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Abstract. We exhibit the analytic structure of a model of disconnected,
selfintersecting random surfaces. This model is shown to have features
attractive for a Monte Carlo simulation. Previously obtained numerical data
show evidence that for a 3-dim embedding space the string tension vanishes
above a critical temperature and has a critical exponent between 1 and 2. The
glueball mass is shown to be bounded below by the mass-gap of the 3-dim Ising
model.

1. Introduction

In a recent article [Sch], we presented some numerical analysis of a lattice theory
of disconnected, selfintersecting random surfaces embedded in 1RJ=3. (For
motivation of and references to similar and alternative lattice approaches to
random surfaces, see [Sch] as well as [DFJ, F].) It is the aim of this paper to
continue the analytic discussion of this model. Allowing the embedding space to
have arbitrary dimension d^3, we prove existence and properties of the string
tension. Comparison with the numerical results obtained in [Sch] indicates that
for d = 3 the string tension vanishes below a critical temperature and goes to zero at
the critical temperature with a critical exponent between 1 and 2. The model also
allows for a definition of the glueball mass. Exploiting the isomorphy to the d = 3
Ising model in 3 dimensions, whereby these surfaces correspond to the Peierls
interfaces, we show that the glueball mass is bounded below by the mass gap for the
d = 3 Ising model. These results are obtained by showing that in this model all
quantities of interest may be written as (quotients of) Green's functions in the
Gibbs ensemble consisting of manifolds without boundary. This makes these
quantities easily accessible to an efficient Monte-Carlo computer simulation. For
example, it is our impression that the new microcanonical algorithm invented by
M. Creutz could be applied.
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In Sect. 2 we give the definition of the model. We establish the basic analytic
properties including physical positivity [OS] (also called reflection positivity, see
e.g. [GJ] for a survey). Combined with translation invariance, this allows the
application of the well known techniques involving the transfer matrix. In Sect. 3
we briefly recall the equivalence to the Ising model for the case d = 3 and the Z2

lattice gauge theory for arbitrary d. Thus most, but not all of our results could be
obtained using the equivalence to the Z2 lattice gauge theory. Nevertheless, we
choose to work out the manifold properties in an intrinsic way, in particular, since
our methods easily extend to more complicated models given in the last 2 sections.
In Sect. 4 we introduce the string tension and the glueball mass. We establish and
discuss their properties. In Sect. 5 we briefly indicate how to extend our analytic
discussion to the case, where the manifold is allowed to fold onto itself. Section 6
gives a lattice formulation where in addition the surfaces carry a Yang-Mills field.
In an appendix we prove the ergodicity of the Monte-Carlo upgrading procedure
used in e.g. [SG] and [Sch].

2. Analytic Properties of the Model

Let (aΈf C IRd be a hypercubical lattice. The lattice distance a > 0 will be arbitrary
but fixed, c1 will denote any open i-cell (vertices, bonds, plaquettes ...) with i-dim
volume a1. The openness condition is for technical convenience. Simultaneously,
we make the c2's into dynamical variables taking values in TL2 (c2 = 0,1). We form
the groups

c2

and

^Λ= ΓΊ ^2> (2)

where A is any box in IRA Each <$A may be viewed as a subgroup of ^ or <§A,
(A £ A). Note to each group element g = [g(c2)}c2 e ̂  we associate a "manifold"
M = M(g) defined to be the union of the different c2's for which g(c2) = l.
Conversely any such union M of 2-cells c2 defines a unique group element g.
Finally, we give any c2 another interpretation, namely as a function on the set of all
manifolds, by

2 f l if c 2 eM,
\~ ^) I r v r 7 i •» r \^J(U it c φ M.

We will make free and interchangeable use of these four definitions for any c2,
namely (i) as a label for a 2-cell, (ii) as the set of points in this 2-cell, (iii) as a
dynamical variable taking values 0 and 1 [our previous g(c2}] and (iv) as a function
on the set of all manifolds in the sense of rel. (3). Next we introduce the symmetric
sum of two manifolds Mx and M2 by

M! + M2 = M! uM2\Mj nM2. (4)

Under this sum the manifolds form an abelian group, the empty set being the zero
element and all other elements having order 2. In terms of the above corre-
spondence M = M(g) this group is isomorphic to ̂  and the M's with M C Λ form a



Siring Tension and Glueball Mass 33

group isomorphic to <S A. Also

c2(Ml -f M2) = c2(Ml) -f c2(M2) mod2 . (5)

Next we introduce the concept of a boundary of a manifold. First, a curve γ is a
union of different 1 -cells c1. We allow γ to be selfintersecting in the sense that any
vertex may be contained in the closure of more than 2 1 -cells belonging to γ. We say
that y is a curve without boundary and write dy = φ, if no vertex is contained in the
closure of an odd number of different 1 -cells belonging to y.

For two curves y x and y2 we define their symmetric sum as

V l + 72 = 71^2^1 ̂ 72- (6)

For any manifold M we define its boundary dM to consist exactly of those
1 -cells which are in the closure of an odd number of 2-cells belonging to M . With
this definition we have

and

δ(M1+M2) = δM1+δM2, (8)

i.e. d is a homomorphism of the group of all manifolds [with the group operation
(4)] into the group of all curves without boundary [with the group operation (6)].
That the curves without boundaries form a group follows from a relation similar to
(8) for curves

(9)

where the sum on the right-hand side is now the symmetric sum for vertices.
To any y with dy = φ we now associate the (possibly empty) sets

(10)

and

y} . (11)

Note that CΛ(y) = φ if y is not contained in Λ\dΛ.
We remark that only local properties are involved in the definition of these

ensembles. In particular, we made no restriction on the connectivity. This
contrasts with many other models discussed so far (see e.g. [F] for a discussion on
this point).

(12)

by (8), and similarly

CA(yJ + CA(y2)£CA(7i+72), (13)

we have the following:

Lemma 1. C(φ) and CΛ(φ) are subgroups of $ and <$ A, respectively. Any nonempty
C(y) and CΛ(y) is an orbit under C(φ) and CΛ(φ\ respectively. C(φ) and CΛ(φ) operate
fixed point free on C(y) and CA(y), respectively.
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Proof. The first statement is a trivial consequence of rels. (12) and (13) applied to
the case yι=y2 = Φ- By the same relations C(φ) and CΛ(φ) operate as transforma-
tion groups on C(γ) and CΛ(γ), respectively. As for the second statement, let
M1? M2 e C(y). Then by (8) we have

Hence Mί + M2 = Ne C(φ). Adding M2 on both sides gives M1 = M2 + N. Next
assume Mί = M1 + N for M1 e C(y) and N e C(φ). Adding M1 on both sides gives
φ = N. The discussion for CA(γ) is similar.

For any finite manifold we define its area by

Area(M) = α2 Σ l = a2Σc\M). (14)
c2eM c2

We will introduce partition functions with this area as the action and CΛ(y) (y
fixed) as the underlying statistical Gibbs ensemble. We will assume 7 to be finite
and CΛ(y) to be nonempty. Hence there exists a (not necessarily unique) minimal
surface M(y) defined by the property

Area(M(y))= inf Area(M). (15)
MeC(y)

For y = φwQ set M(φ) = φ. Also from now on we will assume A to be so large that
M(y) E CΛ(γ). We may now perform a trivial additive renormalization on CΛ(y) by
setting

Ey(M) = Area (M) - Area (M(y)) ̂  0 . (16)

For β > 0 the partition function ZΛ(γ, β) is now given as

y,β)= Σ exp-^Eγ(M). (17)
MeCΛ(γ)

Note that β has the dimension of an inverse area.
By Lemma 1 we may rewrite the partition function as

ZΛ(y,β)= Σ exp-0Ey(MOO + N). (18)
NeCΛ(φ)

From (4) we deduce

Area (N) - Area (M(y)) ̂  Area (M(y) + N) ̂  Area (N) + Area (M(y)) . (19)

Setting

(20)

this gives our first important estimate

(21)

valid uniformly in A. This sharpens a result obtained in [Sch] by much more
elaborate methods.

In a next step, we will rewrite zA(γ, β) as a quantity entirely computable in the
statistical ensemble CΛ(φ\ Let < yΛty(β) denote the expectations in the Gibbs
ensemble CΛ(γ) at inverse temperature β.
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Let M1? M2 e CΛ(y) be arbitrary. Then by Lemma 1 we have

Y e-βArea(Ml+N)= y e~ β Area(M2 +JV) /22)

NeCΛ(φ) NeCΛ(φ)

Now, considered as a function of JV

Area (M + N) = Area (M) + Area (N) - 2 Area (MnJV)

= Area (M) +Area (AT)-2α2 Σ c2(N). (23)
c 2eM

Inserting this into (22) gives us the following important identities

β-,Area<*υ(^eV^^

= έΓ*Area(M(y\1(y,j8), (24)

provided only that dM1 = dM2 = y. The first part of rel. (24) may be viewed as a
Stokes theorem for our model of random surfaces.

As a special application we obtain

Lemma 2. The quantity zΛ(y, β) is a Green's function in the Gibbs ensemble CΛ(φ):

β). (25)

Note that

e2ea2e2 = l + (e2βa2-l)c2

9 (26)

so the right-hand side of (25) is an expectation of a polynomial with positive
coefficients in the dynamical variables c2 of order Area (M(y))/α2.

In view of Lemma 2, rel. (24) now has the following important interpretation.
For any M e CΛ(γ) with dM = y and given β > 0, we may view the observable

N_+e-β*™we

z> \3«<2™ (27)

on CΛ(φ) as a creation operator for the boundary y in the Gibbs ensemble CΛ(φ). In
fact, by (24) the expectation value of this observable is independent of the
particular choice of M.

As an immediate consequence of Lemma 2 we have

Lemma 3. zΛ(γ, β) is monotonically increasing in y in the sense that

zA(γ'9β)^zA(γ,β), provided M(/)2M(y). (28)

In the same fashion, we may express expectations with respect to < yΛ,y(β} by
quotients of expectations with respect to < yΛ,φ(β)'>

Lemma 4. For any polynomial P in the basic dynamic variables c2,

/pf>2βa2

c2εM(γ)
C\ (β\

<pyΛ,v(β)=~2βa> Σ ./-̂  (29)
<e C'.M(V> yΛφ(β}

Now in [Sch] we proved the existence of the bulk limit for the free energy per
unit volume for a large class of interactions on C(ψ), including the action given by
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the area. The same was shown to hold for expectations. Actually, the proof was
given for d — 3 only, but it extends easily to arbitrary d. We collect this in

Lemma 5. For all β^O, the bulk limits z(y, β) of zΛ(y, β) and <P>y(j8) of <PyΛty(β)
exist, when A tends to infinity in the sense of van Hove.

By Lemmas 2 and 4 all interesting quantities may be obtained as (quotients of)
expectation values in the ensemble CΛ(φ). We will see in Sect. 4 that in particular
zΛ(y,β) will provide us with interesting information. Hence in a Monte Carlo
computer simulation it will be sufficient to simulate the Gibbs distribution on
CΛ(Φ\

Now a fast simulation for this is well known [SG]. It has also been used in
[Sch] for the case d — 3, where, however, still separate simulations for CΛ(y) and
CΛ(φ) were performed. This simulation for CΛ(φ) is briefly described as follows. At
ί = 0 one starts with the empty manifold. At each computer time a manifold M(t) is
stored. The upgrading at t' = t+ 1 is performed by a local surgery in forming the
trial configuration

) (30)

for a fixed 3 -cell c3. If M(i) has empty boundary so has Mtrial. Mtrial is then accepted
as M(t + 1) with the usual acceptance rate derived from the Gibbs factor. Sweeping
through all 3-cells c3 gives the desired upgrading.

Ergodicity, which ensures that the Gibbs distribution is the unique equilibrium
distribution under the upgrading (30), is now equivalent to the fact that the group
CΛ(φ) is generated by the elements of the form 3c3. We state this as a separate

Lemma 6. // Λ is a rectangular box, then the group CΛ(φ) is generated by the
<5c3(dist(c3, dΛ)^ί). In particular, the upgrading defined by (30) is ergodic.

The proof is given in the appendix.
To obtain a further control on the y-dependence of zΛ(y, β), we will prove the

physical positivity of the expectation < yΛ,φ(β) Let A be a rectangular box and H a
half plane parallel to one of the sides of Λ, dividing Λ into two closed sets Λ+ and
yί_, equal under reflection. Let & = 8H denote the reflection with respect to this
plane. Let 0*(Λ±) denote the algebra over <C generated by the dynamical
variables c2 of those 2-cells intersecting Λ+ and /L_, respectively. Note
that ^(Λ+)n^(Λ^) is nonempty. Let Θ denote the antilinear algebra automor-
phism Θ : 0>(A±)-+0>(Λτ) induced by 5.

Lemma 7. For any fε0*(Λ+)9

(31)

Proof. By our previous remarks, we may identify CΛ(φ) with a subgroup of Ή A. For
any function F on &Λ9 let

(F)A(β)= Σ (F(g)e~β*cΊ (g = {c2}). (32)

The restriction to the subensemble CΛ(φ) is now obtained by introducing a
suitable projection operator. First, let

P,Λ= Π (l-c2) (33)
c2:dist(c2,dΛ) = 0
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be the projection operator enforcing the boundary condition in (11). From
P?A = PL and ®PβΛ = PSΛ, we have PdΛ = PdAΘPdΛ. Next for a given 1-cell c\ let
S '̂i (l^y^2(d-l)) be the/h elementary symmetric polynomial in the 2(d-l)
2-cells c2 which contain c1 and their closure. Then it is easily seen that there are real
dj such that (S°ι = 1) 20*- υ

δci = Σ apii (34)
j=o

is zero exactly when an odd number of these c2 take the value 1 and one otherwise.
For example, for d = 3 this polynomial takes the explicit form

c

2ι -4Sc

3ι

In particular, βcι = (βcι)
2, and since ΘSj

cι = S{cι for all;, we have ΘQcι = QBcί. Thus
the product Q=Y\QC^ satisfies Q2 = Q, ΘQ = Q. Now let

c1

P = P,ΛQ, (35)
such that

P = PΘP. (36)
Using (32), we also have

(fΘfyΛ,φ(β) = ZΛ(ψ,β)(fΘfPUβ) = ZΛ(Ψ,β)(PfΘ(Pf)Uβ) (37)

Now the right-hand side of (37) is trivially seen to be ^0 and Lemma 7 is proved.
To exploit this result, note that 5 induces a map γ ->Sy on the set of boundaries.

A direct consequence of Lemmas 2 and 6 is

Lemma 8. Let the boundaries yί and y2 be such that M(y1) and M(y2) live in A + .
Then for all β>0,

ZA(JI + %2, β) ̂  zA(γ, + 9γl9 β)ί/2zΛ(y2 + Sy2, β}112 . (38)

This proof of reflection positivity was essentially based on the fact that our
manifolds were defined by a local condition. By similar arguments therefore
reflection positivity in the above form continues to hold for the ensemble of
selfavoiding manifolds as discussed for example in [KT, Sch]. For these ensembles
we do not know of any analogue of Lemma 2.

3. Equivalence to the Ising Model (dH-3) and Z2 Gauge Theory

In this section we recall the well known isomorphy to the d = 3 Ising model, by
which elements in C(φ) correspond to Peierls interfaces. More precisely the
correspondence is obtained by assigning a dynamical variable to each 3-cell c3,
also denoted by c3 and taking the values ± 1 (we deviate here from the standard
notation which employs the symbol σ). We impose the boundary conditions

c3 = l , dist(c3,δ/t) = 0. (39)

Then the relation between the dynamical 2-cell variables of our random surface
model and the 3-cell variables of the Ising model is given as

C

2=i(l-c3c3/), (40)
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where c3 and c3' are the two unique 3-cells containing c2 in the intersection of their
closures. In words, c2 belongs to an interface iff c3 and c3/ have opposite sign.
Furthermore, by (40) the actions of the two theories agree modulo an additive
constant provided,

βa2 = 2βlsίng, (41)

so we have

< W£) = < λι(/W> (42)

where the right-hand side denotes the expectation values for the Ising model with
boundary conditions (39). Also (40) is the translation code for the basic dynamical
observables.

This correspondence gives a new proof of the bulk limit when d = 3. Moreover,
we have

Lemma 9. For βa2<2βlsίng (critical) and any y, the expectations < )y(jS) exhibit
exponential clustering with a mass gap bounded below by the corresponding mass gap
of the Ising model

Remark. This results indicates that the critical value β0 for our random surface
model should satisfy β0a

2 > 2/?Ising (critical). This also suggested by the numerical
results in [Sch].

To conclude this section, we translate the first part of relation (24) into the
corresponding Ising model relation. It may be viewed as an Ising model version of
Stokes theorem and is well known [KC].

Lemma 10. Ind = 3, let M1 and M2 be any union of 2-cells such that M1 + M2 is a
Peierls interface. Then

<exp - 2&singΣ1c
3c3'>ylOSIsing) = <exp - 2AsingΣ2c

3c3'>ylOSIsing), (43)

where the sum Σj extends over all pairs of 3-cells c3, c3' such that the intersection of
their closure contains a 2-cell in Mj.

We recall the direct proof [KC]: For the given Peierls interface M1 + M2, let T
be the union of all 3-cells for which c3 would take the value — 1, given the boundary
condition (39). Then (43) follows by making the variable substitution c3-* — c3 for
all 3-cells in T.

It is now obvious how relation (43) extends to arbitrary d. The crucial property
again is that the Peierls interfaces form a group under the symmetric sum.

Next we recall the well known equivalence to the Z2 lattice gauge theory (see
e.g. [BDI]). Let l/cl = ± 1 be the lattice bond variable and

UC2= Π Uel (=±1) (44)
ciedc2

the corresponding plaquette variable. The partition function at inverse tempera-
ture βg takes the form

ZA(βg)= Σ expj8,Σ(f/c>-l)
l / c ι = ± l c2

^coshβ,)*^) Σ Π(l + fc*tanhjB,). (45)
C 7 c ι = ± l c2
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Expanding the product and doing the sum, only nonvanishing contributions arise
when an even number of plaquettes meet at any bond. This gives

)ZΛ(y = ̂ j8), (46)

where β and βg are related by the duality transformation

tanhj80 = exp-j8. (47)

Similarly we obtain for the unrenormalized Wilson loop expectation

Π Vel
I7 c ι=±l

(48)

Therefore with the duality relation (47) our ZΛ(y,β) is just the Wilson loop
expectation, giving an alternative proof of reflection positivity and Stokes theorem
in the form of relation (24).

4. String Tension and Glueball Mass

In [Sch] we interpreted the quantity

F(y,fl = lnφ,/J)= lim iazΛ(γ,β)= lim la(ZA(y,β)-ZΛ(φ,β» (49)
Λ-* oo A-+QQ

as the polarization energy of the boundary y. By (21) it obeys the estimate

0 ̂  F(γ, β) ̂  2β Area (M(y)) . (50)

In fact, in terms of the Nambu-Goto [N, G] string quantization picture, the
connected component of M(y) + N (N e C(φ)) containing y may be interpreted as
the string associated to y. The presence of the other components of M(y) + N,
which therefore have empty boundary, are interpreted as vacuum polarization
effects due to glueballs (I am indebted to G. Sterman for an enlightening discussion
on this point). Formally therefore, as in the Gell-Man Low formula, zΛ(φ, β) serves
to "factor out" these vacuum polarization effects. Considering F(y, β) as a basic
quantity therefore replaces the connectivity condition placed on a random surface
in other models (see e.g. [F]).

Now consider the dimensionless quantity

provided the limit exists. Here we have indicated the dependence on the lattice size
α. By the equivalence to the Z2 lattice gauge model, the intrinsically defined
quantity

)-βa2 (52)

may serve as a definition of the string tension. The term βa2 has been subtracted in
order to undo the additive renormalization performed in (17). For a definition in
the same spirit but in different models, see again e.g. [F] and the references quoted
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there. By (45) we have

-βa2^κ(β,a)^βa2. (53)

With this definition, the string tension in this model as well as for the ensemble of
selfavoiding manifolds seems to have the desired properties. Indeed by (53) we have

α(0,α) = 0. (54)

Also in [Sch] we performed a computer simulation to evaluate — a(β, a = 1) (see, in
dp

particular, Fig. 3 in [Sch]). The results obtained there indicate the existence of a β0

with

β0. (55)
αp

Also

—rα(jβ,a = 1) <const for all β, (56)
dβ

whereas the second derivative is discontinuous at βQ. Granted these results, the
string tension vanishes for β < βQ. Also if α(/?, a = 1) for β > βQ is assumed to be of
the form const (β — βQ)μ, then we have

l<μ<2. (57)

Since the related model of selfavoiding random surfaces shares similar features
(with a shifted critical value for /?), we would not be surprised if these two models
belong to the same universality class.

We turn to a definition of the glueball mass. Let γ0(x) denote a translate of the
loop y0 by x e (aΈ)d. If the quantity

0(yo, & *) = In(z(y o + y0(x)9 β)z~ 2(y0, β)) (58)

has an exponential decay rate as x->oo, we may use this as the definition of the
glueball mass for the loop y0. Indeed, for large |x| we have

M(y0 + 7o W) = M(7o) + M(y0) W , (59)

where M(x) denotes the translate of M by x. We expect cluster properties (at least
for small β) of < >φ(β), the bulk limit of < yΛ,φ(β)- Applying Lemma 2 therefore
should give

lim z(y0 + y0(x),β) = z(y0,β)2. (60)

We turn to an analytic discussion of these quantities. First, as a consequence of
Lemma 7, we have

F(γi + 9y29β}^F(yl + »γl9β)+iF(γ2 + 9γ29β)9 (61)

for any reflection with respect to a plane not cutting or separating M(y1) and
M(y2) Let now y(L, M) denote the boundary of a rectangle of sidelengths aL and
aM (L,MeZ+). Then (61) gives

F(y(L+L\ M), β) ̂ F(y(2L, M), jB) +iF(y(2i/, M), J8) , (62)
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and similarly for L and M interchanged. This gives the

Theorem 11. For all β ̂  0, the string tension exists when the limit y-*cois taken over
the sequence y(L, M) with L— »oo and M->oo.

Next we turn to discussion of the quantity g(yQ, β, x). For simplicity we will take
y0 to lie in a plane and x to be a translation orthogonal to that plane, i.e.
x = |x|e, where e is orthogonal to the plane spanned by γ0. Set

,β). (63)

Applying Lemma 7 again gives

^H(2\x\)+±H(2\y\), (64)

i.e. H(r) is convex in rea(Z+ + 1). Since H(r) is bounded, see (50), this is only
possible if ίf(|x|) is monotonically nonincreasing in |x|. Thus we have proved

Lemma 12. g(γQ, β, x) is monotonically decreasing in |x| for y0 lying in a plane and x
being translation orthogonal to that plane.

By our previous discussion we expect g(y0,β,x) to tend to zero as |x|-»oo.
Assuming this to be the case, the glueball mass for the loop y0 is defined by

m(γ0,β,a)=- lim —In In

1

In fact, by Lemma 9 we have the

Theorem 13. For d = 3 and with /to2 = 2/?Ising < 2βlsing (critical) the glueball mass
m(yQ,β,a) is bounded below by the mass gap m(βlsing) of the Ising model.

To conclude this section, we want to use z(y0 + y0(x), β) to prove the following

Theorem 14. In the thermodynamic limit the translation invariant quantity

(c2yφ(β)= lim <c2yAtφ(β) (66)
Λ-+ oo

satisfies the estimate

0£<c2>,(jS)£i (67)
for all β^O.

In words it says that the (translation invariant) probability for a plaquette to
belong to a manifold without boundary [i.e. to an element of C(φJ] is less than 1/2.
Although we consider this result to be nontrivial (except for d = 3, see Sect. 3), it is
not surprising. Indeed, since each 1-cell has to be contained in the closure of an
even number of 2-cells of the manifold, we expect this condition to prevent a 2-cell
to belong to an element of C(φ) at least half of the times.

Proof. Let y0 be the boundary of an elementary 2-cell and let again x be a
translation orthogonal to this 2-cell. Also let Mx be the sides of the cylinder formed
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by y0 and γQ(x\ such that Area(Mχ) = 4φc|. Then by (24),

z(7o + 7o (*), 0 - ̂ α2 -4/teW ( *2'βa<'e"-c2)Φ(/9 . (68)

Applying Jensen's inequality (see e.g. [Si]) we obtain
/?α2 Σ <c2>

c2εM (β)
_ e2βa2 - 4βa\x\ + 80α|*l <C2> φ / m ^

where the equality follows from translation invariance. On the other hand,
z(y0 + y0(x),jβ) is bounded in |x|. This is only possible if (67) holds.

5. Selfoverlapping Manifolds

Up till now, the manifolds M we considered were not allowed to fold onto
themselves, i.e. each 2-cell c2 appeared at most once in manifold. We will now allow
a 2-cell c2 to appear with multiplicity c2(M) between 0 and n— 1 (n even). This
corresponds to replacing ΊL2 in (1) and (2) by ΊLn. The set of manifolds again forms
an abelian group with the group operation being given implicitly by

c2(M, + M2 ΞΞ c2(M j) + c2(M2) rnodn . (70)

For given M we define its boundary dM to be the union of 1 -cells c1 for which

Σ c 2(M)Ξlmod2. (71)
c 2 :c 1 edc 2

Let now CΛ(y, n) be the set of such selfoverlapping manifolds with boundary y and
distance ^α to dΛ. Because n is even, rel. (13) and therefore Lemma 1 again hold.
In analogy the partition function is now defined as

ZA(y,β,μ) = eP*"{ltm Σ e~
βa2-c2(M\ (72)

MeCΛ(γ,n)

where we now consider our previous minimal surface M(y) as an element of
CΛ(y, n). To reexpress

as an expectation in the ensemble CΛ(ψ9 n), we need a formula which replaces (23).
In fact, such a formula is given by

c2(M(γ) + JV) = c2(M(y)) + c2(N) - nc2(M(y)) "π ί̂ ^Γ / ' (74)

where we have made use of the fact that c2(M(y)) is either zero or one. This gives

(75)
( 1 \n — 1 — i)

where < yΛtφ(β, n) denotes the expectation in the ensemble CΛ(φ9n) at inverse
temperature β. Note that for n = 2 (74) and (75) reduce to (23) and (25), respectively.
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Also Lemma 3 extends to the present case as does Stokes theorem [first part of
rel. (24)].

Furthermore, physical positivity holds, since it follows by an easy adaption of
the proof of Lemma 7. Since the thermodynamic limit can be established along the
lines of [Sch], the string tension and the glueball mass are again well defined. It
would be interesting to study the behaviour as n-> oo, the case when no conditions
are imposed on the number of times the manifold can fold onto itself.

Finally, the upgrading procedure has to be modified as follows. In addition to
the local surgery (30) in an alternate step, one also adds the manifolds which are the
double of one 2-cell. Running through all 2-cells in this way gives an ergodic
upgrading.

6. Coloured Strings

In this section we want to propose a way to add colour to our surfaces. In the
language of string quantization consider an (infinitely thin) string, hypothetically at
rest and containing a Yang-Mills field line starting at a quark at one endpoint and
ending in an antiquark at the other endpoint. This is simply the colour flux tube
interpretation of the string. A covariant formulation for moving strings might
therefore look as follows. Let M be a 2-dimensional compact manifold (not
necessarily connected) isometrically embedded in some Rd and with boundary
dM = γ. The action considered so far was Vol(M). Let in addition a Yang-Mills
field be given on M with a curvature 2-form F (with values in the Lie algebra of
some compact semisimple Lie group G). Then we might look at the action

(76)
M M

possibly with some boundary conditions on γ for the Yang-Mills potential. g0 is a
coupling constant and the second term is, of course, the usual Yang-Mills action
(the norm being obtained from the Killing form and the metric on M). Thus the
action (76) is a functional of M and the Yang-Mills potential on M.

To obtain a lattice version for this action, we simply combine the discussion in
Sect. 2 with the usual Wilson lattice gauge formulation [W] as follows. There a
lattice gauge configuration in a box A is given by a family of group elements

tecildeκ, 0 c ι eG. (77)

Here the 1 -cells (bonds) are assumed to be oriented and as usual we set

g-c^foΓ1. (78)

The elements (77) form a group. Let

dμΛ({θci})= Π dμ(gcl), (79)
c* eΛ

be its normalized Haar measure, where dμ( - ) is the normalized Haar measure on
G. For a given orientation of c2, let

9sd= U &', (80)
cleδc2
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be the associated plaquette group element, unique up to conjugation. Let χ be any
real character of G belonging to a locally faithful representation and normalized by
χ(l)= 1. Then by Schwarz inequality

\χ(g)\£l for geG. (81)

For β,g0>0 we now define partition functions

ZA(y, β, g0) = exp β Area M(γ) Σ ί dμΛ({gcί})
MeCΛ(γ)

• exp - Σ J8(l + 0o 2G ~ *(00c*))c2(M) . (82)

Note that for a given M in this sum, all those gcι integrate out trivially, for which c1

does not belong to the closure of a plaquette c2 lying in M, so that indeed the Yang-
Mills field lives on M. Let < Xι(y5/?,0o) denote the corresponding expectations.
Using again rel. (23), for the quantity

we now obtain the identity

Σ β(2c2+g;2(\-χ(gδc2)(2c2-l})(ψ,β,g0). (84)

This identity leads to the following estimates. Set

χ _ = i n f χ ( f l f ) ^ - l . (85)
^eG

Then [see (25)]

zΛ(y, β) exp -βgΰ2(ί-χ-) Area M(y)

(86)

Combining the physical positivity established in Sect. 2 for the random surfaces
with the physical positivity for lattice gauge theories [OSe] (see also e.g. [S]), we
obtain physical positivity for our combined model. In particular, we may now
define the string tension α(j8, gQ) and the glueball mass in analogy to Sect. 4.
Relation (86) leads to the following estimate for the string tension.

-βg^(l-χ_) + «(β)^a(β,g^βg0\l-χ_) + a.(β). (87)

As for a Monte Carlo simulation the present approach, however, does not seem to
offer any advantage for calculating the string tension or the glueball mass vis a vis
the usual Wilson loop approach in lattice gauge theories. A comparison on the
other hand might yield insight into the appropriateness of this string model with
confined flux lines.

Appendix

In this appendix we give a proof of Lemma 6.
Let tffA be the subgroup of CΛ(φ) generated by the elements dc3 (dist(c3, dλ) ̂  1)

and assume 3tfA Φ CA(φ\ Now for any M e CA(φ\ define its radius by

rad(M)=
C l e c 2

c 2 eM
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where Xcι is the barycenter of c1 and X0 the center of Λ. Let K(M) be the set of
1-cells c1 in the closure of M with dist(^ι,Z0) = rad(M). Now among the
manifolds in CΛ(φ}\^Λ with minimal radius, let M0 be one which in addition has
minimal \K(M)\. We will show that it is possible to find suitable cj (l^j^n;

2n<,d(d-l}) such that Mί=M0 + Σ δc] satisfies radCMJ^radίΛ/o), and if

racKM^radCMo), then |K(MOI<|K(M0)|. Since U^CA(φ\#eA if M0 is, this
contradicts the choice of M0, proving the lemma.

Now to find such c], let CQ be an element of ̂ (MJ. Define 2n to be the number
of 2-cells cf, . . . ,C2 W 5 whose closure contains cj. Since dist(Zcι,Z0) = rad(M), these
2-cells span pair wise different 2 planes.

Let c] be the 3-cell spanned by c\j^l and c^ (l^j^ri). We claim these
3-cells have the desired properties.

Indeed, we first note that CQ has now been removed, i.e. CQ does not belong to
the closure of any 2-cell in M. On the other hand, since the c\ (1 g k ̂  In) belong to
M0, it is easy to see that any one cell c1 belonging to the closure of some c satisfies
dist(-Xr

cι5X0)<dist(3Γcι,X0) = rad(Mo). Hence either rad(M1)<rad(M0) [if
|K(M0)| = 1] or \K(M[)\<\K(MQ)\ as was to be proved.
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Note added in proof. As pointed out by the referee, the formulation in Sect. 2 is equivalent to the
theory of dislocation variables ad discussed by Wegner [We] (see also [KC]), which provides the
3-dimensional extension of the famous Kramers-Wanniev duality transformation in the
2-dimensional Ising model.




