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Abstract. We study the phase diagram of the Ising antiferromagnet on a square
lattice in a neighbourhood of ground state critical points h = ± 4, T = 0. It leads
to a question about the value ac of the critical activity of the hard-square lattice
gas. Using a constructive criterion of uniqueness we prove that ac > 1 and that
the phase diagram of the antiferromagnet does not bulge near mentioned
critical points. It is a specific feature of this work that the proof was completed
with the help of a computer.

1. Introduction

Let us consider the Ising antiferromagnet on a square lattice with spins σt=±ί
attached to lattice sites ί e ΊL2 and with the Hamiltonian

, (1.1)
<sί> ί

where the first sum is over all nearest neighbours s, £e2£2, \s — ί| = l.
For \h\<2d = 4, there are two different ground configurations σ(1\σ(2) in this

model:

(1) __ ί + 1 whenever t1 + 12 is even ,
1 \ - 1 whenever t1 + ί2 *s °dd ,

_(2)_ (1)σt — ~~ σt -

These configurations are stable, i.e. they generate extremal Gibbs states
< >^1}, < >J52), corresponding to the Hamiltonian (1.1) and to an inverse tempera-
ture β = T~ \ which are for large β only small perturbations of corresponding non-
random states concentrated on the configurations σ(1), σ(2\ respectively. It may be
shown that these two Gibbs states differ in a region

β(4-\h\)>μ (1.2)
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non-uniqueness

Fig. 1. Phase diagram of the 2D Ising antiferromagnet

of parameters (h9 β\ with μ a positive constant. The proof is made with the help of
standard arguments based on a Peierls inequality [1]. This statement and the
following ones are explained in detail in the survey [2].

Using methods described in [1] (Theorem 1) one may show that there is a
unique Gibbs state of the model (1.1) in a region β ̂  βθ9 where β0 is small enough,
as well as in a region \h\^.hQ9 where hQ is large enough. Finally, the ground
configuration is unique for \h\ > 4, and thus one has again a uniqueness in a region
[|/z|>4, β^β(hy] with some β(h)<oo [3]. Summarizing, the regions with a
structure of Gibbs states rigorously known before are shown in Fig. 1.

A conjectured curve of a second order phase transition must thus pass through
a non-hatched region in Fig. 1 connecting points (- 4,0) and (4,0). One may
imagine two essentially different behaviours of this curve as shown in Fig. 1 by
dashed lines. The second curve bulges over the \h\^.4 parts of the /i-axis in such a
way that for some h there would be two phase transitions in temperature. The
physical literature takes it for granted that the first possibility takes place.
However, the evidence for it is based on considerations and calculations [4] which
are not a proof in a mathematical sense. Actually, there are some other models, not
very far from the one studied here, for which the second possibility takes place [2].
It has been suggested that an antiferromagnet on a bcc lattice is just of this
type [5].

The main result of this work consists of the proof, a mathematically
rigorous one1, that the curve of a phase transition cannot look like the second
line in Fig. 1. More precisely, we will extend the region in which a uniqueness of
the Gibbs state can be proven.

Namely, we have

Theorem 1. There exist Θ9 π > θ >f, and r > 0 such that there is a unique Gibbs state
of this antiferromagnet with parameters (h, T) in the domain {(h, T)\h — 4 = fcosθ,
T = rsinff, 0 rg ff^ θ,0^f^r}. This sector of the plane is drawn in Fig. 2 which is a
magnified piece of Fig. 1.

1 We leave aside the question whether efforts to prove in a mathematical sense a fact which
already appears vindicated by physical considerations are justified, since this question may be
discussed only from philosophical or aesthetical positions
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+4

Fig. 2. Magnified piece of the phase diagram

Hence the curve of the phase transition does not bulge above the half-line h ̂  4
[at least near (/z = 4, T = 0)]. The phase diagram near (h= — 4, T = 0) is clearly
symmetrical.

However, the main goal of our work is to advertize the method used in the
proof rather than the result itself. Our method is based on a constructive criterion
of uniqueness presented by two authors of this article in [6]. Let us first recall that
in [6] a system of conditions Cv (for Gibbsian conditional distributions in a
volume V\ Vc%2, \V\ < oo was constructed. These conditions have the property
that if an interaction and β are such that a condition Cv is true for a finite volume V,
then there is a unique Gibbs state for these interaction and β, as well as for
interactions and jβ's in its neighbourhood. The condition Cv for | V\ = 1 is
essentially the same as that presented in [1] (the mean-field approximation). The
set of all conditions Cv exhausts all the region of interactions in which an
analyticity (in a natural sense) takes place (and even strictly contains it!) [7]. When
a volume V enlarges, it becomes more complicated to verify the condition Cκ, so
that it may be necessary to use a computer. On the other hand, a region of
interactions fulfilling the condition Cv enlarges if the volume V increases.

In this work we have tested an efficiency of a criterion given in [6]. It turned out
that the proof of no-bulging near (h = 4, T = 0) follows from the condition Cv for a
rectangular volume V= 3 x 4. It is natural to expect that a sector of uniqueness (see
Fig. 2) will enlarge if the volume V increases and, in the limit F-> oo, will touch the
phase transition curve near (4,0).

Our paper is organized as follows. In Sect. 2 we discuss a connection between
the Ising antiferromagnet and the hard-square lattice gas [the latter turns out to be
a ground state of the former at the point (h = 4, T = 0)]. In Sect. 3 we rewrite the
uniqueness criterion of [6] for the hard-square gas and deduce our main
statement. Section 4 is devoted to some details of checking the conditions Cv

(V — 2 x 2 and V= 3x4) for the hard-square gas.

2. The Hard-Square Lattice Gas

It is a specific feature of the Ising antiferromagnet that it possesses an infinite
number of ground configurations at the points (h = ± 2d = ± 4, T=0). One would
thus take for the ground states not every ground configuration itself but rather
some special measures on these configurations. Such an approach is developed in
detail in [2] where a ground state is defined as a state which is consistent with a
ground specification. The ground specification, in its turn, is defined as a consistent
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set of conditional distributions which are concentrated, for any boundary
condition, on configurations which minimize a functional of a relative energy.

In the following we shall consider a neighbourhood of the point (h = 4, T = 0).
It can be directly shown [2] that all configurations σ for which

\s — t\>l whenever σs = σt=—ί (2.1)

are ground configurations at this point (we take \s\ = [sj + |s2| for s e Z2); in other
words, spin values (—1) cannot be neighbouring. We shall call compatible all
configurations with this property. The model with such configurations is known as
the model of hard squares : let to any σt=—ί correspond an open square with

edges of length |/2 and with vertices in points (t1 ± 1, ί2) and (ί1? ί2 ± 1). Then the
condition (2.1) just means that squares do not intersect.

Look now for measures arising naturally on these ground configurations of the
Ising antiferromagnet at the point (4, 0). To do this, let us consider conditional
distributions qkβ( \ ) of the Ising antiferromagnet in a volume Λ as functions of
parameters h and β, and let us consider the limit /?->oo, h-+4 along the direction

h = 4 + μβ~l. (2.2)

We obtain a specification qμ

A( \-) for the system of hard squares with a chemical
potential μ which corresponds to the interaction Φμ :

I -f oo, A = {s, £}, |s — £| = 1, σs = σt= — 1,

-μσt, A = {t}, (2.3)

0 otherwise .

A value σt = — 1 corresponds to a particle at the site ί, while σt = + 1 to a vacancy.
[Usually the hard-square gas is described by assigning the value 1 for a particle
and 0 for a vacancy. In these variables the chemical potential μ has a value ( — 2μ).]
The observation about the possibility of describing ground states of the Ising
antiferromagnet in terms of the hard-square gas goes back to [4] (see also [2]).

It has been shown [1] that for μ^—μ, where μ is a certain positive constant
[the same as in (1.2)] there are, for the interaction Φμ, at least two periodic Gibbs
states which go to configurations σ(1), σ(2) as μ-> — oo, and that there is a unique
Gibbs state whenever μ^μ. By the methods used in [1] one may obtain an
estimate

(2.4)

It is natural to conjecture that there exists a value μcr, — μ^μcr^μ, which
separates regions of uniqueness and non-uniqueness. In addition, it is natural to
expect that for μ>μcΐ a Gibbs state of the Ising antiferromagnet with h and β
satisfying (2.2) ought to be unique, while for μ < μcr and β > β(μ) non-unique. It
would mean that the value μcr determines an angle at which the line of the phase
transition in the Ising antiferromagnet intersects the ft-axis.

In Sect. 4 we state results of computations which prove, by checking a
condition CF, that every interaction which is close enough to the interaction of



Two-Dimensional Ising Antiferromagnet 93

hard squares generates a unique Gibbs state whenever μ ̂  0. In this way we prove
the statement about the Ising antiferromagnet formulated in Theorem 1. (By
saying that interactions are close, we mean that their specifications are close.) In
addition, we enlarge a region (2.4) in which uniqueness for the hard-square model
was proven earlier.

Numerical methods (the corner transfer matrix method [4]) give the following
value for the critical chemical potential:

μcr=-iln(3.7962± 0.0001).

However, this estimate has not been verified on a mathematical level of rigour.
We hope that our estimate of the uniqueness region can be significantly

improved by checking the condition Cv for larger volumes V.

3. Condition of Uniqueness

In this section we state our criterion of uniqueness in a form suitable for the hard-
square model. A general formulation of the criterion is given in [6].

Let us recall some notations. Let (X, ρ) be a metric space with a finite number of
points and ξ,η two probability measures on X. A joint distribution of ξ,η is a
probability measure P on X x X such that for every subset YcX:

P ( X χ Y ) =

We denote by 0>(ξ, η) the set of all joint distributions of measures ξ, η. The
Kantorovich (Kantorovich-Rubinstein-Ornstein-Vasserstein) distance R(ζ,η) is
defined by the formula

R(ξ,η)= min Σ Q(X, y)P(x, y) . (3.2)
PeP(ξ,η) x,yεX

Let now VcZ2 be an arbitrary finite volume and ί0e<9F
= {ί e Z2\F|dist(ί, F) = 1}. We introduce a metric ρ on the set of all configurations
Ωv = {σv\σv:V-+{-l,+l}}by

Q(O$\ 42)) =i Σ I4υ(0 - 42)(OI - (3.3)
teV

Let σeΩδ F\ f o be a configuration; we define the configurations σ± eΩdV by the
formula

Finally, let Φ be a pair nearest neighbour interaction [i.e. a translation invariant
system of functions Φ{s}(σ), Φ{s ί}(σ,τ), s,teTLd, \s — ί| = l, σ,τ= ±1 with values in
R1u{oo}]5 and q®(- Iσ*) the corresponding conditional Gibbs distribution in a
volume V with the boundary condition δ±. We set

)). (3.5)
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Theorem 2. Let VcZ2 be a finite volume such that an interaction Φ satisfies the
following condition Cv:

Σ feΓ<|F|. (3.6)
tedV

Then there is a unique Gibbs state for the interaction Φ.

The proof is given in [6].
We say that pair nearest neighbour interactions Φ' and Φ" are ε-close if

|exp ( - Φ(s}(σ)) - exp( - Φfs}(σ))| < ε

and (3.7)

|exp ( - Φ('s> ί}(σ, τ)) - exp ( - Φ"Sί ί}(σ, τ))| < ε

for all σ, τ = ± 1 and all points s E TLd and all pairs {s, ί} of the nearest neighbours.

Corollary 1. Let an interaction Φ satisfy the condition Cv with some VcΊί2. Then
there exists εv > 0 such that the statement of a uniqueness in Theorem 2 is valid for
every interaction Φ', which is εv-close to Φ.

Indeed, taking into account the definition (3.7), a value εF may be chosen in
such a way that the condition Cv is fulfilled also for Φ7.

Corollary 2. Suppose that the interaction Φμ of the hard-square lattice system
satisfies the condition Cv (where V may depend on μ) whenever μ^O. Then

(a) there exists μ0 > 0 such that the uniqueness takes place in the hard-square
model whenever μ> — μ0,

(b) the phase diagram of the Ising antiferromagnet looks as described in
Theorem L

Proof of Corollary 2. Let us notice that the distance R(qv,qy) is continuous
function of values of measures civ(σ(γ}\ ...,(fv(σ(γ}V\ i = 1,2, σψεΩγ. Hence we
obtain (a) from Corollary 1. It is easy to show that q^β^q^ along the line (2.2)
uniformly with respect to μ on any finite interval. So in order to prove (b) it is
enough to show that an interval of inverse temperatures [/Jμ, +00] exists for which
the uniqueness for the Ising antiferromagnet with a magnetic field h = 4 + μβ~^
follows from the uniqueness for the hard squares with the chemical potential μ, and
this interval does not contract to the point +00 as μ-» -f oo. However, it can be
easily shown that for every ε > 0 there exists μ(ε) < oo such that for all μ > μ(ε) the
interactions βΦh (where Φh is an interaction of the Ising antiferromagnet for

1) and Φμ are ε-close for all β\ But

for μ-»oo uniformly in σl9σ2 Thus, taking into account Corollary 1, we can set
βμ — 0 for μ large enough. In other words, if we consider the sector of a uniqueness
for a small angle 0, we may take for its radius r = + oo!

Remark. In this way we have obtained yet another proof of a uniqueness for the
Ising antiferromagnet in a region h>4: the uniqueness takes place whenever

4Γί for some C<oo.
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4. A Check of the Uniqueness Conditions with the Help of a Computer

According to the theory described above we should evaluate the Kantorovich
distance between distributions qv(- \σ+\q^( \σ~). It has an important property
that for any joint distribution P e ̂ (q^( - \σ+\ q^( - \σ~)) we have an estimate [see
(3.2), (3.3)],

R(qμv( \σ+lqμ

v(- \ff-))£d(P)= Σ P(4,4)ρ(4,4). (4.1)
σ^,σ*eΩv

Thus we need not look for an "optimal" joint distribution. It is enough just to guess
a "good" one.

Our task is thus to find a finite volume Ffor each μ e [0, 4- oo] and a bound Kζ
of fc£ for every ί0 e dV, so that the condition Cv [see (3.6)]

Σ κΐ<\v\
tedV

takes place with [see (3.5), (4.1)]

d(P)^Kl (4.2)

for all boundary conditions σ e Ωdv\to.

4.1. The Estimate P" of the Joint Distribution

A joint distribution P may be considered as a matrix P(σ^, σv] labelled in rows by
configurations σ£, compatible with the boundary condition σ+, and in columns by
configurations σv, compatible with σ~~. Let us denote the corresponding sets by
Ωv(σ±). Let us emphasize here that the configurations σ+ or σ~ itself need not be
compatible. If we were interested in the hard-square model only we could confine
ourselves to compatible boundary conditions σ±. However, if we want to study a
uniqueness of the antiferromagnet, we have to investigate the hard-square model
in a way which is stable with respect to small perturbations, and we have thus to
take into account all boundary conditions.

The most simple way to define a joint distribution is to set

However, this way is clearly not the most effective one. To see it, let us consider a
square block of the matrix P which is labelled by (σf , σy)eA = Ωv(σ~) x Ωv(σ~},
i.e. by pairs (σ£, σγ\ which are compatible with both σ~ and σ+ (see Fig. 3). It can
be easily shown that the matrix

o, 4+4, (4,4)e^> (4.4)
P(σv, σv) otherwise

is again a joint distribution of qfy(- |σ+),^( \σ~) and, of course, d(Pf}^d(P). We
have used here the following elementary observation: if a matrix P(4, σv] of a
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=nv(er)

Fig. 3. Blocks A, B, and C of the joint distribution matrix

joint distribution may be represented as a sum

P(σv, 4) = δι(4,4) + β2(4,4)

with Qί(σy, σv) ̂  0 and if a matrix Q l satisfies the following conditions:

and

then the matrix P' = Q± + β2 is a joint distribution as well. Constructing the matrix
(4.4) we have used this observation and the fact that the block A (more precisely,
the block labelled by pairs from A) is a symmetric matrix.

Now we shall introduce a block B of a joint distribution matrix. Let t1 e V be a
nearest neighbour of t0edV (there is only one such t1 if the volume V is
rectangular). We say that (σ^, σv) e 5 if

and whenever

Let us denote the former set of configurations by Ωv( — ) and the latter by Ωv( + + )
(see Fig. 3). In the same way as it was done with the block A we may change the
symmetric square block B of the matrix P' into "diagonal" submatrix with a
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tώ3& ~ ffffl-*'- W ~+| I I I I- ••• f~f

(α) + " (b)

- ~-F x ^ -rr = o
(c) (d) (e)

Fig. 4. Equivalence of boundary conditions

diagonal given by σf(ί) = σ£(ί) for ίe F\ίj. Thus we obtain the matrix

fy(σγ\σ+) Σ <
σveΩv( + +)

0, σjr(ί) φ σ£(ί) for at least one t e F\ίt, (σ^, σ£) e 5,

Px(σ^, σ£) otherwise.

Again d(P") g d(P') Finally, we denote by C the block of pairs (σ£, σ£) which are
not in ^4 or 5.

Remark. Clearly, an "optimal" matrix can be chosen from ^(q^( - |σ+), q$( - |σ~))
in such a way that it contains the same block A as P' or P". However, an "optimal"
matrix which contains the block B of P" need not exist. But this is not very relevant
for us since we are looking for an upper bound.

4.2. Eliminating of Some Boundary Conditions

As we have mentioned above we have to find a "good" joint distribution for all sites
t0edV and all boundary conditions σ e ΩdV\tQ. Since their number is considerable
(|δF|2|aF\ίo1), let us first eliminate some of them for a case of a rectangular volume F
using the following rules (see also Fig. 4).

(a) We use a space symmetry.
(b) If ί1? £2

 6 3F\f0 are neighbours of a corner-site s e F, then all three boundary
conditions with σ(tt) = — 1 for i = 1 or i — 2 or both, are equivalent [they give the
same sets Ωv(σ±J].

(c) Let us denote by fi-^ some boundary condition with ί1?ί2 and σ(ίf) as
above and with ί^ί^eδFVo such that |ίj —ίj| = l, 7 =1,2 (thus \t\ — t'2\ = 4\
σ _!(£'•)= —1. Moreover, let σ+ 1 be such that σ+1(ίj)= —1, σ+1(ίj)= + 1. Then
ΩF(σ+ J = ΩF(σ= ̂  x (σ(s) = + 1, σ(s) = — 1} and knowing a joint distribution for
σ _ ! we can easily obtain a joint distribution for σ+ 1 with the same distance.

(d) If ί0 and t e 3F\£0 are neighbours of a corner-site s e F, then a configuration
σεΩdV\to for which σ(i)= — 1 gives the zero distance since Ωv(σ+) = Ωv(σ~) and
thus P can be taken as a diagonal square matrix.
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σ

d(P")

fffl-H-LLJ-

α

1 -*• α

Ά-f +

α(lH 2α)

1 + 3α * αa

'•ffi
α(1+3α)

(Uα)(1+3α+α2)

'ίffi:
+ 4-

α(1 + 2α)
U3α+α2

Fig. 5. Distances for four nonequivalent boundary conditions in the 7 = 2 x 2 case

NO + α)

Nα

N(α+α2)

Nα2

Fig. 6. Example of the joint distribution matrix, a = e 2μ, 1/N = (1 + a) (14- 2a)

(e) Let tptj be as in (c) but ί0 stays instead of t2 and σ+1(ίι) = +1.

which is the same as for F= 1 x 1 = {5}.

43. Computation for V = 2x2

As an illustration (and also to get a first bound of the uniqueness region) we shall
consider a square F=2 x 2. We have four (nonequivalent in the sense described in
Sect. 4.2) boundary conditions σeβδ V Λ ί o in this case, see Fig. 5. The largest
dimension of the block C is 3 x 2 in the case of the fourth boundary condition on
Fig. 5 and the computation of d(P"} for each of the four cases can be easily made
"by hand." (Figure 6 shows an example of the matrix P" for one boundary
condition.) The result is

α(l+2α)

where a = e 2μ. According to the condition Cv we need K^ <

ί e dV. Then (4.2) holds for

Ξexp(-2μ2 x 2).

(4.6)

~- = - for all
\cV\ 2

(4.7)

This is a better estimate of the uniqueness region than (2.4). (If we considered
the volume V= 1 x 2 we should obtain only e~2μ<^.)
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4.4. Computation for V= 3 x 4

However, our aim is to reach a bound e~2μ^ 1. Thus we have to consider larger
volumes F (it turned out that F= 3 x 4 is enough) and a finer guess of a "good"
joint distribution. In principle we could continue on the procedure of changing
square blocks of the matrix into diagonal submatrices [6], but we have chosen here
to apply another, a more simple approach which is based on elementary theory of
transport problems (so called eliminating of 2-cycles). Nevertheless, the volume of
computations enlarges so that it does not pay to perform them "by hand" and we
finally algorithmize the problem for a computer.

To this end, we write the distance in the form

where

= Σ

(4.8)

(4.9)

and dB(P),dc(P) are defined analogically. [Note that, by definition, dA(P") = Q.']
Now we describe an inductive algorithm which modifies the block C of the

joint distribution matrix (we use the matrix P" as an initial estimate) so that the
partial distance dc decreases.

Algorithm. Let any initial matrix P be given.
Step 1. One chooses randomly a pair of configurations (σ^, σ£)eC so that

Step 2. One chooses randomly a pair (τ^,
Step 3. One tries to change the matrix

) e C, iy φ σ

into (4.10)

with x being extremal such that all new matrix elements P( , ) remain non-negative
(and then at least one of them becomes zero) and such that the new distance is as
small as possible.

If no change is possible (only x = 0is allowed) the procedure continues by Step 1.
If the change gives a lower distance it is accepted and we again go to Step 1.
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If the change with any (extremal and nonzero) x does not alter the distance, i.e. if

2(4, 4) + β(4, τ2

v) - ρ(4, 4) + ρ(4, 4) , (4.1 1)

iί is accepted, too, and the pair (σ', σ") /or which P(σf, σ") foαs been diminished to zero
is denoted by (σy, σy) and the procedure continues by Step 2. (If both extremal x are
nonzero then that value is used which was first hit while testing, i.e. random in effect.)

After the zth change we obtain a matrix Pl and we can test if the partial distance
dc(Pl) falls below some given bound.

It is a typical feature of a structure of the sets Ωv(σ±) that the block C usually
contains a lot of "squares" satisfying (4.11). After several steps of Algorithm the
matrix P contains zeros and the third "if causes an intensive shuffling of the matrix
content. Hence those "squares" for which (4.11) is not valid, but which contain a
zero matrix element so that the dc-diminishing change (4.10) is not possible, can
gain a nonzero element so that the dc-diminishing change is again possible. This
part of the algorithm is thus expected to speed up a convergence. Of course,
nothing is said about a convergence to the absolute minimum of the distance.

It is naturally impossible to perform this procedure for a continuum of μ's in an
interval μe[0,μ2x2]. So we used the following trick. Let [μx,μx/] be any
subinterval of an investigated region of chemical potentials. Let

μ' = μ0<μί< ... <μn = μ" (4.12)

be an appropriate partition of the interval [μx,μ"]. Let

^ exp(-μ7.|σF|) Σ ^ exp(-μ>F|)'
v(σ + ) σyeΩv(σ )

where (σy, σy) e C and \σv\ = Σ σv(t)> be a matrix (not necessarily a joint
ίeF

distribution!) and

Σ ^ exp(-μ j+1|σF|) Σ ^ exp(-μ j+1|σF|)
v(σ + ) 0veί2^(σ )

-Pi^σίX). (4.14)

Thus the elements of the matrix P" in the block C are bounded as follows

μΊ(4> 4), (4.15)

whenever μ 6 [μ7, μx/]. Let now P{μ tμ»] be a matrix obtained by Algorithm after the
Ith change from the matrix P[μ',μΊ. (Note that the blocks A and B remain
unchanged.) Then the matrix
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Table 1. Bounds K^0 of the Kantorovich distance for a volume
V=3 x4. The last column contains a number of nonequivalent
boundary conditions

Neighbour of ί0 e dV Symmetry K]Q

Centre of shorter side
Corner
Interior of longer side

Sum

2 x
8x
4x

0.81599
0.865
0.862

11.99998

214
275
350

839

is a joint distribution and using (4.15) to estimate the term in parentheses, we
obtain finally

dc(Pμ} ^ dc(P[μ/>μΊ) + dc(AP[μ,,μΊ) (4.17)

uniformly for μ e \_μ\ μ"].
An estimate of dB(P") was made by a similar trick.

4.5. Computer Proof

Algorithm and the formulae (4.13)-(4 17) are now our main tools to complete the
proof. They were implemented, for a volume V=3 x4, on a computer. Table 1
shows three nonequivalent sites ί0 e dV and corresponding bounds K^Q which were
used in the program. They satisfy the condition Cv :

tedV
Γ = H.99998 < 12 = \V\.

The interval of interest e'2μe [1.00001, 0.76759] = [«/,«//] was split into m
(3^m^8) nonequidistant subintervals. In each subinterval (denoted by [μ^μ"])
an estimate of dc (4.17) and dB was computed. Here also a nonequidistant partition
(4.12) of [μ', μ"] into n = 12 subintervals was used, and this is the partition entering
the estimates (4.13)-(4.14). Let us remark that the distance increases for activities
near αz, and thus we need more accurate estimates in this region to check the
condition Cv. That is why we thickened the partition points in this region using the
formula

fc2-!

Now

m

[al9 au~\ = U [e ~ 2μ', e ~ 2μ' ] = (J

and
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Actually, this choice is more a guess than an optimal one. The choice of m depends
on a boundary condition. For a majority of them the value m — 3 was sufficient,
however, in several important cases of boundary conditions with only few particles
we had to use more subintervals.

While running the program, a joint distribution matrix P was found for all
(nonequivalent) sites ί0 and boundary conditions and all subintervals [μ'? μ"] so
that in every case the distance d(P) falls below the bound Kζ. Thus a uniqueness
for £Γ2"e [1.00001,0.76759] and, including (4.7), for μe [0, + oo] is proven.

Finally, we add some remarks about the practical realization. The algorithm
was programmed in FORTRAN. We have used the "double precision" arithmetic
(8-byte representation of real numbers with accuracy about 16 decimal digits) to
calculate powers of activities, sums, fractions etc. rounding errors are unessential
at these steps. In order to avoid a cumulation of rounding errors during an
execution of Algorithm, and also to speed up the run, we used an integer arithmetic
in this part of the program; a conversion from real was managed so that the
conversion errors do not violate the inequalities (4.13)-(4.14). Before computing
the resulting distance a test of row and column checksums and of a positivity of the
matrix P was performed.

The source program contains 348 FORTRAN statements and has been
compiled by an optimalized H- FORTRAN on the EC 1040. The runs of the proof
took 1.5 h of CPU time and required 108 kbyte of memory. A copy of the program
is available upon request from the second author.

Finally, we should note that a similar computation for μ = 0 and a volume
7=3x3 leads only to an upper (not necessarily optimal) bound of the sum

tedV

5. Discussion

The algorithm for checking uniqueness conditions which we have used in this work
is not the best one. Firstly, it does not necessarily yield the minimum of the
Kantorovich distance since it only eliminates 2-cycles in the transport problem.
Moreover, it takes only partially into account some specific features of the
problem, e.g. the fact that both the measures q$( \σ+) and q$(-\σ~) differ
essentially only near the site ί0 (cf. the algorithm of [6]). Nevertheless, for a
relatively small volume 7 = 3 x 4 the given algorithm is quite satisfactory. In
general a choice of a suitable algorithm must depend on the concrete problem and
on an accessible computing power. We believe that an application of our methods
with the help of more powerful computers can essentially enlarge regions in which
a uniqueness can be proven. A generalization of our results to different three-
dimensional lattices seems to be especially interesting.
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