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Field Algebras do not Leave Field Domains Invariant
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Steklov Mathematical Institute, SU-117333 Moscow, GSP-1, USSR

Abstract. It is proved that von Neumann algebras associated to Op*-algebra
(2, 2) cannot leave the domain 9 of & invariant if they are type I or type 111
factors or finite direct sums of such factors. Hence it follows that in quantum
field theory global and local von Neumann field algebras in typical cases do not
leave invariant the definition domain of Wightman fields.

In the theory of Op*-algebras it is often necessary or just helpful to consider von
Neumann algebras associated in various ways to a given Op*-algebra (2, 9). E.g.,
one of such algebras is (%), where Z;, is the weak bounded commutant of 2, and
there are many others (cf. [1, Sect. 8.17) which are usually larger because Z, is the
largest of all bounded commutants of . We are going to demonstrate now that
there is strong connection between the structure of these von Neumann algebras
and their property to leave or not to leave invariant the domain & of #2. The result
is in itself quite simple but it has interesting implications for quantum field theory:
it turns out that field W*-algebras, global as well as local, under rather general
conditions cannot leave invariant the definition domain of field operators (Garding
domain of Wightman theory). We also get some restrictions on admissible classes
of field Op*-algebras.

We call Op*-algebra (#, 2) nontrivial if it does not coincide with its bounded
part, Z £ P, =PnB(H), and we denote the involution in Z as AT = A*|,, A€ 2,
and the strong bounded commutant of # as #;. Our main statement is the
following

Theorem. Let (2, D) be a nontrivial Op*-algebra such that 2;=2,, or including at
least one essentially self-adjoint unbounded operator, and let R be a von Neumann
algebra such that R9 C2 and RD(2,). Then R is not a type I or type 111 factor.
Moreover, if P;=2P, or P is generated by a system of essentially self-adjoint
operators, then R is not a finite direct sum of type I and/or type I1I factors.

Proof. Let us show that R includes spectral projections of a self-adjoint extension
A of some unbounded operator A € 2. In the case 5 A, A= A*, A¢ B(H), let us
denote E() the spectral measure of A= A4. It is easy to check that any operator
Be 2, commutes weakly with 4 and leaves its domain invariant. Hence, B
commutes strongly with 4 and, by the spectral theorem, commutes with E(1), so
we get E(A) € (2.). In the general case, for A, € 2, 4, ¢ B(H#), let us denote A the
Friedrichs’ extension of the positive unbounded operator A= A4, € 2 and E(})
the spectral measure of A. A unitary operator commuting strongly with A
commutes strongly with A [2, p. 358] and therefore it commutes with E(4). Hence
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E(4) commutes with all unitary operators of £, and if #,=2,, we get again
E(A)e(#,).

Now we can suppose without restriction that E(1)=1I for all >0 and choose
an infinite sequence {c,} of positive numbers such that

E(o,+1)*+E(0);  o;>0, o, =0,+3n%, n=1,2,... 1)

Let us suppose also that Ris a type I or III factor and notice that in this case for the
infinite sequence of nonzero projections E, = E(x,+ 1)— E(o,) in R there exists a
sequence of their subprojections F, which also belong to R and are all mutually

equivalent, i.e.
F,eR, O0%*F,<E,, F,~F,modR. (2)

Indeed, if R is a discrete factor, then every E, majorizes some minimal projection F,
from R and all minimal projections are equivalent; if R is a type III factor, then
every E, majorizes some o-finite projection F, from R and all such projections are
equivalent [3, p. 299]. Due to (2), there are partial isometries T, such that

T.eR, T*T,=F,, T,T*=F, n=1,2,.... 3)
§f
hm( Z 2/k3>—1

k— o0

we get from (1) the estimate
It implies that the series is uniformly convergent and defines the operator

Vo
0 1 .
B=3) —=T;* belonging to R.
n=1 o,
We shall prove that the unbounded operator X = BA is not closable. To this
end we construct a sequence of vectors @, € dom X =2 such that hm @,=0, but

lim X®,=0. Let us take an arbitrary nonzero vector @, € F, 9, and put

n— o0
1

Vo
RZ C2 implies @, € Z, and it is obvious from (1) that lim &, =0. Next, taking into

account that F,<E,=E(4,), 4,=(x,0,+1), the intervals 4, and 4,, do not
intersect if m=n and E, commutes with A, we get

F,AF,=6,,F,AF,.
Due to T,}=T;*F, and ®,=F,®,, this gives us

If we now consider the series T, then taking into account that

<Cn 3 at n-w.

b= ——T,0,, n=23,...

X0,= 1 T*4d,.

Vo
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Whence we obtain

19, X, =

1
T\ [ on®Py— ——= AP
n < an n l/;n H)

1 1

S —=ITH 142, 0,8,]| £ =[P, —— 0
l/;n 1/07'l n— o

[the last inequality follows from the spectral theorem due to &,€ E(4,)#]. It

means that lim X®,=®, &0. On the other hand, if RY C 2, then it follows from

BeR, Ae? that X*=A*B* has a dense domain and so X is closable. This
contradiction proves that R is not a type I or III factor.

Now, let us consider the case R= (P R;, where R, are type I or III factors. Let
i=1

us show that P; e &, P; being projections on the subspaces 4 of the factors R,. In
both cases under consideration now (#; =2, or # is generated by a system of
essentially self-adjoint operators) £, is a von Neumann algebra: in the first case it
is obvious and in the second one it follows from Proposition 1.1 in [4, p. IT]. So we

have

P;e RONR'CRNZ,C%;,
the last inclusion being implied by R C £. It is easy to check (cf. Proposition 3.1 in
[4, p. II]) that if P; € %, then the restriction Z,=2|,, 9,= P;2, is an Op*-algebra
in #, with the domain 9;; moreover, R9 C & implies R;%;C9;and due ton < oo, at

least one of &, is nontrivial. The problem will be reduced completely to that
considered above if we prove

Lemma. Let (#,9) be an Op*-algebra, P, a projection from %;,, 9,=P,9,
P =Py, Then ‘
1) if R and 2,, are von Neumann algebras, then RD(2,) implies Rp D(Z] ,,);
2) P,=2,, implies P| =P, ,,;
3) if P is generated by a system of essentially self-adjoint operators, then so
is 2,.
Proof of the Lemma. The first property follows from the equality proved in
Proposition 3.4 of [4, p. I]: , ,
P Al g @, @

(in [4] P, was supposed to be cyclic but this was not used in the proof of (4)). To get
the second property, let us notice that if =2, then an arbitrary element of the
von Neumann algebra (%), is of the form P,B|p , with Be Z,. Taking into
account #(P,9)CP,2, we have for all e P, A€ P:

P.Blp, 4 Alp,o(P,9)=P,BAP,®=AP BP9
=AlP,@P1B|P13?(P1(p)a
which means (%;)p, CZ{ ,, and due to (4) this gives us the desired:
’@{,sc'@{,wz(gasl)Plc’@;,s‘

Finally, we shall show that if A€ is essentially self-adjoint then so is
A =Alp,ge?,. From P ACAP, we have P;ACAP,, which implies that
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P, domACdomA and the restriction Alp, 4or, 5 is Well-defined. It is easy to see that
it is a self-adjoint operator for it obviously is closed and has the dense (in P, ) set
of analytical vectors of the form P, , y being analytical vectors of 4. Let us show
that

ZIPl domZCZI . (5)

Forevery ® e P, dom A we have ®=P,y, yedom A and y = lim y,, where {y,}isa
sequence of vectors from & such that lim Ay, = Ay. Whence it follows that the

sequence @,=P,x, converges to @ and the sequence A,P,=P Ay, is also
convergent due to the convergence of Ay,. It implies ®edomA,, and so (5) is
proved. Now, if A|p, 4om 1 is self-adjoint, then so is 4,. q.e.d.

Turning back to the proof of the theorem, we see that in some of the subspaces
2, there are nontrivial Op*-algebra &, and von Neumann algebra R, satisfying all
the conditions of the first part of the theorem which was already proved. It means
that R, is not a type I or type III factor and the theorem is proved.

The idea of the proof was first suggested in [5], where the result was obtained
close to the EW* part of the following

Corollary 1. Let 2 be a closed EW*-algebra [6] or a SV*-algebra [ 7] generated by
a system of essentially self-adjoint operators or such that Z;=2,,. Then the algebra
P, isnot atypel factor or type I11 factor or finite direct sum of such factors. If 2 is
a SV*-algebra including at least one unbounded essentially self-adjoint operator,
then P, is not a type I or type 111 factor.

Proof. For the listed classes of Op*-algebras, 2, =(2,)’; moreover, for a closed
EW*-algebra, Z,=2,,

A similar fact takes place in the theory of Baire O*-algebras E: their bounded
parts E, are AW*-algebras and it was proved recently [8] that if E=E,, then E, is
not an AW*-factor of type Ior type III and is not a finite direct sum of such factors.

Now, let us turn to physical implications. It is clear that the type I part of the
theorem puts some restrictions on the global structure and the type III part on the
local structure of nets of W* field algebras.

Corollary 2. Let a Wightman theory be given in which the field Op*-algebra (2, D) is
such that P.=2P,, or is generated by a system of essentially self-adjoint field
operators. Let the global W* field algebra F =(2,,) be such that 9 C%. Then
1) & is not a direct sum of type I factors;
2) if there is a strongly cyclic vacuum vector, then there is the infinite vacuum
degeneration, i.e. dim A, = oo, #; being the subspace of all translationally invariant
vectors.

Proof. By virtue of the theorem, & is not a type I factor or finite direct sum of such
factors. Infinite sum is now excluded, too: the reduction of the Wightman theory to
the subspace #; of any member of this sum is again a certain Wightman theory,
and so the corresponding field Op*-algebra must be nontrivial. Validity of the
theorem for the algebras &, and %, is shown in the lemma. Now, if the theory has a
strongly cyclic vacuum vector, but at the same time dim 5, < oo, then due to
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Theorem 2.51in [4, p. IT], & is a finite direct sum of type I factors which contradicts
the theorem.
It makes sense to formulate the inverse statement as well.

Corollary 3. Let a Wightman theory be given in which the field Op*-algebra (%, D) is
such that P.=2,, or is generated by a system of essentially self-adjoint field
operators. Let this theory possess the normal global structure, i.e. F =(%,) is a
direct sum of discrete factors. Then

1) F969;

2) S F;

3) 2 is not a SV*-algebra or closed EW*-algebra.

The implications for local algebras % (0) are obvious: in all cases when these
algebras are proved to be type III factors (and the conditions on the field Op*-
algebra are met) they cannot leave the domain of field operators invariant. Indeed,
for any open region @ in the Minkowski space M, the field operators A(f),
suppf C 0, generate the Op*-algebra #(0)C < with the domain 2(0)=%. Von
Neumann field algebras in theories with essentially self-adjoint field operators
A(f), f=FfeS(R?*) are defined by the formula

F(0)={exp[iA(f)]|suppf CO}" =(2(0),)

(the second equality can easily be checked, cf. Proposition 1.1in [4, p. II]) and the
definition #(0)=(2(0),) can be preserved in general theory. Besides this, in
general theory some other definitions are used, in particular [9],

F(0)={TeB(H)| TA(/)CANT, TA(f)* CA(f)*T, suppf CO'}.

Type III for local algebras is proved in general theory (with the unique vacuum
vector Q) only for some classes of unbounded regions, of which the most interesting
are wedge regions

We={xeM|x'>|xl}; Wy={xeM|x'<—|x}.
According to [9] and [ 1, Corollary 2 to Theorem 8.7], if Q is cyclic for % (W), then
F(We)=F (We)=P(Wy),,
Taking this into account, we obtain

Corollary 4. Let a Wightman theory be given in which the vacuum vector is unique
and cyclic for # (Wy) and the Op*-algebra P(Wy) is such that P(Wy).=P(Wy),, or
has at least one essentially self-adjoint operator. Then

1) F(WR)2 82,

2) P(Wrhp & F (We);

3) P(Wy) is not a SV* or closed EW*-algebra.

Finally, as we know, in theories of free fields of arbitrary spins and masses, the
W* field algebras & (D) of double cones D =D" are generated by essentially self-
adjoint field operators and are type I or III factors in the fermion theories and type
IIT factors in the boson ones. So we have
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Corollary 5. Let {F(0)} be a net of W* field algebras of an arbitrary free field.
Then for any four-dimensional open region ("CM,

1) F(O)289;
2) 2(0),GF(0);
3) 2(0) is not a SV*- or closed EW*-algebra.

Clearly, this list of implications can be continued if other results on types of

global and local field algebras are available.
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