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Abstract. A thermodynamic system of equally charged, plus and minus,
classical particles constrained to move in a (spherical) ball is studied in a region
of parameters in which Debye screening takes place. The activities of the two
charge species are not taken as necessarily equal. We must deal with two
physically interesting surface effects, the formation of a surface charge layer,
and long range forces reaching around the outside of the spherical volume. This
is an example in as much as 1) general charge species are not considered, 2) the
volume is taken as a ball, 3) a simple choice for the short range forces (necessary
for stability) is taken. We feel the present system is general enough to exhibit all
the interesting physical phenomena, and that the methods used are capable of
extension to much more general systems. The techniques herein involve use of
the sine-Gordon transformation to get a continuum field problem which in
turn is studied via a multi-phase cluster expansion. This route follows other
recent rigorous treatments of Debye screening.

0. Introduction

The rigorous study of Debye screening was initiated in [4] by Brydges, with the
treatment of a charge symmetric lattice Coulomb gas. This work was greatly
generalized by Brydges and Federbush [7]. Their proof applies to continuum
Coulomb systems with essentially arbitrary short range forces, and charge
symmetry is not required. Imbrie [12] improved the convergence estimates of [7]
and removed a restriction on the relative sizes of the activities. He also proved
Debye screening in Jellium.

All of these treatments of Debye screening impose two important constraints on
the system. First, there is a constraint on the activities zf and charges et which is
usually referred to as a "neutrality" condition. This condition may be viewed as
essentially saying that Σ z / e i = 0 Second, Dirichlet boundary conditions for the
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Coulomb interaction are used. Physically, this means that the walls of the
container are conducting. The significance of these constraints is that they
minimize surface effects at the boundary of the container.

This paper is devoted to the study of a Coulomb system in which these two
constraints are not imposed. Our system has two species with charges ±e and
activities z+ and z_. The "neutrality" condition would require z + = z_ we do not
enforce this. Free boundary conditions are used for the Coulomb interaction. This
corresponds to a container with insulating walls. We modify the Coulomb
potential at short distances in a way which passes easily through the Sine-Gordon
transformation [see Eq. (1.2)]. To facilitate computing covariances we take our
finite volumes (containers) to be spherical with radius R.

The most interesting results we obtain for this system are for a finite volume.
The charge density J(x) is non-zero near the surface of the volume (see Theorems
1.1 and 1.2). This surface charge is a result of the unequal activities z+ and z_.
Near the surface of the volume Debye screening breaks down. The correlation
function between two charges near the surface decays as 1/r3 rather than
exponentially (see Theorem 1.6). In the infinite volume limit these surface effects
disappear, and there is Debye screening. Moreover, the infinite volume correlation
functions of this system are equal to those of the system whose activities are both
equal to (z+z_)1/2 (see Theorem 1.5).

We will give two explanations of these surface effects. The first explanation uses
the mean field treatment of Debye and Hϋckel. The second will use the Sine-
Gordon transformation and serve as an introduction to our proofs. The Debye-
Hϋckel equation for the mean field potential ψ(x) is

Δψ = (-z + e-βip + z-eβ*)χ, (0.1)

where χ is the characteristic function of the volume (which we call A). In the infinite
volume limit (χ = 1), the solution is the constant potential ψo = (2β)~1ln(z+/z_).

The solution of this equation for a finite volume, the "instanton," is studied in
Appendix A. Contributions of J. Rauch to this study are gratefully acknowledged. It
is shown that ψ(x) approaches the constant ψ0 well inside the volume. Since the
charge density is — Aψ, the charge density is essentially zero away from the surface
of the volume. Near the surface one finds that there is a charge per unit area of
(2Rβ)~1ln(z+/z_). It is easy to check that such a charge distribution yields the
potential ψ0 inside the ball.

With free boundary conditions the screening breaks down near the surface
even if z+ =z_. So we will restrict our explanation of the 1/r3 decay to the simpler
case of equal activities. The simplest explanation is that the wall of the container
interferes with a test charge's attempt to surround itself with a screening cloud. The
clouds of two test charges near the wall will have non-zero dipole moments. This
dipole-dipole interaction produces the 1/r3 decay.

To see this 1/r3 decay in the Debye-Huckel theory, we start with the Debye-
Hϋckel equation

- Aψ(x) + 2zχ(x) sinhβφ(x) = δ(x - y).

We have included a test charge at y. If we linearize this equation by replacing
UΏhβψ(x) by βψ(x), then ψ(x) = (-A+l^2χ)~1(x,y). With Dirichlet boundary
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conditions this covariance has exponential decay even if x and y are near the
surface. This covariance with free boundary conditions is studied in Appendix B. It
only decays as 1/r3 along the surface. (For technical reasons we only prove a 1/r3 ~ε

decay.) Jancovici [13-16] studied a system with an infinite insulating plane wall
using Debye-Hϋckel theory. In this approximation he found that the correlations
along the wall decay as 1/r3.

The Sine-Gordon transformation expresses the partition function as

φix) is a free (Gaussian) field whose covariance is essentially ( — A) ί(x,y). The
correlation functions are given by expectations of products of the observables
z±e±ιV^φ(x\ One is tempted to argue as follows. Translate ^(x) by the purely
imaginary constant ίβ~1/2c. Since Aίβ~1/2c = 0, dμ(φ) would be unchanged, while
z + would change into z + e+c. So there would be a one-parameter family of activities
which yield the same physical system. In particular, taking c =\In(z+/z_), the two
activities would both be equal to (z + z_)1 / 2. For technical reasons one cannot
translate ^(x) by a constant. However, in the infinite volume limit the above
conclusions are correct. Lieb and Lebowitz proved the invariance of thermody-
namic quantities like the pressure and densities under the transformation z^z^
[17]. For our model we show that the infinite volume correlation functions are
invariant as well.

The objection to translating φ(x) by a constant is not merely a technical point.
In a finite volume the system is not invariant under z±-+z±e+c. The correct
approach is to translate ^(x) to the stationary point of the functional integral. An
easy computation reveals that this stationary point is ϊ\/βψ(x), where ψ(x) is the
instanton defined in Eq. (0.1). Since ψ(x)&ιp0 well inside the ball, this translation
essentially replaces z + and z_ by (z + z_)1 / 2 well inside the ball. The translation
introduces the term exp[z]/p J dxφ(x)Δψ(x)]. This term shows the presence of a
surface charge distribution. (Recall that under the Sine-Gordon transformation an
external charge distribution q(x) becomes a factor of exp[ϊj/J8fdx^(x)^(x)].)

The explanation in the language of the Sine-Gordon transformation of the
breakdown of screening near the boundary is similar to the first explanation.
Debye screening occurs because the quadratic part of the cos]/j8^(x) terms acts
like a mass for the field ^(x). Thus the inverse covariance — A becomes — A +1^ 2χ.
With Dirichlet boundary conditions the absence of this mass outside of the volume
is irrelevant. With free boundary conditions the covariance ( — A + lΣ>

2χ)~ί feels
the absence of this mass, and so doesn't have exponential decay everywhere.

As in the previous rigorous studies of Debye screening we analyze the
functional integrals by a multi-phase Glimm-Jaffe-Spencer cluster expansion [10].
This expansion is complicated by the fact that the cosine interaction has infinitely
many minima. The standard approach, which we follow, is to introduce a function
h(x) which is constant on cubes and only takes on the values 2πβ~1/2n, where n is
an integer. h(x) labels which minima ^(x) lies near, h(x) is only defined inside oίΛ;
one should think of h(x) as being zero outside of A.

The sum over the /z's is controlled by a small factor e~E. For each face between
two cubes inside of Λ, there is a contribution to E of the order of (δh)2, where δh is
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the change in h across the face. So e~E would control the sum over h except for the
translations h(x)-+h(x) + 2πβ~ll2n. With Dirichlet boundary conditions E also
contains contributions of order (δh)2 for the faces on the boundary of A. So these
translations present no problem.

With free boundary conditions the situation is drastically different. Let hn

0 be
the function which equals 2πβ~ ίl2n everywhere. Then the energy E oϊhn

0 is only of
order β~ 1n2R instead of β~ ̂ rpR2. As a result of this the approach of [7] will not
work.

We use the notion of a "sector" to handle the problem. To each h we assign an
integer n, and say that h belongs to the nth sector. For intuitive purposes one may
define the sector of h to be the closest integer to the average of β1/2h/2π over the
boundary of A. The partition function is a sum over all the /z's. We split this sum up

00

into a sum over each sector. Thus Z — Σ Z{n).
n— — oo

Rather than doing a cluster expansion for Z, we do an expansion for each Z(n).
Then we show that Z(n)/Z(0) is bounded by e~

&β~Xn2R. So only the zero sector
survives in the infinite volume limit. In a finite volume the contribution of the
nonzero sectors to the correlation functions will be of order e~εβ~ln2R. For small β
this is much smaller than the zero sector contribution.

The correspondence h<-+h + hn

0 gives a one-to-one correspondence between the
terms in Z ( 0 ) and Z(w). The corresponding terms differ in two important ways. First,
the energy E(h) is different from the energy E(h + hn

0). This difference is helpful since
E(h + hn

0) is greater than E(h) by an amount of order β~ίn2R. So this provides the
small factor of e~εβ~ίn2R. The second difference is that the integrand in the
functional integrals for corresponding terms in Z(M) and Z ( 0 ) differ near the
boundary. One would expect a contribution to Z(π)/Z(0) of order ecR2 from this.
However, because the surface charge is only of order l/R, the difference in the
functional integrands is only of order l/R. So the contribution to Zin)/Z(0) can be
bounded by ecR. Z(w) (and Z(M)/Z(0)) are studied by means of a polymer-type cluster
expansion.

The use of free boundary conditions introduces another technical problem that
must be handled differently from the treatment in [7]. In the cluster expansion,
factors of iV! at each cube arise for various reasons. In [7] the exponential decay of
the covariance is used to beat these factorials. We cannot use this "exponential
pinning" since our covariance is only slightly better than integrable. The work of
Battle and Federbush [2] provides an extra factor of 1/JV! at each cube (see also [1,
3, 5, 8, 20]). Thus we can tolerate an N! at each cube. This improvement is
essential for our expansion. In [7] the convergence estimates actually contained
(Niy at each cube with p fairly large. By doing these estimates more carefully we
obtain p = 1 + ε with e small. The (N !)ε can be overcome by a "power law pinning"
since our covariance is slightly better than integrable.

Some familiarity with [7] is assumed. In particular we recommend reading
Sects. 1 through 8 of [7], excluding details of the infinite volume limit (in Sect. 1),
and the Mayer Series (Sect. 3). References to a few other sections of [7] are made,
but these may be treated as isolated references to any other source. The present
cluster expansion is rather different from that in [7], so one may well restrict ones
attention to the sections mentioned above.
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In the future one may want to treat the most general problem in classical Debye
screening involving melding the techniques of [7, 12], and this paper. At present
this seems possibly doable, but complicated much beyond its value.

There has been interesting work studying screening in an axiomatic setting (see
[11] for example). Recent work in the physics literature studies surface charge and
effective potentials near a plane surface [13-16, 19].

In addition to organizational details mentioned above, we wish to outline the
paper's development as follows. The basic results are stated in Sect. 1. Section 2
displays the Peierls expansion. Section 3, and Appendix E are concerned with
organizing regions of space that for a given term in the Peierls expansions are
treated as units in the cluster expansion. Section 5 describes the interpolation
procedure, and Sect. 6 the polymer expansion. Sections 9 and 10 present energy
estimates, interesting geometrical analyses of the division of Coulomb-like energy
over units in the cluster expansion. Sections 7, 8, 11, 12 handle the combinatoric
aspects of the cluster expansion, as well as certain estimates of functional integrals.
Appendix D studies some theorems of use to us, that fall in the domain of
geometric measure theory.

1. Basics

We have two charges, + 1 and — 1, with (bare) activities z+ and z_. These need not
be equal; this will mean we are not imposing a neutrality condition (for our system
the imposed neutrality condition (3.8) of [7] would be z+=zJ). We let the charge
density J be

J= Σ efli, (1 .1 )
; = +

where et = + 1 and σt is a sum of delta functions at the position of particles of
species i. (The notation of [7] is a basic guide for us.) We let

1 1
(1.2)

λ will be a fixed small parameter, lD will be specified, and the natural infinite
volume Green's functions are always understood. We set

z±=z±ell2^x x), (1.3)

z 2 = z + z - , (1.4)

z2 = z+z_, (1.5)

ll = (2zβy\ (1.6)

PD = (2zβyl, (1-7)

υ=\\juj. (1.8)

The particles are constrained to move inside a ball of radius R. We let A denote
this volume

\X\^K}. (1.9)
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We let

Σj^j ί e->°A, (1.10)

(1.11)

Z o is 7(1) with (7 = 0, and z+ and z_ replaced by z.

(1.12)

The dependence of quantities on R is here suppressed in the notation. We
construct a Gaussian measure dμo(φ) on a measure space of continuous functions,
^(x), x e R 3 , with covariance w(x,y). One then has

, (1.13)

(1.14)

where

Z(^) = e ί* (*+ f i + + 2 '- e- ), (1.15)

where χ is the characteristic function of A and

We write (1.14) formally in the familiar form

++~z-ε-\ (1.17)

(1.18)

We find as a stationary point of the action S a solution of

u'^-(ifill2z+eifii/24>-ifill2z^e'ilti/2^x = O. (1.19)

We rewrite this as

ή ^ - β ^ e - < i l > 2 η χ = O, (1.20)

with D 2 = — J , and ψ = i^. We note that we will find a stationary point of purely
imaginary φ! An important ingredient of the present procedure will be a complex
translation of the integration in (1.17), so that the integration contour will pass
through this stationary point.

Before we discuss (1.20) it will be convenient to detail our restrictions on
parameters.

Parameter Manifesto, λ- is a fixed small parameter. There are fixed positive
constants c± that constrain z+ and z_ as functions of/?,

βz+ =c+ ,
„ (1.21)
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thus the only physical parameters we vary are JR and β. All of our results will be
proven under the condition that β is small enough. For convenience we require

ίD~l. (1.22)

We will also have mathematical parameters L and L, that must be chosen small
enough and large enough respectively. Our estimates must be understood with the
quantifiers: If L is fixed large enough, if L is fixed small enough, and if λ is fixed
sufficiently small, then for β sufficiently small depending on L, L\ λ, ... . We will
write this as "if PM, β<β0" Notice with our conditions we may assume lD and lD

are arbitrarily close in value.
We will seek a solution of (1.20) that goes to zero at oo (it will be unique). In the

interior of the sphere ψ will approach ψ0 = 1 / 2 ln(c_/c+) with distance from the

boundary. This solution will be studied in Appendix A. Our choice of a spherical
volume is mainly to simplify the study of (1.20) and not for any deep physical
property of spheres, such as was used in [17]. ψ(r) may be qualitatively viewed as
follows

For r>R, xp satisfies

and thus

D2\D

1

r

λ2n

For r<Rwc will prove in Appendix A:

Theorem 1.1. Surface Charge Estimate

r>R.

(1.23)

(1.24)

(R-r)

Rβί/2\ψ(r)-xp0\<ce
•(l-ε)

r<R. (1.25)

We notice ψ approaches ψ0 with distance from the boundary - of course for
any given sphere this distance is bounded by R. ψ — ψ0 "lives" within a distance
from the boundary of order of magnitude lD. This is a measure of the surface charge
density that we find falls off with R, as l/R. The larger the sphere the less the surface
charge density. Physically, the non-equality of activities z+ and z_ leads to the
development of a surface charge. The system in the deep interior, under the
influence of the potential due to the surface charge together with the unequal

activities, acts as a system in zero potential with equal activities z. The potential
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due to the surface charge will be — —^ φ 0 . I Notice an infinitesimally thin layer of
P /

surface charge living on the boundary and with density (charge/area) of

σ0= ~ ΊrΓ/2 ~~Ψθ= ~ ~—n^n(c-/c + ) (1.26)

would yield the correct potential.
It is convenient to define

Ύ Γ Ψ ? Ψ0 r Ψ 0 ' \ )

We then set
J0(x) = J0(\x\) = χ2zsmh(ψ-ψ0). (1.28)

Theorem 1.2.

One should note J(x)~l//?, so (1.29) has nontrivial content. Consistency
between (1.29) and (1.26) leads us to expect our next result (shown in Appendix A).

Theorem 1.3.
a) The following limit exists for each d>0.

f(d)= lim RJ0(R~d), (1.30)
R-*oo

b) I f(<I)dd=-—ln(c-/c+). (1.31)
o 2p

To study Z and I (A) we make the translation φ->φ — iψ. This is followed by a
Peierls expansion, and subsequent further translations of φ as in [7]. These steps
are pursued in Sect. 2. After the second set of translations one is naturally led to
study fields with a covariance C(x, y)

(1.32)

'i (1-33)

This is exactly what we would expect from Eq. (7.5) of [7]. We will need estimates
for C(x, y) with x, y in A. Consider a great circle cross section containing x and y.

Here dx=d(x,y), d3 = R — \x\, d2=R — \y\, and s is distance along the circle of
radius R. Appendix B is devoted to proving the following estimate, with l£
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Theorem 1.4. Covariance Estimate

l ) ] i (1.34)
I 5 3 - ε + 1 ,

We believe s3~ε can be replaced by s3. To find intuition for the 1/s3 behavior, it

is an easy exercise to show that — has an inverse distance cube behavior in

the x — y plane. χ z > 0 is the characteristic function for {z>0}. This estimate
suggests the form of our main results which we now present.

We first for two unit cubes Aί and A2 define ir

ε(Aί,A2)

1 ' (1.35)
s 3 " £ + l

yeA2

where s, du d2, d3 are as in (1.34).

Theorem 1.5. There is a βo>0 such that if PM, β<β0 then

lim <^>/? = <^>oo? (1.36)
JR->OO

where A is an operator as in (4.4) of [7], < >^ is the expectation as a function of R,
and { ) 0 0 is the infinite volume limit as calculated in [7] (with z+=z_=z).

Theorem 1.6. Given ε > 0, there is a βo(ε) > 0, such that if PM, β < β0, and if A and B
live in A1 and A2 respectively, then

KAB}R-(A)R(B)R\<c(ε)rε(AuA2). (1.37)

There is one basic conjecture we did not attempt to prove in this paper.
Equation (1.26) must be the total surface charge density as R->oo, not just the
density to order β'1. We have not decided the most precise form of statement of
this conjecture; we do not know how difficult a proof would be.

2. The Peierls Expansion, Two Translations

We will use the notation .

M = ̂ -/C4), (2.1)

so that

Z = [ l ] , (2.2)

and if stf{φ) is a functional of φ

^ (2.3)

(2.4)

We assume st(φ) is analytic and sufficiently bounded so we may translate the
contour φ-+φ — ίψ. Let

/ ( φ ) "(φ) (2.5)

, (2.6)
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with

U^+^ψu-'ψ + ίjψu-'ψ+ϊχiz + eVe^^ + Z-e-Ve-^^-lz). (2.7)

We write

U1 = iίψu-iψ-iiXφ2χ+U2. (2.8)

Henceforth we will often (but not always) set

Iέ = l . (2.9)

As in Sect. 6 of [7] we now introduce functions h, constant on each cube in the
lattice of side L ({ΩJ the set of such cubes), but defined only on cubes that have
non-empty intersection with A. The values assumed by h are integral multiples of

-jrfβ The set of such h we call Jf. As in [7] we replace (2.6) by

h (2 10)

We let

and define g by

I j 2 % ) (2.12)

We also introduce E(h, h!) by

E(h,h')=ϊA(g-h)(g'-h')+ ^gu^g' (2.13)

where g' is defined as in (2.12) with h replaced by h!. We now translate φ, by a
change of variables φ-*φ + g. We also write this as

(2.14)

where <̂ 0 is the "old" field.
We write

j*'(φ)9 (2.15)

and let N be defined so that dμ is a normalized Gaussian of covariance C, and

dμ0e**ΐίφχ. (2.16)

Equation (2.10) may now be put in the form

=ΣN$ dμ(φ)eQe ' "£ ( f t ' h)eG{φ + g)st'(φ). (2.17)
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For some purposes it might be more aesthetic and technically advantageous
1 A2 1 AU Ul

~2 ψ χ replaced by f J -̂
lD I

function chosen to ensure Zl2

2 = 0 at φ = 0. Then one would consider

separately

to have defined U29 with \\j2-φ1Ί replaced by \\^φ2χ, I2 a spatially dependent

* δ2U2

and

C 0 = l « - 1 + χ '2
D;

This is pursued only in Appendix B, and otherwise C is used to denote Co.

A Technical Point. In fact at the edge of the sphere the cubes are truncated. We
thus find it necessary, at the edge, to combine some groups of cubes of side L to
form unions whose truncated volume is ^L 3 , but with diameter less than cL.
Each of these unions is assigned to a fixed cube at the unit (and L scale). A
distinguished L-cube in each union determines this assignment. When we refer
to unit (L or L) cubes, we include without comment the cubes as distorted at the
boundary, h is constant on each "union L-cube."

3. Hunk and Sector Definitions

3.1. Hunks

We begin considering a specified fixed h. We let, as in [7], Σ denote the closed set
along which h has a step discontinuity. However the boundary of A does not give rise
to discontinuities, h is undefined outside A. We only consider cubes having non-
zero intersection with A. Σ" is the set of unit cubes in A whose distance from Σ is
less than L. Each connected component of Σ* is called a hunk. The unit cubes in
A\Σ^ are called atoms. A hunk is a B-hunk if it intersects dΛ9 otherwise an I-hunk, (I
and B abbreviate interior and boundary respectively).

We now enlarge (and coalesce) the hunks in certain cases where h is particularly
nasty. Given a hunk M let hg be the function which agrees with h in M and is
defined off of M by the requirement that h$ have no discontinuities outside M. A
hunk M is a monster if

K2Bi\Λ\. (3.1)

εx is a positive constant later specified. (The sum as in (9.117) of [7].) A £-hunk M is
a Jumbo if for every subset S of dΛ with h^ constant on 5, the area of S is ^ |
Otherwise a β-hunk is normal.

We proceed to detail the enlargement process.
If M is a β-hunk that is normal, then there is an integer m with
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on more than one half of dA. We set

Sc = {x e dA: M x ) + 2πβ- 1/2m}

and add to M the cubes in A within distance E of Sc.

Addition to M

If M is a jumbo, then we add to M the cubes in A within distance L oϊdA. Note
that in this case there will be only one B-hunk at the end of the enlargement
process.

If M is a monster, then we add all of A to M.
In the above process of enlargement of hunks, two or more hunks may overlap,

and then we coalesce them into a single new hunk. For example if there is a
monster, at the end of the process there is only one hunk. In Subsect. 3.4 we will
further enlarge the hunks. For now we work with the hunks after this first
enlargement process. There is still a natural nomenclature of jumbo, monster,
/-hunk, and £-hunk for those enlarged hunks.

3.2. Sectors

The assignment of a sector to h, is the assignment to h of an integer, n. We make this
assignment distinguishing three cases.

I) We assume there is a monster among the hunks. We consider the average

(3 2)

and let n be the integer closest to this average (the smallest in case of a tie).
II) We assume there is no monster among the hunks, but that there is a

jumbo. We consider the average

1 βί/2

1 f 4r-Λ (3-3)\dA\ L 2π

and let n be chosen as the closest integer to the average (the smallest in case of a tie).
Ill) We assume there is neither a jumbo nor a monster among the hunks.

Lemma 3.1. Let Mx and M2 be normal B-hunks; so there exist SMί and SM2 subsets
of dA such that \SM.\>^\dA\, and there are mx and m2 with

on SMι. Then mί^
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So in Case III) we can define the sector n as follows. If there are no E-hunks then
h is constant on dΛ, say h = 2πβ~ί/2n. We let n be the sector of h. If M is any
5-hunk, we let n be such that

on more than one half of \dΛ\. By Lemma 3.1 this is well defined.

3.3. Properties of the Sector Definitions

We now have a decomposition of #? into sectors

Jf = U ^ ( Π ) . (3.4)
neZ

hn

0 is the unique constant function in Jt(n)

If M is a connected subset of unit cubes in Λ, we define the subset Jf^0) of ffl(0)

as follows, /i is contained in Jf^0) if and only if h has exactly one hunk and it is M. If
M = 0 we set e ^ f

0 ) to contain only the constant zero function.

Lemma 3.2. a) If he^{n\ then /t + fy?e J ^ ( n + m ) and h and h + h% have the same
hunks. They also fall into the same cases (I, II, III) in Sect. 3.2.

b) There is a one-to-one correspondence between elements h of J^{0) and a
specification of

1) an integer fc^O,
2) disjoint connected sets M l 5 M 2 ? . . . ,M k ,

3) hieje$9i=l,...,k.
Given 1), 2), and 3), h is given by

h = hx+...+hk { = 0ifk = 0). (3.5)

Given h9 k is the number of hunks of h and M 1 ? . . . , Mk are the hunks. In 2) we do not
distinguish the order, a permutation of elements is not considered a new choice. We
also implicitly assume Jfiίί

o.)φ0 and Mt + 0.

From now on we will denote elements of 2tf{n) by hn. Any hn can be written
uniquely as

hn = hn

0 + h (3.6)

with he Jf(0). It follows from (3.5) that

(3.7)
M

This way of writing h" is central to our decoupling procedure. We let

), (3.8)

) . (3.9)

3.4. The Second Enlargement of the Hunks

The hunks we have developed so far will now be further enlarged and coalesced.
This will be done in such a way that all the properties of hunks and sectors as
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presented in Subsect. 3.3 remain true. This is guaranteed by the way the
enlargement is performed: The enlargement is done in the zero sector in
Appendix E; the enlargement in other sectors is then uniquely determined by the
requirement that Lemma 3.2 remains true.

The purpose of this process is to enable the estimation of functional integrals in
Sect. 12 to be performed. The details are quite technical, using special mathemat-
ical results from Appendix D. The basic enlargement may be qualitatively
understood by considering the following simple geometry. Suppose a hunk is
approximately the shape of a hollow spherical shell. Suppose h = 0 outside the
shell, and h = h1^=0 inside the shell. We then desire the thickness of the shell to be
proportional to \hί |. In general hunks depend not only on the discontinuity set, but
on the magnitude of the discontinuity.

From now on (unless otherwise noted) we work with hunks after the two
enlargement processes. Likewise the spaces ffl^p are spaces of /z's in Jf?(0) that after
the two enlargements have the single hunk M.

4. Initial Analysis of Sector Contributions

4.1. Sector Decompositions and Transmutation

Corresponding to the decomposition of Jtf into sectors, as given in (3.4)

jf = \J j f ( λ ί ) . (4.1)
neZ

One may decompose the sum in (2.17)

with s/(φ) = 1 one gets

, (4.3)

which we explicitly write from (2.17) as

Z ^ = NeQ Σ e-ll2Eihn>hn)$dμ(Φ)eG{φ+9n). (4.4)

It is suggestive of some further developments to write Z ( n ) (if n φ 0) as

Z{n) = NeQ Σ e~ίl2E{h'h)Uμ(Φ)eτeG{φ+d) (4.5)

with

(4.6)

We may view the n-sector as having transmuted into a modified zero sector with eτ

the modification. The modification is easily seen, from (4.6), to naturally divide
itself into a numerical factor, the change in the energy, and a nontrivial distortion
of the integrand. This division was qualitatively discussed in the introduction.
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4,2. Extraction of Some (Easy) Z Ratios

In this subsection and the following two sections a polymer representation of Z ( n )

will be developed. We first specialize to the cluster expansion for Z(n), since Z ( π ) is
our most basic object, and since we will pattern other developments after this. We
will associate a partial partition function ρt to each unit cube A v and multiply and
divide by these factors in a natural way. We will also multiply and divide by certain
other ratios of partition functions in a way much as done by Imbrie in [12]
corresponding to changing boundary conditions - but our situation herein is
much simpler than that in [12].

We first define ρA (A for "atom"), and as in Eq. (8.5) of [7] we associate to A A the
function G(,A). We then set

l < + - Λ K (4.7)

We proceed to define "normalized" Z(n\ by dividing out some simple factors.
First for the case n = 0, we set

Z ( 0 ) = ~ e ~ e Π ( l / ρ J Z < ° » . (4.8)

We now define Z(n) for n φ 0 (although the expression also is correct for n = 0) using
a small parameter α2 > 0

N A '

Basically we are using part of the energy E(hn

0, h
n

0) to suppress the whole sector Z{n\
and part to control our estimates for Z{n).

We now present expressions for Z{n) and Z ( 0 ) as derived straightforwardly from

(4.8), (4.9), (2.17) [with st(φ) = 1], and the basic definitions of E(h, W) and G. Mt is

important to note that G(φ) is constructed to be invariant under constant changes

in its argument by multiples of ~rγjγ on cubes in {Ωa}, except for the term

-E(h$,h)~il

M

JAM."' V.
1

UeiShMU~ίψU—, (4.10)
M A QA

f(«) = V e

G{φ * h h ) i 5 h l (4.11)

In (4.10) and (4.11) the product over A is over all atoms in A; and the product over
M is over the hunks of h, as expressed in the representation of (3.7).

5. Interpolation

Our polymer, P, will specify a sequence of disjoint sets YUY2, ...,Ym, each Y{ a hunk
or an atom (see Sect. 8 of [7]). There will also be specified an (ordered) tree graph,
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ηp (see Definition 8.2 of [2]). As in [7] and [2], and standard in cluster expansions,
the sequence of Yt is determined by differentiating interpolated expressions with
respect to interpolation parameters 5 l5 ...,sm_1. In this section we define the
interpolation procedure, which in effect, determines the cluster expansion.

5.1. Interpolation of Covarίance

The covariances are interpolated as in [7], explicitly detailed in Sect. 3.3 of [4].

5.2. Terms that Factorίze

To uniquely determine the polymers developed by the cluster expansion
procedure, it is sufficient to specify the distribution of the factors in (4.11) to the Yb

for those factors that factorize, and the interpolation of those factors that do not.
We first specify the handling of factors in (4.11) that completely factorize:

a) YIVQA>
A

The region Yt is assigned the factor

Π l/QA9 (5.1)
AeYι

where A e Yt states the corresponding cube is geometrically contained in the region
oϊY,

b)
M

Yt is associated a factor 1 if YJ is an atom, and if 1̂  is a hunk M it is associated the
factor

c) We now view the term E(hn

0, h
n

0). We note

E(hi K) = f hn

0(K - gl) = Σ ί KiK - gn

0). (5.3)
Y

We associate to Y( the factor

e-α2/2JΛ8(Λ8-g

d) Similarly we observe for EQf0, h),

E(h"0,h)=Σ
M

We associate Yt the factor of 1 if Yt is an atom, and to Yt if Yt is the hunk M

E(h"0,h)=ΣE(K,hM). (5.5)
M

5.3. Interpolation of the Energy Term, E(h, h)

We view the identity
E(h,h)=ΣΣE(hM,hM;). (5.7)

M M'
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The diagonal terms factorize, assigning 1 to Yt an atom, and if Yt is the
hunk M the factor

e-ί/2E(hM,hM) (5 g\

The expression Σ E(hM, hM) is treated as a two body potential between hunks.
M*M'

Thus at the end of the interpolation procedure our polymer will have associated to
it the factor

e - 1/2 Σ E(hί,hj)σ(i,j) / ^ m

σ(i, j) symmetric in i and j

σ{iJ)=\ls s 7<r (5 10)

(Here we have set ht = 0 if z is an atom.)

5.4. Interpolations of g — h

As in (8.5) of [7] we associate to region Yb G( , 1̂ ), and we have associated to Yt the
factor

eG< y'>. (5.11)

However the argument of G in (4.11) contains the term g — h, which unlike in [7] we
must decouple from effects of other hunks. We write

hM). (5.12)
M

In the polymer, we interpolate the g — h in G(, YJ so that at the end of the
interpolation procedure the g — h has become

m

Σσ(iJ)(gj-hj). (5.13)
J = l

(Again g{ = ht = 0 if z is an atom.)

5.5. Induction Step in Cluster Expansion

At the nth step in the formation of our polymer, l^n^m— l,Yn+1is introduced by
differentiation with respect to sn. Similarly to in Eq. (8.9) of [7] we introduce
operators κ(w+l, ^(n-fl)),

) , (5.14)

that describe terms differentiated down by -— in the polymer. The decomposition
dsn

in (5.14) is according to different types of terms that may be differentiated.
t= 1) This term arises from differentiating the expression in (5.9) and thus

), (5.15)

where in σr the prime indicates differentiation with respect to sn.
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t = 2,3) These terms arise from differentiating the dependencies of g — h on s
parameters, as indicated in Subsect. 5.4.

K 2 (>)= ί (gηin+l)-hη(n+l))τ7'<*'(>)> ( 5 1 6 )
Yn+l Oψ

κ\,)= ί (9n + i-K + i)4τ'σX9). (5.17)
Yηin+1) Oφ

t = 4) These terms arise from differentiating the covariance, which are as in [7]

**(,)= ί f Cfay)^^. </(,). (5.18)
δφ(x) δφ{y)

6. The Polymer Expansion

The use of a polymer representation is modeled after [18, pp. 31-38] and [9],
but with modifications.

6.1. Polymers

A polymer P is specified uniquely by
1) an integer m^ 1,
2) disjoint hunks or atoms Yί9..., Ym,
3) a function h{ e J4fγ. for each Yt a hunk, (see the definition before Lemma 3.3. If

Yt is an atom ht is zero.)
4) an ordered tree graph, η.
Each polymer can occur in any sector. But its activity is sector dependent.

6.2. Polymer Activity in the Zero Sector

To the polymer P we associate an activity zP=zP in the zero sector.

1 1 n

zP= — ~,nAdσe DE)dμ(φ)Y[k(i,η(i))f(η,σ)eG, (6.1)
m r{P) 2

where
m

'i-1*. (6.2)
AeP i=l

The inclusion AeP is geometrical inclusion in uYt.

σ(i9j)E(hi9hj)9 (6.3)

9p-hP= Σ (Oi-hi)'
i=ί

J dσ is the integral over parameters sf. / (^ , σ) is the usual monomial in the s's
associated to η. We have k defined by

m

ί (»?, ff)=Πκ(i,»?(O) (6-5)
i=2 J i=2
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6.3. Polymer Activity in General Sector

The polymer P is assigned activity zn

P in the nth sector,

^ ) e G . (6.6)

F(P) is as in (6.2). And

m

CT=CΓ(P)= Σ £ ( M o ) , (6-7)

m

Σ J *S(ΛS - g " 0 ) , (6-8)
ϊ = i r»

hP). (6.9)

A polymer is said to be trivial if m = 1 and Yt is an atom.

6.4. The Polymer Expansions for Z ( 0 ) and Z ( n )

z < n ) = Σ ^ Σ zn

Pl...z
n

Ps π ( l-zy) . (6.10)

The sum over polymers in (6.10) includes trivial polymers. χVj = 1 if the polymers P{

and Pj have non-zero geometrical intersection, and is otherwise zero. In the zero
sector Zp is 1 for trivial polymers. Thus we may remove the restriction that u P { = A
in the sum (6.10), provided that we restrict the sum to non-trivial polymers. Thus we
have

Z ( 0 ) = Σ-. Σ ZJV ZP. Π ( l - Z y ) , (6.H)
s = 0 S\ Pu...,Ps(nt) i < j = s

where the (nt) indicates sums are taken over non-trivial polymers. One views (6.11)
as a partition function for a gas of polymers with activities zP. and Boltzmann
factor (1 — χij). This view leads to the expressions

Z{0) = es\ (6.12)

S°= Σ Σ \ Σ Πi-Xr.nώZpr-
s = l \η\=s S Pu...,Ps(nt)r = 2

This is formally a Mayer Series for a hard sphere gas.

We suppress some dependences of g(η) that are unnecessary to our esti-
mates. We write ηι~η2 if Ά\ are topologically isomorphic (rj1=Pη2P~1

for some permutation of the integers) and then find

Σ g(η)ύl (6.14)
η~η0

for each η0. This estimation ofg(η) is modeled after results in Sect. 8 in [2], and the
Appendix of [6] (see also Sect. 3 of [5]).
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6.5. Good and Bad Trivial Polymers

We are now going to redefine the activity of trivial polymers in the nth sector, for
. We change from

Qp

t 0 * *

Qp

ρn

P is defined as ρP is in Eq. (4.7), with φ replaced by φ + gn

0 — hn

0. It is then easy to see
we have the expansion, in terms of these new activities,

oo 1

z(n)= Σ-r Σ z^. .zί. Π (l-zy). (6.Π)
s = 0 SI Plt...,Ps i<j^s

A trivial polymer P is said to be good if

iK(K-g"o)ύi, (6.18)
P

otherwise it is said to be bad. The activity of a good trivial polymer will be small
since α2 is small. All non-trivial polymers are good.

We may write (6.17) as follows

z ( n ) = Σ Σ ~ Σ Σ 4 , - ^ t Π (i-χ«), (6.19)
s = 0 ί = 0 S! t! P!,...,?^) Au...,At(B) i<j^s + t

P{ and 4̂f label polymers. The (B) and (G) indicate the sums are restricted to bad
and good polymers respectively. We write (6.19), with some introduction of
notation, in the form

'n)=Σ~ Σ 4 , . . ^ Π 0 - Z i W i ^) (6.20)
t = 0 t\ Au...,At(B) i<j^t

00 1

Z<nKAl9...9At)= Σ - τ Σ 4, . . .4, Π (l-Xo ) (6.21)
0 5 ! p ? ( G α ) ij^

with

(GCA) indicates the sum is over good polymers in the complement of the union of
the At. We may follow the development from (6.11) to (6.12), (6.13) and write

Z{n\Au ...,At) = esn{Aί"-At\ (6.22)

S\Au...,At)=Σ Σ - Σ U(-XrMrXpr-znpsg(ri). (6.23)
s=l \η\=s S Pu...,Ps(GCA)r = 2

6.6. Polymer Expansion for

The polymer expansion for Z ( n ) extends to an expansion for [_^(φ)~\{n) in a natural
way. We sketch the details. <srf'(φ) is local so
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where the product is over unit cubes which intersect the support oϊjtf(φ). We write
this as

A S ACS

where the sum is over all subsets of the set of unit cubes intersecting the support of

We are assuming that sd\φ; Δ)—\ and its derivatives are small. The most
important example ois4\φ) arises when one considers correlation functions. Then

In the polymer expansion for [^(<^)](w) a polymer is a specification of 1)
through 4) as in Subsect. 6.1 and

5) a subset S of the set of unit cubes which intersect the support of sί(φ).
We denote these polymers by P. The activity of P is given by Eq. (6.6) with

Π l rf'iΦl ̂ ) — 1] included in the integrand. A trivial polymer is a polymer with
ACS

m= 1, Yi an atom, and S = φ. The activities of trivial polymers are redefined as
before.

7. Proofs of Main Results

In this section we reduce the proofs of the main results stated in Sect. 1 to various
estimates on the cluster expansion. These estimates are

Theorem 7.1. // PM, β<β0 and R>R0, then
(A) There is a positive constant ε such that

^*e-«-1"*, (7.1)

and

Z (0) = '

where c^ is a constant depending on s/(φ).

(B) For any unit cube A and any integer n,
oo 1 s

Σ Σ - Σ U{-Xr,η{r))KiPι)-^n{Ps)\gin)^f. (7.2)
s=l η S pί...Ps(G)r = 2

P 1 ? . . . ,P S are summed over good polymers with the constraint that at least one P(

must contain A. δ' can be made arbitrarily small by taking β0 sufficiently small and Ro

sufficiently large. Moreover, P 1 ? . . . , P s can be replaced by P 1 ? ...,Psif we replace δ'
by c^δ''. c^ is a constant depending on jtf(φ).

(C) There is a constant c so that for any unit cubes A x and A 2, the quantity in part
(B) is
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if we replace the constraint that (J Pt contains A by the constraint that the union

contains Δ x and Δ 2 . Again P l 5 . . . , P S may be replaced by Pl9...,Ps.

Remarks. 1. Part (A) says that only the zero sector contributes to the infinite
volume limit.

2. Part (B) implies that the sums in Sn(Au ...,At) and S° converge absolutely.
This justifies equations like

We can now reduce the proofs of the main results to the estimates stated above.

Proof of Theorem 1.5.

(7.3)

where by part (A) of the previous theorem

\

So £-•() as R-»oo. Now

(7.4)

Using standard arguments and Theorem 1.1, lim (S^ — S0) exists and equals the
R-+oo

corresponding limit for the charge symmetric system with z+=z_=z. D

Proof of Theorem 1.6. As in the previous proof

^ o ) ^ o ) ^ ) , (7.5)

with

\E\^cMe-εβ~1R.

If β is sufficiently small then

So

2R

\E\^cMe~*i>^re(Δl9A2). (7.6)
Part (C) of Theorem 7.1 and the usual argument show that the rest of Eq. (7.5) is

DWe leave the proof of Theorem 1.2 to the reader. The idea is to use the cluster
expansion to show that <J(x)> equals J0(x) plus terms that are of order 1 in β by
the estimates in Theorem 7.1.
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To state the next theorem we introduce some notation. The "jump energy" of a
function h{ is

JE(hi)=Σlδhi(f)Y.

The sum is over faces /, and δh^f) is the jump of ht across /. For a polymer P let

JE(P)=

with JE(ί) = JE(hi). By a standard argument there is a c>0 with DE(P)
^icJE(P). For example, see Lemma 5.2 of [4].

Theorem 7.2. There exist positive numbers z{P) for each good polymer P such that if
PM, β<β0 and R>R0, then

(1) \zn(PMz(P) Vn.
(2) Given <5 > 0, if β0 is sufficiently small and Ro sufficiently large, then

P.ACP

A is any unit cube.
(3) Let ̂ CΛ be the union of all the bad polymers. If P is a good polymer with

Pn0β = φ, then

\zn{P) - zo(P)\ ^ cQfof sup ί [χ - C{χ)~\z{P).
ACP A

The sup is over the unit cubes A in P.
(4) In (2) we can replace δ by δi^ε{Δu A2) if we replace the constraint ACP by

(Δ1uA2)CP.

Moreover, these estimates all hold with P replaced by P. In this case the
estimates will contain constants that depend on s/(φ).

We end this section by using Theorem 7.2 to prove Theorem 7.1.

Proof of Theorem 7.1.

Part (B). The proof of (B) using parts (1) and (2) of Theorem 7.2 is standard. For
example, see Theorem 3.4 of [5].

Part (A). By the definition of Z(n\

Z(n)

Z (0)
_e~ 1/2(1 -Λ

Z(n)

z ( 0 ) (7.7)

By Eqs. (6.12), (6.20), and (6.22),

= Σ 77 Σ Zn(Aί)">Zn(At

r = 0 t\ Aί,...,At(B)

We complete the proof by establishing the following two bounds:

(7.8)

Σ γ, Σ k(^i)..^«(Λ)IΠ(i-^)^^ 1 / 2 ( ' 1 + α 2 ) £ (" s '"B )

? (7 9)
ί = 0 II Ax At(B) i<j
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and
SUp \eS

n(Au..,At)-S°^el/2δ2E(hE,h»o)^ (yjQ)
Ai,...,At(B)

This will prove part (A) provided α2, δλ and δ2 are small enough that 1 — 2α2 — δί

-<52>0.
To prove (7.9) we begin by noting that the left-hand side of (7.9) is less than

So it suffices to

where

By Eq. (6.16),

It is routine

show

VII

to show

Si

QA

Ίΰ\ι

π [i+ω
A:(B)

A

A)_^\e-<x2l/2SE(A)_γ[

\SE(Λ).

(7.

(7.

(7

11)

12)

13)

We write ρn

A ~ ρA as

ϊdμ]dt^eG<φ + tM-h®' Λ)=ίdμSdt!dx(<f0^

o at o A oφ(x)

Using Lemmas 11.2 and 11.3 this shows
SE(A) (7.14)A

where ε can be made as small as desired by suitable choices of β0 and Ro. Since

ί \g"o - K\ = TL
A |«o(

(7.12), (7.13), and (7.14) show
1 + \zn(A)\ S 1 + cβίl2SE(A)eεSE(A) + κ2\

which proves (7.11) with \δγ = cβίl2 + ε.
We now fix Au ...,At(B) and bound

\Sn(Au...,At)-S0\.

Let J* denote the union of the atoms associated with the bad polymers. Recall that
Sn(A1,..., At) is a sum over various choices of polymers Pl9...9Ps. Each Pt must be

t

good and contained in the complement of [j At. We split up the sum into three

parts



Surface Effects in Debye Screening 385

by putting additional constraints on the Pt. In S\ each Pf must be nontrivial and
contained in the complement of M. In Sn

2 each Pt must be contained in the
complement of &, and at least one Pt must be trivial. In S3 at least one Pt must
intersect J .̂ Similarly

However, S2 = 0, since there are no trivial Pf in S°.
There is a one-to-one correspondence between the terms in S" and those in S?.

The only difference between corresponding terms is that the 5" terms contain
z^PJ... zn (Ps), while the S? terms contain z0CPi) . .zo(Ps). Using parts of (1) and (3)
of Theorem 7.2,

|zn(P1)...zn(Ps)-Zo(P1)...zo(Ps)|
2 sup

(

For each choice of P1,..., Ps the sup is attained by at least one A C U Pi So a crude
bound on |S^-S?| is '

00 S

^ Σc(K)2j [χ-C(χ)] Σ sΣ Σ Π (-χr,,w
l zl s = l P P ( G ) = 2

by the techniques used to prove part (B). Now

A A

so our bound is

which contributes cδ to \b2.
In Sn

2 at least one Pt is trivial. Using the proof of part (B) this implies

where the sum is over trivial polymers A. By estimates in the proof of (7.11), this is

which contributes δ(cβll2 + a2) to δ2.
Finally, in Sn

3 at least one Pt intersects J*. So the techniques used to prove part
(B) show

Recall that for a bad unit cube A
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So
E(ftS,fcS)^fftS(AS-0S)^|0Ί,

B

and
\Sl\^δE(hn

0,h
n

0).

The same bound holds for S3. This completes the proof of (7.10).

Part (C). The term Π(~Xr,η(r)) forces the Pt to overlap so that (J Pt is connected.
r ' i

Thus we can find unit cubes Al9 A2, ...9Am such that A t and ^ are in the same Pb

Aγ and A2 are in the same Pi,...,Am^i and Am are in the same Pi9 and 4 m and Δ2

are in the same Pt. Using part (4) of Theorem 7.2 with ε replaced by ε/2 and the
usual techniques, one can show (7.2) is bounded by

Σ <5m+1 Σ rtl2(Δ1,A1)rtl2(A2,A3)...rtl2(Am-1,Am)rεl2(Am,Δ2).
m = 0 Aίt...,Am

(7.16)

It is easy to show there is a constant c so that

Σ rt(A, B)rεl2(B, Q ^ crt(A, Q,
B

so (7.16) is ^c/δΫ"ε(Aί,A2) provided δ is small enough. D

8. Combinatorics

We begin the proof of Theorem 7.2. In this section we define z(P) and do the
combinatorial parts of the proof.

Definition of z(P). Recall that ku{i, η(ΐ)) contains an integral over Yt for tt = 2 or 4
and an integral over Yη{i) for tt = 3 or 4. We break each occurrence of these integrals
up into integrals over unit cubes:

\dx= Σ idx,
Yι cιcγicι (8.1)

ί dy= Σ $dy.
Yηii) BτCYr,ωBi

So at each vertex i in η we have a sum over unit cubes C{ in Ύ{ if tt = 2 or 4. In
addition for each vertex; with η(j) = i and £,- = 3 or 4 we get another sum over unit
cubes Bj in Yt. We summarize this by defining

Σ ( 0 = Σ Π Γ Σ Ί, (8.2)
CtCYi j:η(j) = i L Λ i c y J

if t{ = 2 or 4 and ί j = 3 or 4

where the sum over Ct appears only when t{ = 2 or 4.
We now have

i = 2 k = l i = 2

where £fί(i,f/(i)) is k(i,η(ϊ)) with the integrations over 1̂  and Y (̂0 replaced by
integrations over Q and J5̂  respectively, when they occur. The point of these
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definitions is to restrict the functional derivatives to unit cubes. For each unit cube

B, let nB be the number of functional derivatives in Π ktι(U *7(0) which are with
i = 2

respect to φ(x) with x e B. So nB is just the number of cubes Cf or Bt equal to B. We
will always use Q to denote a cube in Yt and Bt to denote a cube in Yηii). So each Yt

contains at most one C-cube, but it can contain many 5-cubes if η has many bonds
which hit vertex i.

Finally, we can define z(P).

z(P)= Π ( Σ ) Π (Σ(fc)) Π K!)3/2"δ°
fc = 2 \ f k = l / k=ί BCP

m _

• Π k"(i, η(i))δme-°JE^ Jdσf(η, σ). (8.3)

a and ε0 are positive constants which will be specified later, δ = δ(βo,Ro) can be
made arbitrarily small by taking β0 sufficiently small and Ro sufficiently large.

k1(i,j) = E(hhhj),

P(i,j)=idχ\gj-h}\(χ),

(8.4)

P(i,j)=$dy\gi-hi\(y),

k*(i,j)=ldxίdyC(x,y).
Ci Bι

Proof of Theorem 7.2

Part (1). We reduce the proof to theorems in Sects. 9-12 as follows. Choose αx

small enough for Theorem 11.1 to hold. We split up DE as α1D£-h(l —a^DE. By
Theorem 9.1

Qτpi-{uγDE-\u2SE-CT~\^l. (8.5)

Next we apply Theorem 11.1 with ε=4α 2

 t 0 bound the functional derivatives
and functional integrals. This reduces the proof to showing

\F(P)\
We have

AeP

Now \P\ = \P\H + \P\A, where \P\H is the sum of the sizes of the hunks in P and \P\A is
the number of atoms in P. By (E.6), \P\H<,cβ1/2DE. So

for small enough β. The remaining e~
1i4a^DE provides the factor of e~

aJE{F\ By
choosing ^0 small enough
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Part (2). Let

Then

= Π ( % ! ) 3 / 2 " ε o Π ku(U η(ΐ))δme-«JE{P)f(η, σ)e | p | . (8.8)
BCP ί = 2

where S ( 1 )...S ( 5 ) stand for the sum or integral over the following:
(1) the integer m,
(2) the tree graph η and the interpolation parameters σ = (s1, . . . ,sm_ 1),
(3) the integers ί1 ?...,ίm,
(4) the hunks or atoms Yu...,Ym such that zlc U ^ and the cubes J51?

C 1 ? . . . , Bm9 Cm9 which occur in Π Σ { k \ ι

k

(5) the functions hί9 ...,hm.
Note that each sum may depend on the sums preceding it. We will bound these

sums in the opposite order from the order in which they are listed. For i = 2,..., 5
we will convert the sums to sups by introducing quantities W{ which depend on the
objects in (1) through (5). We will show

W ^ l for i = 2,...,5 (8.9)

and

supW2...W5S?^cmδm, (8.10)

where the sup is over all allowed choices in (1) through (5). Thus

^ Σ cmδm.
P m=l

This will complete the proof since the right-hand side can be made arbitrarily small
by choosing β0 sufficiently small and Ro sufficiently large.

To define the W{ we introduce some notation. Let

dl = \{i:η(ι) = k and f=l or 2}|,

di = \{i:η(ι) = k and t* = 3 or 4}\.

So dk = dl+dl Note also that Σdk = m-\.
k

We are going to take advantage of the fact that C(x, y) is slightly better than
integrable to get rid of (nBl)

1/2~ε°. Let

\ ^ l (8.11)

with notation, including ε, as in Theorem 1.4. Let

P3(i, 1/(0) = P4(ί, ι/(0) = sup P(X,JO,
.12)
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Define £fi by the equation

F'(i, η(ί)) = P'ii, η(ϊ))Hi, >?(0) • (8-13)

We now list the W{.

BCP k

y-<x/2JE(P)
suP(5)e^™rik'iUηd)

sup (5) denotes the sup over the objects in (5).

' , (8.14)

We verify (8.10). By (E.6) for any ε > 0 we can choose β0 sufficiently small so that

(8.15)

where the sum is only over YJ which are hunks. The sum over atoms is trivially
bounded by m. These observations and some easy cancellations and bounds
reduce (8.10) to showing

Π ^ 0 ^ ( 0 ) Π ( ^ ! ) 1 / 2 " £ o ^ c m . (8.16)
i B

This is the analog of "exponential pinning," Lemma 9.10 of [7], for a covariance
whose decay is better than integrable but not exponential.

To each BcP we associate the factors of P^i^ηii)) with Bt = B. There are at
least nB — 1 such factors. The proof of (8.16) is thus reduced to showing that given B,
yu...,yneB and points xu ...,xn in different unit cubes,

ΠPfej^φ+l)!]- ( 1 / 2- ε o ). (8.17)
ι = l

This inequality is proven in the same way as exponential pinning.
We now verify (8.9). For i = 3 this is trivial. For i = 5 it reduces to showing

. (8.18)
/le^f(O)

Fix xoeY. For h e J^j°\ let h be the translate

h = h-h(x0). (8.19)

The map /i—>/Γ is injective. So the above sum is

h:h{xo) = O

where /Γhas discontinuities only in Y. This sum is bounded by the usual argument,
e.g., see p. 216 of [7].



390 P. Federbush and T. Kennedy

For i = 2 we need
(8.21)

η k

This is an example of the "extra JV!" of [3]. The above inequality is Theorem 1.4 of

We are left with the i = 4 case. The factors in W4~
x can each be associated with a

vertex k in η or a bond (/, η(ί)) in η. Among other things, vertex k has a factor of

1

associated with it. Using the inequality d\ ex^xd, for x^O, this gives a factor of
JE(k)~dk at vertex k. S{4) is a sum over the various possibilities for each vertex in η.
The constraint A C U % ties down the tree η. The usual argument shows

i

1 (8.22)

with

ρ = sup sup sup ω Σ Σ(ί)ίK'(i, 7>(i)],
' *j Y> (8.23)

c ( 0 = Π n B ! 2 - " ^ ' 1 ' l 1

y) for t = 3,4. {%M)

The sup 0 ' is over the terms in ΣU) Consider

Σ ( i ) Π nBϊ. (8.25)
BCYi

From the definition of nB we see that

(df if U = \ or 3

U if tt = 2 or 4.

Denote this integer by d. Then an easy combinatoric argument shows that (8.25)
equals (d + s— l)!/(s— 1)!, where s = |^l is the number of unit cubes in Yt. Thus
(8.25) is bounded by dll***'1.

So we have shown
Σ ( O c ( 0 ^ 1 . (8.26)

Using (8.26), (8.23) is

^ sup sup sup0 ) Σ sxxp^KXU j)
t Yj r t

It will be crucial to our proof that sup0 ) is taken after the sum over Yt. If we had
converted all of the Σ ( f e ) to sup(k) and then converted the sum over the Yl9..., Ym to a
sup, then this would not be the case.

Now sup ( 0 is over a finite number of terms. So we can choose a term which
attains the sup and drop the sup(ΐ). Fix a term in sup sup0 ) and consider

ΣK%j). (8.27)
γt
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We will find a bound independent of the term in sup sup0). Note that the cubes Bk,

Ct in Yt depend on Yb but those in Yj do not. We reduce the four cases t = 1,2,3,4 to
energy estimates.

t= 1. By (8.12) and (8.4), k1(ίJ) = E(hi,hj). So this case is Theorem 10.2.

ί = 2. k2(ij)= ί \gj-hjl where Q c 5j. So a crude bound on (8.27) is

JEϋr'Σilθj-hj] Σ <rα™.
C C Yi'.YiDC

We use

Σ <Γ β / 4 J* ( i )^c (8.28)

and

Σ ί 10,-Λ l^ ί 1^-Λ^cJEϋ) (8.29)

by part (a) of Theorem 10.3.

t = 3.P(U j) = P3(U j) ~ ι ί Ififf - fcfl with Bf C YJ. So Bt is fixed in the sum over Yt. Let
Bi

supp(l^) denote the union of Yt and any regions enclosed by Yt. Then by Theorem
10.3(b), Lemma 10.1, Lemma 9.2(c) and (E.6),

J ig.-h^-^^^crXB^nppihd), (8.30)

where Ϋ~ε is given by (1.35) and supp(fy) = {x: ftf(x)Φθ}. Let supp(ί^) denote the
union of Yt and the regions enclosed by Yt. Then the construction of the hunks
insure that s u p p ^ C s u p p ^ ) . So (8.27) is bounded by

UlT (8.31)

For sets S and R define

D(S,R)= sup rJf'yl. (8.32)
xeS,yeR r(X, y)

Then

h, supp(^))

for some unit cube A Csupp(Yί).
A crude bound on (8.31) is thus

cΣD(A,Bd Σ e~«/4JmSc'Σ D(Δ, B,)^c",

since £>(,) is integrable.

t = 4. The methods of the f = 3 case easily handle this case.

Part (3).

1 1
zn(P) - zo(P) =- — \dσe-DE\dμU k(i, η(ί))f(η, σ) [Dt + ϋ 2] (8.33)



392 P. Federbush and T. Kennedy

with

Π =e-CT-oc2SEr eG(φ + g$-h$ + gP-hp)_ G(φ + gP-hp)-ι
1 Γ8 34)

hp)r-CT-a2SEγ^ ^ ' '

(8.35)

To bound the D2 term we use Theorem 9.1 as follows.

2

o
For the Dx term we use

0 dt

oφ{x)
(8.36)

We substitute this expression in Eq. (8.33) and then use Theorem 11.1 to bound the
functional derivatives and functional integral as we did in the proof of part (1). The

only difference is the extra functional derivative ——-. Its effects are harmless. For
δφ(x)

example, one nB will be increased by 1. We leave it to the reader to check that a
bound like Eq. (8.6) holds with some of the constants modified.

We now follow the proof of part (1) and conclude

\zn(P) -zo(P)\ Sc ί\CT\ + a2SE + J \gn

0 - hn

0\\ z(P). (8.37)

By an easy modification of this proof we can add a factor of e'\
p\~εJE(p"> with

ε > 0 to the right-hand side of (8.37). So the proof is reduced to showing

> ( o p f [ χ - C ( χ ) ] . (8.38)
P J ΔCP A

Using Lemmas 10.1 and 9.2,

\CT\ = ί
supp(P)

ΔCP A

ΔCP A

For the other two terms in (8.38) we use

SE = ί K(K - gl) ύ \P\ (K)2 sup ί [χ - C(χ)] ,
P ΔCP Δ

and

Part (4). We leave the proof of part (4) to the reader. The basic idea is to combine
the proof of part (2) with the idea in the proof of part (C) of Theorem 7.1 D
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9. Energy Estimates - I

All the inequalities in this section are homogeneous in β. So in the proofs we take
β=l. The constant ε1 is the constant that appears in the definition of monster see
Eq. (3.1). Some of the constants in this section and the following one depend on L.
The main result of this section is the following theorem.

Theorem 9.1. For R sufficiently large, depending on εu

|CT(P)|^cε1

1/
6[D£(P;51,...,S w_1) + S£(P)]. (9.1)

We begin with an easy lemma.

Lemma 9.2. There exist constants cu c2, and c3 such that for any hunk M and
heJί?$\ if we denote {x:Λ(x)ΦO} by supp(ft), then

(a) ί [ χ - C ( χ ) ] ^ C l J [Z-C(χ)]. (9-2)
supp(ft) M

(b) sup f [ χ - C ( χ ) ] ^ c 2 s u p f [ χ - C ( χ ) ] . (9-3)

^Csuρρ(/ι) A ACM A

The sup's are over L-cubes A in supp(/ι) and M,

(c) |supP(/ι)|^c3 |M|3/2. (9.4)
Proof. Thanks to the enlargements of hunks carried out in Sect. 3, {xφM: h(x)
φθ} is surrounded by M. In particular, along any ray from the center of A to a
point p on dΛ,

Parts (a) and (b) are easy consequences of this fact and the bounds

R R

Part (c) is also immediate since the volume of a region can grow no faster than
its surface area raised to the 3/2 power. D

The heart of the proof of Theorem 9.1 is the following technical lemma.

Lemma 9.3. // R is sufficiently large, depending on ε1? then for any hunk M and
function he J^M\ which is not a monster,

ih2[χ-C(χϊ]£cε\'3JE(h). (9.6)
A

We postpone the proof of this lemma until after the proof of Theorem 9.1

Proof of Theorem 9.1. We consider two cases.

Case 1. There is a monster hunk. So m— 1 and

^Ml- (9.7)

This is case I of the sector definitions in Sect. 3.2.
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Case 2. There is no monster. This is cases II and III of the sector definitions.
In case 1,

CT(P) = E(h, K) = ί h(hn

0 - gl) = K f h[χ - C(χ)] ,
^1 yl

where h = h1. The sector n was defined so that

1

A2U

Hence

A
J Lx

Now Mi is all of Λ, so

^E(P) = J K(hn

0 - gl) = Qfof Jf [χ - C(χ)] .

By (9.5) and (9.7),

So (9.9) implies

\CT(P)\ ^

(9.8)

1/2

(9.9)

ISE(P) + D£(P)] .

If R is large enough then 1 / 2 ^εί / 6. So this proves Case 1.

m

Since DE(P; s1? . . . , s m _ 1 )^c Σ JE(ht), Case 2 reduces to showing that
ί = l

M,
K(h"0-g (9.10)

for i= 1,2,...,m. By the Cauchy-Schwarz inequality,

f W - 0 S ) = ΛS ί Λ<[z-
supp(Λj)

By part (a) of Lemma 9.2 and Lemma 9.3 this is

Mi

Mi

which proves (9.10) and thus Case 2. Π

(9.11)

(9.12)
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Proof of Lemma 9.3. For any two points x, y we can express ft(x) — h(y) as the sum
of the jumps that h makes at each face / which intersects the line segment from x to
y. We write this as

h(x)-h(y)= Σ δh(J)9
/e[x,y]

and refer to the right-hand side as a "line integral."
We use 1() to denote characteristic functions. For example, 1(/ e [x, yj) is 1 if

/ G [x, y], 0 if fφ [x, y]. This notation yields equations like

\dy Σ δh(y)=ΣδKf)ίdyl(fe[x,y]).
fe[x,y] f

All sums over faces / will only be over / with <5ft(/)=t=0. Since ft is not a
monster, Σ^/ι(/)2^ε1 |yl|. So the total number of / with (5ft(/)φO is ^ c ε ^ 3 .

We must replace the h2(x) in (9.6) by something like [ft(x) - h{y)~]2 to use these
line integrals, y will be a point in dΛ. Since ft e 2tf(0), the average of ft over a large
subset of dΛ is near zero.

ForScdΛlet 1
A=--\dyHy). (9.13)

\S\s

We use the sector definitions of Sect. 3.2 to choose S and to bound A. If M is an
/-hunk, we let S = cM. Then 4̂ = 0. If M is a normal β-hunk we let
S = {xedΛ: ft(x) = 0}. Then A = 0 and |S| ̂ i|&4|. If M is a jumbo β-hunk we let
S = BΛ. Then by the sector definition for jumbos, | 4 | ^ π . So

ύcRύCΰ JEQί), (9.14)

since JE(h)^cR2 for a jumbo hunk. Note that in all three cases \S\^cR2.

For Yc

bounding

For large R, —^s\/3. So the preceding paragraph reduces the proof to
R

i\h-A\2[χ-C(χ)l.
Λ

For x G Λ let px be the projection with respect to the origin of x onto dΛ. Then it
suffices to bound

ίdx[h(x)-h(px)-]2lχ-C(χ)-] (9.15)

A

and

\ γ (9.16)

In both expressions we will bound [χ — C(χ)] by — e~(K~l*D/*D.

To bound (9.15) we use a line integral from x to px. The number of / e [x, px~\ is
^c\x — px\ = c(R — \x\). So by Cauchy-Schwartz,

Σ δh(f)2Sc(R-\x\) Σ ^(/) 2 (9-17)
fe[x,px] fe[x,px]
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Thus (9.15) is
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Σ
felx,px]

= Σ δh(f)2 ?- J dx(R- | (9.18)

The function 1(/ e [x, p J ) is the characteristic function of the shaded region in the
figure.

It easily follows that

1
The factor of— in (9.18) is ^ε\13 for large JR, so this takes care of (9.15).

K

Bounding the volume integral in (9.16) is easily reduced to bounding

^ J dx{h{x)~A~\2. (9.19)

For the rest of the proof all integrals will be over dΛ or a subset of dΛ, By (9.13),

- h(y)\ + ί
\y-χ\<ί/2R

^ 4i Γ ί

where we have used |S|^ | |3/l |^dR 2 and bounded the integral over S by the
integral over all of dΛ. So bounding (9.19) reduces to bounding

1

R~5

and

1

πldx J dy\h(x)-h(y)\Y (9.20)

\y-χ\<lj2R
dy\h(x)-h(y)\)2. (9.21)

In (9.20) we will write h(x) — h(y) as a line integral from x to y. If we did this in
(9.21) the line could lie close to dΛ. This causes technical problems, so we will
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bound (9.21) in terms of (9.20). Let zed A with | Z - X | ^ | J R . Using the triangle
inequality and then averaging over these z, we obtain

\h(x) - h(y)\ S -§l I dz(\h(x) - h(z)\ + \h(z) - h(y)\), (9.22)

where a is such that the area of {zedA: \z — x\^fK} is R2/a.
Inequality (9.22) reduces bounding (9.21) to bounding

1 ' • ' f dz ί dy\h(x)-h(z)\Y (9.23)

9ίdx( j dz J dy\h(z)-h(y)\)2. (9.24)

and

R

In (9.23) we drop the constraint \y — x\ ̂ i # ? and do the integral over y. The result
is (9.20). In (9.24) we note that | Z - X | ^ | J R and \x-y\^R imply \z-y\^\R. Using
this observation and then doing the integral over x, (9.24) is bounded by

~(\dz j dy\h(z)-h(y)\)2.

Applying Cauchy-Schwartz to the integral over z, this is

^Trfidzί J \h{z)-h(y)\\2\dz\,
R \\y-z\Zl/2R J

which is (9.20).
It remains to bound (9.20).

J dy\h(x)-h(y)\S J>ί2/y Σ

ί dy Σ

ί dy Σ 1V/2 (9.25)
| ^ l / 2 Λ fe[x,y] J

by Cauchy-Schwartz. We will show that

ί dy Σ I^csl/3R3. (9.26)
| fe[x,y]

Using (9.25) and (9.26), (9.20) is

pl/3

^ c ^ J d x J rfy Σ δh(f)2

K \y-χ\ £l/2R fe[x,y]

cl/3

ί ^ ί ^ l ( / G [ x , y ] ) (9.27)
\y~x\^l/2R
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provided

ί dx$dyl(fe[_x,y-])ScR2. (9.28)
\ \

To prove (9.26) and (9.28) it is useful to first show that

R2

j dy\{fe\_x,y~])^c-——-,. (9.29)
\x~-y\Zlj2R d(xJY

Without the constraint \x — y\^R, this integral would be the area of the
projection with respect to x of / onto dA. See figure.

Projection

The constraint \x -y\^R implies that for / such that (9.29) is not zero, the angles
between the lines in the figure and dA are bounded away from zero. Inequality
(9.29) now follows.

To prove (9.26) we begin with

Σ \Scs\/3R+ Σ 1. (9.30)
/e[x,y] fe[x,y]

d(f,x)^ε\/3R

The cε{/3R contributes cε\l3R3 to (9.26). The second term in (9.30) contributes

ί dy Σ 1= Σ ί dyl(fe[_x,yj)
\y-x\^ί/2R f€[x,y] f:d(x,f)^ε[/3R \y\^l/2

d f \ / 3

d(xj)2

using (9.29) and the fact that the total number of/ with δh(f) + O is ^ c ε ^ 3 .
Finally, we prove (9.28). It is symmetric in x and y, so at the expense of a factor

of 2 we can assume d(x9f)^.d(y9f). Since \x — y\^R, this implies
Using (9.29),

ί dx J dyl(felx,y])
\ \

S ί
d(xJ)^

which proves (9.28). •

Remark. In this section, and the next, we ignore the second enlargement of hunks,
as given in Subsect. 3.4. Its inclusion would not change the results or proofs, only
complicate the notation.
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10. Energy Estimates - II

We begin by stating a very crude estimate. We leave the easy proof to the reader.

Lemma 10.1. For any

(10.1)

The following theorem was used in Sect. 8 to control /c1(z? f

Theorem 10.2. Let ε > 0. Then there exists βo>0 such that for β^βo an^ any hunk
W andh'eJίr$\

sup e-eJm\E(h9h
/)\^cJE(hr)9 (10.2)

M:MnM' =

where M is summed over all hunks disjoint from M'.

We will reduce the proof of Theorem 10.2 to part (a) of the following theorem.
Part (a) was also used in Sect. 8 to control k2(i, η(ί)). Part (b) was used to control
k3(Uη(i)) and k4(i,

Theorem 10.3. Let M be any hunk, he^] and g = C(χh). Then

(a) $\g-h\Scβll2JE(h), (10.3)
A

(b) f|0-h|^c||ft|Usupp(ΛM(B,supp(Λ)), (10.4)
B

where iζ is defined as in Eq. (1.35).

The bound in part (b) is very crude. If M is an annulus-like region and h Φ 0 in
the region surrounded by M, then f \g — h\ will fall off as B moves away from M

B

whether B is inside the region surrounded by M or outside it. But iζ(B, supp(/z))
only falls off for B outside this region.

Proof of Theorem 10.2. Letting g'=C(χh%

£ ( M 0 = ί Hh'-g')= J h{h'-g'). (10.5)
A supp(/i)

So

|£(MOI^I|ft|L Σ \W-g'\, (10.6)
JCsupp(/i) A

where A is summed over unit cubes in supp(/z). Since supp(/z) is surrounded by M,
A C supp(/z) implies d(A, M) ̂  diam(M). So we can bound the sum over A C supp(/z)
by the sum over A with d(zl,M)5Ξdiam(M). By Lemma 10.1,

for small enough β. So

\E(h,h')\e-*i2JEWS Σ i\h'-g'\. (10.7)
A :d(Λ,M)^diam(M) A

In the other factor of e~ε/2 JE{h\ we use JE(h) ^ cβ~ 1 / 2 |M|. The sup over h e J ^ O )

then becomes trivial, and the proof reduces to showing

) (10.8)
M A:d(A,M)^diam(M) A
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The left-hand side equals

-g'l Σ g-e/2c/J
A A M:d(zl,M)^diam(M)

For small enough β the sum over M converges and is less than 1. So (10.9) is

Σ\Wg\ϊ\g\
A A A

which is bounded by part (a) of Theorem 10.3. D

Proof of Theorem 10.3. Both inequalities are homogeneous in β, so we set β — 1.

Part (a). We begin with

\h-g\^\h-hC(χ)\ + \hC(χ)-g\. (10.10)

The first term contributes

We can bound this using Lemma 9.3 since |/ι|^ 1.
The second term in (10.10) contributes

ί \hC(χ) -g\=idx h(x) J dyC(x, y) - j dyC(x, y)h(y)
A A A A

^ ί dxUyC(x,y)\h(x)-h(y)\. (10.11)
A Λ

Theorem 1.4 says

x,yn, (10.12)

where

C2(x,y) = e » ĵ,
1 ~t~ S

with s defined as in Theorem 1.4. So it suffices to bound (10.11) with C(x,y)
replaced by C^x, j/) and C2{x,y).

In the integral containing Cx(x, y) we write /ι(x) — /z(y) as a line integral from x
to }/. Then the integral is

ύ Σ \δh(f)\ I rfx J dye-lχ-*'ιl>l(felx,y ]).
f A A

So it suffices to show

ί dxjdye" | j c - y | / 1 ° l(/e[x,y])^c. (10.13)

At the expense of a factor of 2 we can add to (10.13) the constraint that d(f, y)
^d(f,x). Consider

ί dye~ \χ~y\ιιh(fe [x, yj). (10.14)
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This is the integral of e~^x~y^ over y in the shaded region

So (10.14) is ^ce ^ ' W S , which proves (10.13).
In the integral containing C2(x, y)9 we use

\h(x) - h(y)\ S Hx) - h(px)\ + \h(px) - h(py)\ + \h(py) - h(y)\,

where px is the projection (with respect to the origin) of x onto dΛ. The contribution
of the \h(x) — h(px)\ and \h(py) — h(y)\ terms to the integral are bounded in
essentially the same way that (9.15) was bounded in the proof of Lemma 9.3.

We are left with

J dx J dye-v-W-MW — ^ \h(px)-h(py)\, (10.15)
A A 1 +5

which reduces to the surface integral

J dx J dj/- ϊ^rε\h(x) — h(y)\' (10.16)
dΛ dΛ 1 + S

We will use inequality (9.28) from the proof of Lemma 9.3. Since our integral does
not have the constraint \x — y\^.^R, we cannot simply write h(x) — h(y) as a line
integral from x to y.

Instead we use
(10.17)

where z e dΛ. There is a c>0 such that for any x,ye dΛ, the area of {z e θ/1: |x — z\
^R and |j/ — z\^\R} is ^R2/c. So we can average (10.17) over these z and
conclude that (10.16) is

-wUz\x-zL,2R

dx\>J>
\x z\>l/2R \y z\> . ^ ^

The two terms in (10.18) are identical. In the first we use
1

l + 5 3 " ε = '

Then we write h(x) — h(z) as a line integral from x to z and conclude this term is

= Σ \δh(f)\—j ί dz J dx 1(/ e [x, y]) ̂  c X |<5Λ(/)|

by (9.28).
Pαrί (b). If J5nsupp(/z) φ ̂ , then %(B, supp(/z)) = 1, and the inequality is trivial. If
Br\supp(h) = φ, then

S\g-h\=ϊ\g\=idxidyC(x,y)h(y)

ί ^ ί dyC(x,y),
B supp(Λ)

and the inequality follows. G
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11. Functional Derivatives

This section, the next section, and Appendices C, D, and E are all devoted to
proving the following estimate.

Theorem 11.1. Let ε, δ0 > 0. // a1 is sufficiently small and PM β < β0, R > Ro, then

e-(l-a1/2)DE~εSE

^ Σ Σ ( 1 > - Σ ( m ) Π kf'(i,η(ΐ)) Π {nBψ
2~ε°δm

0> (11.1)
ί2...ίk i=2 BCP

In this section we bound the functional derivatives and do the easy part of the
functional integral estimate. The techniques of [7] could be used to bound the
functional derivatives. Unfortunately, the resulting bound would contain (nB\)p

with p > 3/2. Obtaining the above bound requires a few improvements in the usual
techniques. We explain these improvements and leave most of the routine work to
the reader.

Proof of Theorem 11.1. Recall that dk = \{i:η(ί) = k}\. So Σdk = m-l, and hence
k

Σ (2 — dk) = m + 1. So if we can associate a factor of δl ~dk with vertex k, then we will
k

have the desired factor of δ™. Note that for vertices with dk > 2 this procedure
allows derivatives to contribute large factors (l/δ0) rather than small ones. We take
advantage of this fact in Appendix C.

Depending on ί, k\U η(i)) need not contain a derivative in Yt or Yη{i). So there
can be vertices k without any functional derivatives in 1̂ . A glance at the
definitions of k\i, η(ΐ)) reveals this can happen only when Yk is a hunk. Since DE
^cβ"1 (number of hunks), we can write

and use e ~α i / 2 DE to provide the factors of δl"dk for these hunks without derivatives.
Now consider the hunks or atoms Yk that do contain derivatives. Recall that nB

is the number of derivatives in B. Our bound will contain a factor of δl ~ "B for each
B with nBέϊl. Since

Σ nB£dk+l, (11.2)
BCYk

this gives the desired factor of δl~dk.
We have reduced the proof to the following two lemmas.

Lemma 11.2. There are constants y < 1 and c>0 such that if δ0 >0 and PM β<β0,
R > JR0, then the following is true. Let Pbea polymer. Let Bu ...,Bnbe L-cubes in P
with repetitions allowed. Let nB be the number of times B appears in Bu ...,Bn. Let
f(x1, ...,xn) be a function on Bιx ... x Bn. Then

^L3«Γ sup \f\yi2lAl + 2lδ^CaFa, (11.3)
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where a is summed over some index set.

Fa= Π ί\AB\
κ*m\L-* j n * ) T ™ j (11.4)

BCP\ I B J j
AB and δ(x) are defined in the proof. Ka(B) and la(B) are nonnegative integers.

For each a let
/ , = Π l\Ka(B)+\la(B)Y.. (11.5)

BCP

Then the coefficients Ca are such that

Lemma 11.3. Let ε > 0 and let Fa, fa and y be as in the previous lemma. Then if PM
β<β0, R>R0, then

Uμeyl2lΛ2 + 2ίδ2Fa^fae
{1-^DE^SE. (11.7)

Remark. When we use Lemma 11.1 in the proof of Theorem 11.2, the function
/ ( * ! , ...,xj will be a product of functions that appear in k\ i.e., {gk — h^)(x) and
C(x, y). The resulting bound does not contain P as it is defined in Eq. (8.4). Instead,
expressions like ί\g — h\ should be replaced by L3 sup \g — h\ in (8.4). The proofs in

c _ c
Sects. 8-10 all work for this modified k\

Proof of Lemma 11.2. We have

eG=
BCP

with GB defined in the obvious way. Thus it suffices to prove the lemma with P
replaced by an L-cube B. For the remainder of the proof we denote GB and nB by G
and n.

Recall that eG is e<w + <*-*><*». Let

(11.8)

So eG = eG{φs). We introduce average and fluctuation fields in the usual way.

A = L~3$ φs(x)dx, δ(x) = φs(x)-A. (11.9)
B

The function eG is defined implicitly by Eq. (2.10). We find

J (z

)
Σ expΓ-HC^-nτ) 2 ! (11.10)

» = - » L B JJ
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. Let

= exp[_L32z(cosβ1/2A-\)~]

We leave it to the reader to check that eG = r(A)eGi + G\ We have used Eq. (1.20) to
rewrite the i\φsu~ι\p term in G.

B

Derivatives of r(A) are dealt with in Appendix C.
Derivatives of eGi arc bounded by the usual techniques. Such derivatives

provide small factors since βί/2 is small. These derivatives can also introduce
factors of fields δ(x) or A. We leave it to the reader to check that any order
derivative of G1 contributes at most two factors of fields. When n derivatives act on
eG\ the number of terms grows like n\ Each term contains at most In factors of
fields. So a crude bound on Σ C α / f l contains (n\)2. To obtain a bound that only

a

contains n\ we use Lemma 11.4 below.
In G2 derivatives of z(e±ίβl/2φs + iβll2φs — 1) do not necessarily give us a small

factor. However, by Theorem 1.1,

so the — provides the needed smallness. As with Gί we also use Lemma 11.4.
R

Besides bounding derivatives of Gx and G2 we must also bound the factors eGl

and eGl. Easy estimates give

e2c/Rl{δ2+A2). (11.13)

/->
By Lemma C.I, DNr(A) contributes a factor of eyl2ί

B

A2. Since — is small, we can
bound the product of these three factors by

B B ">e

if we increase γ slightly. •

Lemma 11A Let D1 ?..., Dn denote functional derivatives, and F a function of the
fields, then

(11.14)
a

where Fa is a product of derivatives of F. More precisely, for each a there is an
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κa

integer Ka and Ka disjoint subsets It of {1,2,..., n} with \J It = {1,2,..., n} such that
£ = 1

and
ΣKJSn\2n. (11.15)
a

Proof. Easy induction. D

Remark. Equation (11.14) is trivial. The important part of the lemma is the bound
(11.15). If some of the D 1 ? ...,/)„ are equal then some of the Fa will be equal.
Nonetheless, we do not combine these terms in (11.14). So Fa does not contain any
"counting factors" of 2 or 3 or ....

Proof of Lemma 11.3. Choose a positive integer q which is large enough that

py < 1, where - + - = 1 and γ is as in Lemma 11.2. By Holder's inequality it suffices
p q

to bound
(Uμepyl2lΛ2+p2lδ2)llp and (ίdμf1*)1'*.

The first expression is bounded in Theorem 12.1.
In the second expression we bound A's and <5's in terms of ̂ 's and (g — /z)'s. Then

we use Lemma 11.5 below and bounds like

By results in Sect. 12, j (g — h)2^cDE. The lemma follows by choosing ocί and ε
p

sufficiently small. D

Lemma 11.5. Let C(x,y) be a covariance which is integrable in the sense that

Σsup|C(x,j;) |^c 0 Vx, (11.16)
B yeB

where B is summed over L-cubes. Let xl9 ...,xι be points in different L-cubes. Let
mί9 ...9mι be positive integers. Then

ί dμ Π Φ(xd2mύ Π W4c 0Γm ; !], (11.17)
£ = 1 £ = 1

where c is a universal constant.

Remarks. 1. If the power of 2mt is replaced by mi9 then this result is standard.
2. Lemma 11.5 is not essential. By taking advantage of the fact that derivatives

need only provide small factors for nB=ί and 2, one can bound the derivatives in
such a way that the standard result alluded to in Remark 1 is sufficient.

3. The constant c0 will of course depend on L.
4. In cases where the covariance is not bounded for coincident arguments, one

may derive similar results for smeared fields.
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Proof. F o r any y ^ O , ym^m\ cmey/c. So

φ(Xi)2mi S mi \(4c0)
m2

Thus it suffices to prove

^ c ' . (11.18)

We use the identity

2π -o

in the left-hand side of (11.18). Then we can compute the integral with respect to dμ.
We find that the left-hand side of (11.18) is

1 Γ i °° Ί Γ ι 1 ι Ί
Π \-j= ί dkt exp - i Σ fcf+τ- Σ kfoCfaxj) . (11.19)

A well-known consequence of the Cauchy Schwartz inequality is that

Σ ktkjC(Xi, xj) ^ { Σ kf ) sup Σ \C(xj, x j | .
j m

So (11.19) is
1 Γ i c

sflbs-; - i Σ fc?Ί =cι. D
J

12. The Vacuum Energy

This section studies the problem treated in Sect. 9.6 of [7] in the present context.
This is the non-trivial aspect of the functional integration estimates. We follow
many of the ideas of and some of the notation of [7] but new and interesting
problems also arise. In particular the mathematical machinery of Appendices D
and E is necessary; in this connection one needs the second enlargement of hunks
as carried out in Subsect. 3.4.

For a given polymer P we study

\ (12.1)
with

B=^(Φ + 9-h)2 + ~ίδ2, (12.2)

the integrals over the region of the polymer.

Theorem 12.1. Given py < ~̂ , if L/TD and β are sufficiently small, and L/lD and R are

sufficiently large, then

(J dμse
pyB)1/p ^ e

c^eδDEeεSE, (12.3)
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where δ<l and ε may be picked arbitrarily small by picking R large.

This section is devoted to the proof of this theorem. We find it convenient to
temporarily consider g — h in the polymer in the case when all interpolation
parameters equal 1,

ieP

where

gi = C(hi). (12.5)

For each hunk Mt in P, let gf be as in Subsect. E.2. We define

hf = C~ίgf. (12.6)
We also define

Qi = θi~QΪ •> h^hi — hf, (12.7)

S-K=Σ(Sϊ-Ki)' ( 1 2 δ )
i

It is important to note that ht and (gf-hf) are supported in Mt. We also trivially
have

9 = C(f!). (12.9)

We may write Eq. (12.4) as

(12.10)

We now no longer restrict ourselves to the situation when all interpolation
parameters equal 1. Equation (12.10) becomes

g-h = (g-h)(s) = (g-f!)(s) + e, (12.11)

where

h(s) = h(0), g(s) = C(s) (ft), (12.12)

and e in unchanged. Our purpose in introducing the function gf is to yield (12.12).
(It is only hunks M i5 for which hMιφ0 outside Mb that have thus caused us
difficulties.)

In (12.1) we make the substitution φ^φ — g and arrive at

~ll2^~2φ%epyB

9 (12.13)

where

E=ϊUhh-gh), (12.14)

and in B the indicated substitution is understood. It is enough to estimate (12.13)
with the measure dμs replaced by dμ{ by the argument of (9.67) of [7]. We define

<A,Λ>=iJ[AΛ-ΛCΛ], (12.15)

for any function h, where C is the covariance (associated to dμs) including
interpolation. So £ = </Γ,/Γ>.
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Lemma 12.2. For each ε > 0, one has

+ -j (h*,h*y, (12.16)

hfy. (12.17)
i

Lemma 12.3. For each ε > 0, L, L, one has for β sufficiently small

(hfthfy^eJEi. (12.18)

Proof of Lemmas 12.2 and 12.3. Equation (12.17) follows from the fact that gf — hf
is supported in Mb and (12.6) and (12.15). Inequality (12.18) follows from (E.6),
(E.9), and (12.6). To show (12.16), we realize the covariance (associated to dμs) as the
convex sum of (9.65), (9.66), of [7],

C = C(s)=ΣλiCi, λ-λiis), (12.19)

C^ΣXijCXij. (12.20)
j

We write k e ij if Mk is contained in the support of χijm We let

ί v = Σ K (12-21)
keij

and define <ft, h}0 as <ft, h} defined with C as the uninterpolated covariance. We
have

M >o> (12.22)
i j

>= Σ ^ Σ < % % > o > (12.23)
i j

Σ^Σ<%4>o (12.24)
i j

Equation (12.16) follows from (12.7) and (12.22H12.24) using

\<a, b}0\ ^ ~ <α, α>0 + J <fe, b}0, (12.25)
2ε 2

the ultra-useful ultra-trivial form of Schwartz's inequality.
We now return to our study of (12.13). We need only consider the following

objects
j ciμe j e J, yiΔ.ΔΌ)

where B^ is β with the integrals restricted to the support of χo . We change the
gaussian measure similar to in (9.629)—(9.631) of [7],

j Φ~ί!)2e''γB AΦ~ί:+e), (12.27)

where

"'. (12.28)
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Using the idea of (12.25) again,
^ ε 9 1 o

Xy=2X+Tey '
one gets

] ̂  (12.29)

y p ' < l . (12.30)

The functional integral in (12.29) is controlled exactly as in [7], The following
lemmas complete the proof of Theorem 12.1:

Lemma 12.4. For each ε>0, one has for R sufficiently large

ί {gno-K)2^SEt. (12.31)
Mi

Lemma 12.5. With the same conditions as Lemma 12.3

Ugf-hffSεiJE);. (12.32)

Lemma 12.6. With the same conditions as Lemma 12.3

l{δht)2ύ<JE\. (12.33)

Lemma 12.4 follows easily from properties of gn

0. Lemmas 12.5 and 12.6 are
proved as Lemma 12.3. In fact Lemma 12.5 is an immediate consequence of
Lemma 12.3, from the identity that if

9 = C(h),

then

Appendix A. The Complex Translation ψ

The results in Subsects. A.I and A.2 are for R sufficiently large.

A.I. The Linearized Solution

We write Eq. (1.20) for φ = β 1 / 2 φ,

For r>R, ψ will be of the form

\ (A.2)

for some constants A and B. For r < R we linearize about ψ = ψ0,

(A.3)

1 1

0, (A.4)
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Thus for r < R the solution of the linearized equation (which we still now call ψ) is
of the form

~ Rswhjr/lJ R sinh(r//2)
+ D r sinh(R//2)' ( * }

for constants C and D, lx and l2 are solutions of

I—JLi + J_I-o (A6)
74 12/2 12 + 12/2 Π ~ U > VA ° J
ί A ίD ί A lD lD

with

/I-ΪD, W * , (A.7)

for our choice of parameters. A, B, C, D are determined uniquely by matching
value and first three derivatives ar r = R. It is easy to show that

Thus we expect the linearized solution to be a better approximation to the true ψ
the larger R is (ψ — ψ0 goes to zero for r < R as JR->OO). This reflects the physical fact
that the surface charge density goes to zero with increasing R.

If we set ρ(r) = rψ(r) and write the linearized form of Eq. (A.I) for ρ(r), we get

1 dZ ( X '-(e-eo)=o, (A.9)

with ρo = rψo. Integrating this equation from 0 to 00 we get

dr3

1 1 ?
W72 ί
A ίDίD 0

ί r(ψ~

or
R

I r(ψ-ψo)dr-^-l^xpo, (A. 11)
0

as .R goes to 00. Thus we find from (A.I 1) that the linearized solution ψ satisfies the
linearized form of Eq. (1.31). Outside this subsection we refer to the linearized
solution we have just found as ψL.

A.2. The Full Equation, Large R Situation

We write the linearized solution we have found in Sect. A.I as ψL

r > R (A.12)
r<R.

We seek a solution for (A.I) of the form

The equation for φ is

* + i D 2 + 1Wπ%)Φ+ Ύ212 n
A ίD A ίD ίD J A lD ίD
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or
1

Noting that we may view this as an equation for φonr<R only, we put a norm on
the functions φ on [0, K],

\$\'= sup \φ(r)e{1-2ε){R-r)/lD\. (A.16)
0<r<R

Using Theorem 1.4 for estimates on C, and the results of the last subsection, it is
straightforward to show a (unique) solution of (A. 15) exists, of finite | | ' norm
(bounded uniformly in JR) by the contraction mapping principle. The result

is also easy in the contraction mapping setting. These facts establish Theorems 1.1
and 1.3.

A3. General Existence and Uniqueness Results (This subsection is due to J. Rauch)

Very general existence and uniqueness results for instantons are herein derived.
The volume A need not be a ball, but may be an arbitrary bounded set. In addition
a more general form of p.d.e. is considered; that may be important to the extension
of the present treatment to include other types of short range forces and charge
species.

We are given Fe C°°(R) satisfying

F ' ^ o o O , (A. 17)

and define

We also have α0, aλ eL°°(R3) with

a0 > 0 on an open set, and having compact support. For ψ e C ̂ (R3) (the present
discussion applies to dimensions < 3 as well) we define

. (A.20)

We let H be the completion of CQ in this norm. Notice we have

Since the ψ in H are all continuous, J(xp) defined as

J(ψ)=m^ψ\2 + a1\Vψ\2+2a0F(ψ)-], (A.22)

makes sense as a clearly continuous map from H to R.

Theorem A.I. J has a unique minimum in H. The minimum is a solution of the
differential equation

2 0. (A.23)
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We first prove that J is strictly convex which implies the uniqueness assertion.
We define

J2(ψ)=ίa0F(y>), (A.24)

J1+J2. (A.25)

As both J\ and J2 are convex, if

j ( ~ ^ ) =4(J(Vi) + J(V2)), (A.26)

then

^lψλ ), i = i , 2 . (A.27)

Since F is strictly convex, (A.27) for i = 2 implies

^0(^1-^2)^0 a.e.. (A.28)

Equations (A.26) and (A.28) together imply

J[M(Vi-V2)l2 + « i l ^ i - V 2 ) l 2 ] = 0 , (A.29)
or

= 0 ^Ψi=Ψi ( A 30)

To prove existence we prove that J is coercive and lower semicontinuous. Note
that from

F(s) = F(0) 4- F'(0)s + 52 j (1 - θ)F"(θs)dθ
0

we see that

}.||φ||έ + F(0)ία o φ + F(0)ίαo (A.32)

^llφllH-Ca, c ^ O (A.33)

y - ^ . (A.34)

This is the desired coerciveness.
If ψn-*ψ weakly in H, then ιpn-^ψ uniformly on compacts, so

(A.35)

The lower semicontinuity of the norm in H then yields

. (A.36)

Thus J = J 1 + J 2 is weakly lower semicontinuous.
Let

i= inϊ J(xp). (A.37)
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By (A.34)
ί^-c 4 >-oo. (A.38)

Choose ψn e H so that J(ψn) \ ί. By (A.34) the ψn are bounded in H. Passing to a
subsequence we may suppose ψn-+ψ weakly in H. Weak lower semicontinuity and
(A.37) yield J(ψ) = ί, and the existence of a minimum is established.

The differential equation is the Euler equation expressing the fact that

J( + tφ) = 0 for any φ.
at

We do not here explore the fall off properties at infinity of ψ.

Appendix B. Estimates for C(x,y), C0(x,y)

Lemma B.I. Suppose x2 — ax + b = 0 has two distinct positive roots, and suppose

0^b1(x)^b2(x)^b, x e R 3 , (B.I)

then pointwise

O^(D* + aD2 + b2(x)y1^(D4 + aD2 + b1(x)y1. (B.2)

Proof. Expand

1 + .... (B.3)

The lemma now follows since (D4 + aD2 + b) ~* has a positive kernel. (It is easy to
show the convergence of (B.3).)

Corollary B.2.

0^C(x,y)^Co(x,y). (B.4)

We assume parameters satisfying conditions of Lemma B.I. We proceed to
study Co. We expand C0(x, y) with x, y e A. We write λ2l2

DC0 = (D4 + aD2 + bχ)"x

with a, b satisfying conditions of Lemma B.I, and in addition let j£? = D4 + aD2,

\... (B.5)

The first two terms we have explicitly exhibited in (B.5) can clearly be absorbed
into the first expression in the Max of (1.34). We must look at the remaining terms
in (B.5). We write the sum of the remaining terms in (B.5) as R.

. (B.6)

Notice we need the integral kernel in brackets only for arguments in Ac. We let K
be the expression in brackets, and k = b(J£+ b)~1. We define *r as

= J dzr(x-z)s(z-y). (B.7)
Λc
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Then we have

/c* //c+.... (B.8)

We note the following properties for k:

PI) k(x9y) = k(\x-y\)9 (B.9)

P2) k(x9y)^09 (B.10)

P3) idxk(x9y)=l9 (B.ll)

P4) k(x9y)^ce~φ'yl some α>0. (B.12)

We believe (B.8) and P1)-»P4) are sufficient to derive the estimate for K we need (at
the end of this section we state our conjecture), but we only know a procedure
using detailed properties of k. We have by assumption

(Usually we will want cί >0.) We first state two results about "infinite barriers"
outside a nice domain

Lemma B.3.

where the subscript 1 indicates the closure of the differential operator restricted to
functions vanishing with their normal derivatives on d^, i.e. {/1 / = dnf = 0on
The limit in (B.I5) is strong.

Lemma B.4. Noting

where the subscript 0 indicates the closure of the differential operator restricted to
functions vanishing with D2 times themselves on d£f9 i.e. {f\f = D2f = 0 on d£f).
The limit in (B.I7) is uniform.

The two domains in these two lemmas determine two different self adjoint
extensions of the formal differential operator. We are indebted to Rauch for
information on these results. We will not give a proof here. Lemma B.3 will not be
used. We let ίfc be a ball of radius R\ R'<R centered about the origin; and χ' its
characteristic function. We define

Δk = k-kd

We now write K as

(B.20)
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where Kd is K with k replaced by kd.
We let Kd be Kd with *' replaced by a similar integration over ^ instead of Ac.

We have
0<Kd<K'd. (B.21)

Taking the limit d-+ + oo

Urn K!d = 6(JS?)o x = 6 ~ [(/>2)o * ~ Φ 2 + <0o *] , (B.22)

f̂c - φ ^ o 1 . (B.23)
a

So in the limit d-+ + oo,
K ^ c ί D 2 ) ^ 1 . (B.24)

The remaining terms on the right-hand side of (B.20) are estimated using the
smallness of Δk,

0<Ak<c(D2 + c1)~1dχ/(D2-\-cί-\-dχ')~1. (B.25)

In the limit rf^oo we may estimate Δk by random walk techniques, or by the
maximum principle

Δk{xiy)<ce~^x~y^e~^R~R\~Λ{^~R)e~a{^~R) for some α>0. (B.26)

In (B.26) we assume cx > 0, and α is a fraction of cx. We let GR> = (D2)o 1 (computed
for a given value of R') I*1 fact w e will estimate K simply as

0^X<cG κ . + cβ~αli?~R'!(|x| — jRr-f-1) (|j;| — JR'+l). (B.27)

We have used the easy estimates |K|, |Kd| <c. We have also used properties of GR>
to derive (B.27), in particular to control the last term in (B.20). We need properties
of GR, to use after inserting (B.27) back into (B.6). The following lemma serves our
purposes:

Lemma B.5. With |x|, \y\>R and s as described after Eq. (1.33),

0 ̂  GR.(x, y) ύ c Min β , Qx\ -iT) (\y\ - R<)ij . (B.28)

GR> may be constructed explicitly using a single image charge in a familiar
manner. The term in 1/s is immediate, as the distance between y and x, and y and
the image of x, are both greater than a constant times s. The term in 1/s3 may be
derived in noticing that GR> is zero when either \x\=R' or \y\ = R\ One integrates
along a ray from |x| = R' to |x| = |x| the radial derivative of GR> in the variable x, and
similarly integrates the radial derivative of GR> in the variable y. The double

derivatives of |x — y\~λ and |x' — yl"1 ( T—r) {x' the image charge position) are

c \\X\J
bounded by -j.

s
Letting R' be a function of s,

e-χiR-RI)~-^—, (B.29)
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and using (B.28), (B.27), and (B.6), derivation of Theorem 1.4 is straightforward. We
are not very pleased with our proof of Theorem 1.4 on two accounts.

1) We feel a proof should use only (B.9)->(B.12) to derive properties of K.
2) We have derived a 1/s3 ~ε law instead of 1/s3 law we feel is correct. This line

of proof would yield a l/s3~ε law for a plane surface boundary also.
It is likely that viewing (B.20) as an integral equation for K, and solving this

integral equation by iteration, would with a little care yield a proof of the 1/s3 law.
We will not pursue this direction.

Conjecture. (B.8)-»(B.12) imply that

where JR' = R — 1, and c is independent of R. [c may depend only on the variables α
and c in (B.12).]

This conjecture is for A a ball of radius JR. Similar conjectures may be made for
a large class of other shapes.

Appendix C. Derivatives of r(Λ)

This appendix gives a stronger form of some of the results in Sect. 9.5 of [7]. In
particular we prove the following lemma:

Lemma C.I. There exists ε0 > 0 such that for 0 < ε < ε0 there exists δ > 0, y < 1//̂ ,
and c, c '>0 (all four depending on ε) such that

As in [7] we write (with ΐD = 1)

I I I

= exp[L 3 2z(cosβ 1 / 2 x-l)],

IV = Σ exp Γ - y {(x - nτf + 2iy(x - nτ)}1.

We split up II as

/a*-l)(^-l)}],

Πb = exp[L32z(cosh/?1 / 2y-1)].

We note the following:

|Πa| = exp[L32z(cos β1/2x -1) (coshβ1/2y - 1 ) ] ^ 1,

lib _
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So
lib

ϊΐΓ
for some cί>0. Qβlj2y\ will never exceed 1.)

For JV=1,2, the lemma follows from Lemma 9.7 of [7]. For N^3 and
\A\<>β~ί/6 the lemma also follows from the proof of Lemma 9.7 of [7]. (See the
statement after Eq. (9.57) of [7].) So we need only consider the situation for
N^3 and \A\^β"1/6. We break this up into two cases.

Case 1. β~lί6f^\A\Sβ~lί2+0C oc is a small positive constant which will be fixed
later. Consider the region

r t. Πb . , Λ A

In this region —• is bounded, as

The n = 0 term dominates in IV so we have

2L3z[

<coexρ
03/2

-\x\3

< c0 exp

We use a contour centered at A with radius 1. Then x2^(2A)2, so the above is

Thus

For small β9 | jS α <i so the lemma follows since βW-»£β2* for

Case 2. β~1/2+0C<^\A\^β~ίl2π. Consider the region

where ε is picked small enough so that the two largest terms in the sum in IV are
within π/2 in phase.

lib
As before, |IIa| and

III
are bounded and

I

ΪV

We now use the following easily proven estimate:
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Sublemma. There exists α / < l such that

cosx— lJr^x2Sj/2χ2 for \x\ = π -

By this sublemma

εβ1/2

so a contour of radius — — centered at A yields
2π

P/?1/2\2

Pick y such that Y <y < 1. Then we have

with α > 0 .

Maximizing this as a function of β we find it is

^c'ΛVIexp (i-ε)j-~yΛΠogJV .

Given ε we may choose α small enough to yield the lemma.

Appendix D. Some Theorems (From Geometric Measure Theory)

To determine the choice of hunks, appropriate for yielding satisfactory estimation
of the functional integration, we have used the mathematical techniques of this
Appendix. We found and proved the theorems herein, only later discovering the
results (and presumably also the flavor of proofs) are known in the general context
of geometric measure theory. We are indebted to F. Almgren for a discussion
of this material. Since we need more than the theorems, also details of their
constructive proof, we shall give in addition to the theorems, constructions
yielding their solution. Complete verification that the constructions work is
not presented, but the interested reader may fill in the details.

Theorem D.I. There is a c (depending only on the dimension d), such that for any
f(x) on R d satisfying

ί|V/|<oo, (D.I)

and any M > 0 , there is a g(x) = gM,f(x) such

a) \Vg\ύM, (D.2)

b) g = f off a set of measure ^—J |V/ | . (D.3)

Theorem D.2. Let B be the ball of radius R centered at the origin in IRA There is a c
(depending only on d) such that for any f on B satisfying

J|V/|<oo (D.4)
B
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and any M > 0 , there is a g = gM,f such

a)

b)

c)

9 = f °ff a s e t °f measure ^
SB

f = O on

(D.5)

(D.6)

(D.7)

In Theorems D.I and D.2 g is a function whose weak derivative is an ordinary
function, pointwise bounded as in (D.2) and (D.5). / is a function whose weak
derivative is a measure. In our application / will be h, a piecewise constant
function; and thus V/ will be a (δ-function) measure supported on the discontinu-
ity set of h. If we set / = 0 outside the ball B in Theorem D.2, we note that we may
interpret the expression in brackets in (D.6) as

JIV/I+ 1 1/1 =
dB

Ji
Rd

(D.8)

(the weak derivative being interpreted in Rd, rather than in the interior of B).
Another useful observation is that it is sufficient to prove the two theorems with
M = 1, a simple scaling argument yields the general result.

We introduce a number of functions useful in constructing the #'s of the two
theorems, (r and s appearing below are integers.)

δ(x):

δr(x):

δ\x):

Hr(x):

We let

δrs(x):

Hrs(x):

a) <5(x) = «5(|x|)

b) δeC™

δ c ) J<5 = 1

\ \ 1 Ixl e) δ = 0, |x|^3/4

f) δ = c>0, |x|=4/2,

1 /I \

δh(x)=^δ(x/h)9

2 r -

a) Hr(x) = Hr(|x|)

N . c) ί/r(x) = 0, | x | > 3 2r

2r*1 ixl d) H r(x) = 3 2 p - |x | , 2 ' + 1

 =

xrs, as s varies, be a cubical lattice of points in Rd, with edge

δrs(x) = δr(x-xrs)

Hrs(x) = Hr(x-xrs)

(D.9)

(D.10)

(D.ll)

(D.12)

|x|S3 2'.

size 2r •

(D.I 3)

(D.14)
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We let ε > 0 be a small number. We say rs is rough if

K,(x)|V/(x)|>6. (D.15)

We define H(x) by

H(x)= sup (HJx)), (D.16)
rs rough

and

g(x) = (#*<*> * /) (x) = f dyδH<x\x - y)f(y) (D.17)

[interpreting δ°(x) as a delta function]. With M = l , picking ε = ε0, ε0 a small
enough absolute constant, (D.17) provides a solution for g(x) satisfying the
conditions of Theorem D.I. Two lemmas are useful in showing (D.17) works

Lemma D.3. The H of (D.16) satisfies

|VH|^1. (D.18)

Lemma D.4. The δH of (D.ll) satisfies

To construct a function g(x) satisfying the conditions of Theorem D.2, we first
define /i(x) by

and construct gx{x) using (D.17) with /1 ? and with H(x) constructed for fί9 and ε
picked equal γ^ε0. gλ certainly satisfies the conditions of Theorem D.I (with
/ = / i ) . g(x) for Theorem D.2 is given as follows:

a) If 0i(x) is not identically zero for |x |^ | l? 5 we set

b) If gχ(x) is identically zero for |x|^fK, we set

Appendix E. Enlargement of Hunks, Definition of g*

In this appendix we make explicit the second enlargement of hunks, as referred
to in Subsect. 3.4. We also will construct the functions g* used in Sect. 12; the
hunk enlargement herein detailed has as its sole purpose the construction of the
g*. We often enlarge the hunks more than necessary, by the process of this
Appendix; we sought an enlargement procedure that is easy to describe, at the
price of other considerations. (In fact only hunks M with h not constant on
dM — dΛ may possibly require enlargement.)

E.I. Hunks

We now detail the enlargement process for hunks associated with a given element
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h{x) in #C(0) (as defined in Subsect. 3.3). We will later also construct the #*'s for the
associated enlarged hunks. The enlarged hunks are developed inductively. We
start with

Λ=Σhi9 (E.I)
i

corresponding to hunks Mi9 ht ε Jf jgj, the decomposition of Eq. (3.5). At the onset
of the nth stage we have

h=Σhni, hnie^°l (E.2)
i

(hu = hh Mu = Mi9 and ffluli is? naturally, functions as so far expanded associated
to the hunk Mni) We develop the nth enlargement stage via a number of steps.

1) We set for all time

L', (E.3)

and identify B of Theorem D.2 with A.
2) We pick hni(x\ and carry out the construction of Theorem D.I with

(Έ4)

hni(x) \x\<R9 K ' ]

arriving at an approximating function gni(x). In the course of the construction we

set ε of (D.I5) to be I -7 ), and denote the corresponding H{x) of (D.I6) by Hm(x).

3) For x in A we define xR by

x - ^ ^ x ίE5)

We let Sni be the set of points in A where either ίΓι'(x)φ0 or Hnί(xR) + 0. We let
Sni be the set of points in A within distance 21/ of Sni.

4) We enlarge Mni by adding a minimal number of unit cubes to Mni so that the
union of Mni with these cubes cover Sni. If these enlarged {Mm }f are disjoint the
induction stops. If there are overlaps, we coalesce the corresponding hunks and
begin the next induction step with the coalesced hunks (and the associated
combined fe's).

We note the enlarged hunks have the following properties.
a) They are connected.
b) They contain an L neighborhood of the discontinuity set.
c) The volume of the hunk is

(E.6)

(where h is the h associated to the hunk). The last term involves the discontinuity
energy of the hunk.

d) The hunk decomposition of h is consistent with the polymer representation.
See Subsect. E.3 for some discussion of c).
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E.2. Construction of g*

We let M be a hunk (at the end of the two enlargement processes) and hM e £?M\
We want to define a g* = g% f° r u s e in Sect. 12. g* will be required to satisfy:

a) Q* = hM outside M. (E.7)

b) g ^ O in a neighborhood of δΛ. (E.8)

c) | Z ) V l ^ α ( £ ) ~ | α | , M ^ l . (E.9)

We apply the construction of Theorem D.2 with / picked as hM. The associated
g constructed we call gM. We let sB(x) be defined by

0 R-\x\<L

R |x| * ~ M > 2 L ' ( £ 1 0 )

We then define
(E.ll)

Finally we set

(E.12)

If hM = Q everywhere outside M, we may instead choose #M = 0.

E3. The Boundary Discontinuity

In the first line of (E.6) we understand the discontinuity of h at dΛ to be included, as
naturally arises in Theorem D.I. In the second line of (E.6) we do not, the
discontinuity energy does not include contributions from the boundary oϊΛ. In the
case that all the boundary hunks that have coalasced into M were normal β-hunks
it is easy to see that the second line of (E.6) follows from the first with only a change
of c. It is only the case of a jumbo 5-hunk appearing in M, that must be further
studied. In this case we need only observe the inequality for a function f(x) defined
on a ball B and its boundary dB

ί \f-T\dA^cl\\f\dV, (E.13)
dB

where

1

Area(<3£)
ί

(E.I3) follows from the fundamental theorem of calculus and some simple
geometry in the style of Sect. 9.
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