

1
é_
A

0 0w ntm

m=0n= . Ag\Ag

'eXP [ = W(()ms X 401 — Kf dx),] | dyo [ d(y),

AV ANVA,

Ao
L= WU (X Wi Waosul S 28 (816

by taking the supremum over y, and using (6.3) n

In the proof of Lemma 13 we need an estimate on the number of particles in A.
We state this as a separate lemma.

Let R(n(A), x 4.) be the probability to have n(A) particles in A in the grand-

canonical ensemble with fugacity z(n(A)/| A |, x 4.) and boundary condition x 4.. This
is a ratio of partition functions,

R(1(A), X 4 = E(A 1A, X 2 E gyt 1 1o As X 20) (8.17)

Correspondingly we define
R(1(A\A ), X 4, U X ge) = E(A\Ag, (A\A0), X 4, U X £)/Z a4 X p<)

(A\A g X 4, UX 5. (8.18)
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The estimate on R(n(A), x 4) is the same as for the local central limit theorem. We
follow an improved version of [32] to have a sharp bound on the error term.
Since we use the cluster expansion, we need that z(n(A)/| A |, x 4.) lies inside [0, Z]

uniformly in x ,.. Therefore we first choose a ¢ > 0 such that
O0<py—d<po+o+p
and require that

n(A)

TAT T Pol=

<9
Al

Since in this range
d
O<a_-=-+p(z)<a, <0,
dz

we have by Lemma 15 for A sufficiently large
0<z_ =z(mA)/|Al,xp) Sz, <Z

and

d
0<a__d Pz, x 4) S dy < 0.

Lemma 16. Let 6 and A be such that (8.19) to (8.23) are satisfied. Then

-1/2
RO x5 (2010 1 Lptex ) )+ R

d -1/2
R(M(AN\AG), X 4, UX 4c) = <2n|A\AO|zd—Zp(z,onux,,c)> +R,

with
IRiLIR, S c|A]732,
where c is independent of A, x 4. and x 4.

Proof. We set z=z(n(A)/|A],x Ac) and define the n' cluster integral by
cn(A5 xA ‘A l j d(y CXP[ W(y)m xAC)]C(y)

Then

1= ® . z"
R(n(A),xAE)=§E_j dtexp[—in(/l)t-{—]/l |"Zo(e‘“‘~1);l! c,,(A,xAc)].

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

The t-integration is decomposed into (I,): [t| S |A |73, (I,):|A |73 < |t| £ /4, and
(I3): /4 < |t] £ m and the corresponding terms are also denoted by I,, I,, and I5.
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In the interval I, we expand the exponential as

1 1aP

L= | dtexp[—in(A)t-l—[Alnglfl—!c,,(/l,x,‘c)

2n I

1
< —in22 4 4—'n4t“cos (0,4m) +int — itn3e3 + 151—'n £3 sin (6,,,nt)>], (8.29)

where the Lagrange form of the remainder is used. The term int cancels against
—in(A)t by the particular choice of z. The coefficient of —%t*|A| equals
2(d/dz)p(z, X 4). The remaining terms are of the form e%e™ with a, b small for tel,. We
expand the exponential as 1 + --- and use that the term ict® cancels by symmetry.
Since z < z,(1/n!)z"| ¢, (A, x 4c)| decays exponentially in »n uniformly in A and x ,..
Therefore

d -1/2
=<2n|A|zEp(z,x,‘c)> +R, (8.30)

with
1" d .
IRyl dtexp[—%tzl/i IZEP(Z,er)]Ct“IA leM<clA[732, (8.31)
-1a7 13
where we used (8.23).
In the intervals I, and I; we bound by absolute value as

|12|+|I|<; j dtexp[lAlZ(cosnt—l) ,,(A,x,,c)]. (8.32)
14713

In the interval I, the cosine is expanded as

cosnt = 1 —in*t? cos (6, nt). (8.33)

Since ¢;(A, x 4) = (1/]A4 I)idyl exp [ = W(y1, x4l

n

i (cosnt — 26,4, x 1) = (605t = 1z A1

+22(22C — (zC)?)/2(1 — zC)?
< —at? (8.34)

for 0 <t < /4 for some o > 0, since zC < 0.28.
In the interval I; we bound directly as
P Tl A x40 S (08t — 12C4(A, X 1) +2 2 —(n—1)!c" !
<(cost— l)z]A O|/JA| + 2(—2zC —log(1—zC))/C £ — at? (8.35)
for n/4 <t < = for some o > 0, since zC < 0.28. Therefore

||+ |I3] < ce—417 ™",

(8.36)
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To prove (8.25) let n(A,) = m. We use the same argument as above and observe
that j' dtexp [itm — t?| A |c] differs from the same integral with m = 0 only by an error
of the order |A |32 |

Proof of Lemma 13. We decompose the range of n(A)into |(n(A)/|A|) — po| £ dand
[(n(A)/|A])—pol = 6 with 6 and A satisfying (8.19) to (8.23).

Let ¢ = H(n(A)),...,n(A,)) and let Ay = U A;. Then because HeCg,, ¢ =0
whenever n(A,) = M for some M. For [(n(A )/IA |)—pol < 6 we have

(@ [n(A), x 4e) — /;A[xA)(¢|xA)|
< Jvo(dx 4,) |¢(XA0)|R( MANAQ), X 4, UX s)exp [ — U(x 4,)]
|1 — R(n(A), X 4)/R(M(A\A (), X 4, U X o). (8.37)

By Lemma 16, for n(Ay) < M,
[T — R(m(A), x 4e)/R(M(AN\A ), X 4, U X )|
([A\Aol d

IIA

c

—1/2
Al z;l;p(z,x,,gux,,c)>

d -1/2
- (ZZl;p(Z’ xAc)>

where (8.12) is used in the last step. Therefore (8.37) is bounded by

| A1 B In(A), X o). (8.39)

For |(n(A)/|A])— pol = 0 we could use the theory of large deviations. For our
purpose a Chebychev inequality will do,

(e (5o om

A —po| 2
Therefore for ¢,

C(@IN(A) X 4) = Hayiage o @1X 407> S €] A2 (8.41)

with ¢ depending on ¢ but not on A and x 4.

To complete the proof we have to replace 1, y4,x o (@1X £0) BY opuiayia , D) I
[(n(A)/|A]) — pol <6, then one uses the cluster expansion as in Lemma 4 to show
that this results in an error exp[ —ad(Aq, A)]. If |(n(A)/|A |)— po| = , one repeats
the Chebychev inequality (8.40) |

+2]A|V2R, <c|A|7Y, (8.38)

Proof of Lemma 14. We decompose again the expectation in [(n{A)/|A|)—po| =6
and |(n(A)/|A|) — pol = 6. For |(n(A)/|A|)— po| = 0 we use Chebychev’s inequality
as in (8.40) which gives a bound as |A |~ 2.

Let then [(n(A)/|A])— po| < d and let § and A satisfy (8.19) to (8.23). We expand
the integrand of (8.10) at p,. Then

d n(A)
Ko A A Lx 40) (¢) dp lr‘z(p@(‘b) <W - Po>
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d d nA)
:uz(po X Ac) (¢)+|: p‘uzﬂo X A) (¢)) d Mz(ﬂo)(¢):]< |A| pO)

d2 nA 2
Tl z(m,(¢)<l(A|) po) =5, +8,+5;. (8.42)

where p lies between n(A)/|A | and p,. We discuss each term separately.
(S,): Since i, (¢) = 0, by assumption,

d
Au'z(po,xAc)((b) - ﬂz(poy(¢) = Eﬂf(qs)(z(pO’ xA") - Z(po)) (843)

with Z between z(p,, X 4.) and z,. Since p, < p, for A sufficiently large the derivative
is uniformly bounded. It suffices then to consider the difference in fugacities. Note
that, by definition, zo = 2(p(z4, X 4c), X 4c). Therefore

d
2(p(205 X gc), X ge) — 2(Po, X pe) = %Z(ﬁ’ X 4 ) (P29, X 4e) — po) (8.44)

with g between p(zg, x 4o) and p,. By Lemma 15 (d/dp)z(j, x ,.) is uniformly bounded.
Therefore it suffices to study

A 2
{(Plzgx 1) = po)® = <(u(%—pom)) > (845)

Let us partition A into 64 and A\dA, where 04 = {ge A |d(q,0A) < (log|A |)?}.
By Lemma 4 we have

HN(ANOA) = |ANOA | polx 4o)| S c(M(ANSA)—[ANGA | po)* >'12
LA L e A 72, (8.46)

The piece A remains. In this case

14172 u(n(OA) = 164 [polx 4 > S A |72(MEA) — [6A | po)* >

SIA[T20A LAY, (8.47)
Altogether this proves that
(82 Zc|AI7 Y (log| A2 (8.48)
(S,): The prefactor is
d d d d
— — )= —- <clA|TW
dz luz(po,er)((ﬁ)dp Z(pO! XA ) dz #zo(¢)dp Z(pO)I = C’A l (849)

by Lemma 15. Since {(n(A)/|A|)— po)*> Sc|A |1,
(§2) SelA[7H T (8.50)

(S3): The prefactor is uniformly bounded by Lemma 15 and, since {(n(A)/
|A )= po)*> =clA|™?, we have

(§:*>ZclAI™> N (8.51)
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9. Fluctuation Fields other than the Density Field

Given Proposition 4 it is a simple matter to generalize our results somewhat. Let
¢eF. We define the scaled fluctuation field generated by ¢ as

Ci(fs ) =" [ dqf (eq) {r,P(x(e ™ 1)) — (>}
for all fe4, teRR.

Proposition 5. Let £ f; ¢) be the fluctuation field generated by ¢. Then

1+e2T 2
lim nm[E(( L dséi(f;qS)—x‘1<¢l¢o(h)>éf(f)>>=0- ©.1)

2
Towe0 26°T (-1

Proof. We square out (9.1) and follow the argument at the end of Sect. 5. This
reduces the proof to

tlilg<d>|T;¢>=x“<¢|¢o(h)><¢o(h)l¢>, 9.2
which follows from Proposition 4 |

Proposition 5 gives a probabilistic interpretation of Proposition 4 [12,25]: Any
fluctuation field when averaged over a suitably long time interval is close to the
density fluctuation field. This reflects in a particular way the mixing properties of the
infinite system of interacting Brownian particles.

10. An Open Problem

If the motion of the suspended particles should be modeled also for times short
compared to the relaxation time, one is led to a system of interacting Ornstein—
Uhlenbeck processes

dx (1) = v{t)dt,

mdv(t) = — Y, grad V(x(t) — x{(t))dt —yv[t)dt + odw (1), (10.1)
iFj
j=1,2,....v(t)is the velocity of the j* particle at time ¢. The particles have mass m. &
and the friction constant y are related by the inverse temperature 8 as 2y = 6. The
equilibrium measure is given by

Z 7 lexp[— PO 1/2muf +1/2) V(x;—x)))]
7 i

with the density still free to choose. In the spirit of the present investigation the
problem would be again to show that the density fluctuation field £%(f, t) (defined as
in (2.2) with the dynamics of the x {t) now governed by (10.1)) converges as¢ —0to an
infinite dimensional Ornstein—Uhlenbeck process. As before its covariance is given
by xexp [— Dk?|t|/2] with the crucial difference that D no longer equals p/y. As
usual let us define the total current—current correlation function {J(q,t)J(q,s)>
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through

QS ) g(0is(9)) > — X f W3al1) D <X g(vig(s)) >

= [dq[dq' f(99(@) < JAa. )T 4(d’,5)>. (10.2)
Then, by the Green-Kubo formula, the proper

D:% T dt]dg<J(g,07.00,0). (10.3)

For interacting Ornstein—Uhlenbeck processes an immediate difficulty is that
the dynamics is time-reversible only if velocity reversal is included. One looses
therefore the symmetry of the Markov semigroup. The purpose of this section is to
point out that it is of great interest to understand an intermediate case where the
dynamics is still reversible but the bulk diffusion coefficient is no longer given by a
static quantity. I refer to interacting Brownian particles in an external periodic
potential governed by

dxft) = — ; grad V(xt) — x,(t))dt — grad U(xt))dt + dw (t), (10.4)
ifj
j=1,2,.... Uis bounded, smooth and U(q + n) = U(q) for ne Z*, say. The stationary
measure are the canonical Gibbs measures for V' + U. We may still define the total
current—current correlation function in the spirit of (10.2) with v{(t) = (d/df)x (t) as
distributional derivative. One obtains

I8, DT 4, 8)) = 3,p0(t — 5)0(g— )<Y 0(x; — q)>

0 0
- - ZUlx—q 10.5
<<;aqu U(x.l q)>’1—‘[t-5(<zl:aqﬁ U(xl q)>>’ ( )

where T, is the Markov semigroup corresponding to (10.4) and { ) is the average
over the Gibbs measure for V + U with given fugacity. Let p =lim|A | (N ,) be
the average density and let p =1lim |A | 7! ((N4) — (N ,>?) be the compressibility
as defined by the fluctuation in the number of particles. Then the builk diffusion
matrix for (10.4) is given by

1 Y
Daﬂ:%(ﬁjwdr fdg | dq'<Ja<q,t)Jﬂ(0,0)>)

PAESV/)

p 1< )
=‘X‘5aﬂ—-'— j dt j'j dq

TP gals12

0 0 )
<<;6q, U(xi“4)>ﬂtl<;@U(xi—q )>> (10.6)

Note that for U =0 our previous result is recovered and that U always has the
tendency to suppress bulk diffusion.

The appearance of the second term in the Green—Kubo formula (10.6) can be
seen from another consideration. Let us add a uniform drift Edt to the equations of
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motion (10.4) and look for the stationary measure. If U =0, then the stationary
measure is still the Gibbs measure as for E = 0. However if U # 0, the stationary
measure will differ from the Gibbs measure and to first order in E this difference is
reflected by the second term in (10.6).

Exclusion processes with speed change show the same phenomena [13,23]. For
gradient systems the stationary measure does not change when adding a drift.
Therefore the current—current correlation has only the §(t — s) piece, and our method
to prove the scaling limit for the density fluctuation field is applicable. For non-
gradient systems difficulties show up of the same nature as for interacting Brownian
particles in an external periodic potential.

Let us then go back to the martingales M4(f, t) and M5(f, t) defined in (4.6), (4.7)
with dynamics governed by (10.4). We observe that still

lijrg My(f,0) = MS(f,07 =tp [daf of .. (10.7)

t
Therefore, in order for (10.6) to be true, [dsyi(f,s) cannot converge to (const)
0

t
j'dsé( £,s), i.e. to a drift. How does it manage then to pick up the missing Brownian
0

motion piece?
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