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Abstract. Spherically symmetric solutions to the Cauchy problem for the
relativistic Vlasov-Poisson system are studied in three space dimensions. If the
energy is positive definite (the plasma physics case), global classical solutions
exist. In the case of indefinite energy, "small" radial solutions exist in the large,
but "large" data solutions (those with negative energy) will blow-up in finite time.

I. Introduction

The motion of a mono-charged collisionless plasma is described by the Vlasov-
Maxwell (VM) system of equations:

(VM) Et = V xB-j
Bt= - V xE

Here E and B are the Maxwell electric and magnetic fields a n d / = / ( x , v, t) (xeU3,
VE IR3, t ̂  0) is a scalar function describing the density in phase space. The charge and
current densities are given by

j=j(χ,t)= J vf(x,v,t)dv,
u3

and γ = ± 1. The case γ = + 1 is the plasma physics case, and γ = — 1 is the stellar
dynamics case.

The Cauchy problem is to solve (VM) for all t > 0 with given initial values for E,
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B, and/. At present, only a local (in time) solution is known [14]. A much simpler
system is obtained by assuming that B is identically zero. This is the Vlasov-Poisson
system (VP), which takes the form:

= Vxu, Λu = p.

Much more is known about the (VP) system. In particular, in three space
dimensions, global weak solutions exist ([1,9]) for y = ± 1, and global classical
solutions exist if the Cauchy data are small enough [2]. Classical solutions also exist
in the large for symmetric data, as was shown by Batt [3], Horst [8], and Wollman
[13]. The existence of classical solutions for "general" data is still unsettled, as is the
uniqueness question for weak solutions. For further background we cite the survey

[4].
Classical calculations (cf. [11]) suggest that (VM) and (VP) should be correct

only for "low" velocities v. If "high" velocities can occur, special relativistic
corrections should be introduced (cf. [11,12]). These result in the relativistic Vlasov-
Maxwell system (RVM):

(RVM)
Et = VxB-j

Bt= - V xE

where ΰ = v/y/l + \v\2, j = J ϋfdv, and p is as before. If we assume that B is

identically zero in (RVM) then we obtain the relativistic Vlasov-Poisson system
(RVP):

At first sight, (RVP) seems "better" than its classical version, since \v\ g 1. Thus
"higher moment difficulties," well-known in the classical case, will not occur.
Moreover, for the same reason we have along characteristics \dxjds\ = \ϋι\ :g 1, and
therefore one has causality. These favorable circumstances are diminished some-
what by examination of the total energy integral, which for (RVP) takes the form

\E\2dx = constant.

In the plasma physics case (y = +1), it follows from this (see Proposition I below)
that peL4/3([R3) for fixed t. This is worse than the result for (VP) itself, where
ρeL5ί3(U3). However, we show in Sect. II that Batt's and Wollman's methods [3,13]
can be adapted and used to show the existence of global spherically symmetric
solutions when y = + 1. However, when γ = — 1, the situation changes dramatically,
in contrast to the classical version. Only "small" radial solutions will exist in the
large for (RVP) with γ = — 1 (see Sect. II). Indeed, if y = — 1 and the initial energy is
negative, we show in Sect. Ill that the life-span of such a radial, classical solution is

finite. One may hope then that (RVM) is better behaved than (VM), but only when
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y = + 1 . Even when y= + 1, we are unable to prove global existence for (RVP) for
cylindrically-symmetric data, partly because of the weaker result peL4/3(M3). (cf.

[8]).
We conclude this section by fixing notation and demonstrating a few elementary

results.
In the relativistic Vlasov-Poisson system

one has γ= ±l,ϋ = v/^/l + \v\2, and p = j fdv. An initial value/(x, v90) = / ( x , i?) is
u3

prescribed, and we assume from now on that / is smooth, non-negative, and of
compact support on 1R6. Since E is defined by the gradient of u, we can assume that u
vanishes as |x|-»oo, and hence

u=^l0ϊ\dy- (1)

Naturally associated with the first-order equation for / are the characteristics:
s \-+X(s9 ί, x, v)9 s^>V(s, i,x,y) defined as the solutions of the following system of
ordinary differential equations:

ds v

f ) (2)
as

with the initial values X(t, t, x, v) = x, V(t, t9 x, v) = v. Since / is constant along
characteristics, we conclude that

/(x, v91) =f(X(0, ί, x, υ\ V(0, ί, x, t?)), (3)

and hence || f(t) \\ „ = || / 1 | „ < oo by assumption. (By || f(t) \\ „ we mean
sup{\f(x9υ9t)\:xeU3

9 veU3}.)

Proposition I. Let f be a classical solution of (RVP) on some time interval (0, T) with

nonnegatiυe datafeCι

0(U6). Then the following properties hold:
(A) /// vanishes for\x\>k9 then f(χ9 υ91) vanishes for \ x \ > t + k {causality).
(B) The total mass is conserved, i.e., \\fdvdx = constant = M.

u6

(C) The total energy is conserved, i.e.,
u6

ί ( ί Λ/1 + \v\2fdv + b\E\2 )dx = constant = So.
R3 \ U3 I

(D) Ifγ = + 1, ί/ẑ n ί/iere exisίs a constant C (depending on \\ f \\ ^ and $0) such that

Proof. To prove (A) (causality) we apply Eq. (2) to note that \X(s9t9x9υ) — x\ =

]v(ξ,t,x,v)dξ S\t — s\. In particular, \X(0,t,x,v) —x\^t. Thus whenever | x | >
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k + ί, we h a v e \X(0, t,x,v)\^\x\- \X(0, t, x, v) --x\ > k, a n d so b y h y p o t h e s i s a n d

(3), /(x, υ9t) =/(X(0, ί, x, ι;), 7(0, ί, x, i?)) = 0.
(B) follows by simply integrating (RVP) in υ and x. To prove (C) define the energy

density e(x, t) by

φc,t) = j Jl + lυffdυ + iy |£| 2 . (4)

Multiplying (RVP) by ^/l + |t;|2 and integrating in t;, we obtain

j y i T N V ώ + f ϋ Vx/dι; - γj E = 0, (4')

where j = J ί /ί/f.

We have defined £ = VM, where 4 M = p. Multiplying by u, we have

and hence

= — J PίWdx - J pwfίίx = - J p ^ d x - J utΔudx
3

Therefore

Id

Next, integrating (RVP) in v, we get the conservation law

It follows that

- - J \E\2dx = - J pίWdx = j tίV^ydx = - \yVxudx = - ly
ZdtU3 U3 R3

 R 3 R3

Now using this and (4') we have

d P / , \ / \
jt\ ( lyJ\ + \Ό\2fdΌ + %y\E\2\dx= - J I J v VJdv-yj E Jdx-γ )yEdx

which proves (C).
The proof of (D) follows simply the method of Horst [8]. Let γ = + 1, then the

energy is positive definite. We write p(x, t) = J /A; + j /dr. Applying Schwarz's
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inequality we have

463

\v\<R

/2
fe*3 Y ^ (ii f(t) ιι

1/2

by Young's inequality. Hence

Taking R = (J

ί fdvA
3

M2/A>)1/4>weget

Ί 6 π
(5)

from which (D) follows.
We conclude this section with some notationregarding spherical symmetry. We

assume that/ i s spherically symmetric, i.e., that/(l/x, Uv) =f(x,v) for every proper
rotation U on IR3. It is known then that the solution /(x, v, t) satisfies the same
property in x and v, and therefore depends only on r = |x|, u = \υ\, α, and t (cf. [3],
[8]) where α, the angle between x and v, is defined by x-v — rucosα. The density p

oo π

depends then only on r and £ (cf. [3]): p(r, ί) = 2π j" j/(r, w, α, t)u2 sin α rfαί/w, and thus
o o

r oo

u is also radial. In fact, w(r, ί) = — 1/r J A2p(/l, ί)rf>i — J λp(λ, t)dλ by a well-known
0 r

classical formula. Therefore the electrostatic force E takes the form

(x, 0 =

It is convenient to introduce the notation

so

\ = μ2p(λ,ήdλ,
o

(6)

(7)

Note that lim M(r, ί) = M/4π and that | £ | = r~2M(r, t).

Spherical symmetry also results in a simplification of the characteristic
equations:

dR UcosΛ

~ds~

dA

= y-η^M(R,s)

sin A, (8)
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with the initial values R(s, ί, r, u, α) | s = t = r, U(s, ί, r, M, α) | s = f = u, and A(s, t, r, M, α) | s = f =
α. It follows from (8) that R U sin A = ru sin α for all s, which is conservation of angular
momentum.

II. Velocity Bounds

By adapting the methods of Batt [3] and Wollman [13] we may obtain time
independent bounds on the velocity in the stellar dynamics case (y = — 1) for small
radial data, and in the plasma physics case (y = + 1) for radial data of unrestricted
size. The bound for the plasma physics case uses energy estimates similar to those
used by Horst in [8]. It is easily seen, and discussed briefly below, that these velocity
bounds imply global existence for (RVP) as they do for (VP) (see Batt [3]). It is
shown in Sect. Ill that no global classical solution can exist in the case y = — 1 for
unrestricted radial data.

We show now why velocity-support bounds on /(x, v91) imply global classical
existence. There are two ways to proceed.

Firstly, in the preprint [7] (to appear), global classical solutions to the full
relativistic Vlasov-Maxwell system are found, provided such a velocity bound is
known. If such a bound is known a priori, as is the case here, we obtain global
solutions for the special case B = 0.

Secondly, one may go through Batt's paper [3], and notice that the proof of the
global existence theorem remains unchanged up through p. 349 [3]. This is because
Poisson's equation Δu = p is analyzed there, and it is only assumed that peL1, as is
the case here. The only change appears when one computes the variational
equations for qik(s) = d/dxk Xfa ί, x, v) and pik(s) = d/dxk Vfa ί, x, v). For (RVP), the
variational system is easily seen to be

-Ίjk

Therefore £ | g I k | S 4]£|p i fc|, and this bound suffices to complete Batt's argument on

p. 350 of [3]. A similar variational system arises on p. 353 of [3], and is dealt with in
the same manner. Therefore, the result of [3], slightly modified as above for (RVP),
shows that a velocity-support bound o n / is sufficient for global classical existence.
We refer here also to [8], where existence of energy-conserving classical solutions is
also obtained for (VP).

Assume / is smooth, nonnegative, spherically symmetric, and vanishes for
(r, w, α)^(0, oo) x (0, oo) x (0, π). Assume also that/is a classical solution of (RVP) on
some time interval [0, T) with initial value / We define for t ^ 0,

P(t) = sup{U(s,0,r,M, α):0 ̂  s ^ ί, (r, w, α)esupport/}, (9)

and note that P is nondecreasing. Suppose u > P(t); then we claim that/(r, w, α, t) = 0.
We may set r 0 = R(0, ί, r, u, α), u0 = U(0, ί, r, u, α), and α0 = ,4(0, t, r, u, α), so that
r = K(ί,0,ro,tto,αo), u = U(t,0,ro,u0, α0), and α = ^(ί,0,r0,ow0,α0). Then u =
ί/(ί,0, r0, u0, α0) > P(t) so /(r 0 , u0, α0) = 0. Hence /(r, u, α, ί) = / ( r 0 , u0, α0) = 0. This
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observation and the assumptions made above will be used throughout this section.

Lemma I. There exists a constant Cγ such that for r ̂  0 and 0 S t < T

M(r,t) < Jmin(Mr-2,100M1 / 3 | |/| |^/ 3P2(0) if y = — 1
: < i f y = + l .

Proof: It follows from (7) that \E(x, 01 ̂  Mr 2 in both cases. Let R > 0, and note
that

|£(x,ί)| =

Taking K = ( II p ( £ ) I L / M ) - 1 / 3 , we get \E(x,t)\S(4π + ί)Mll3\\p(t)\\2ol3- But

4π
p(r,t) = lfdυ= j / d ^ II/(Oilco ί ^ = | | / | | 0 0 — - P 3 ( ί ) , (10)

\v\<P(t) \v\<P(t) ό

SO

,01 ^(4π

Now repeat this argument using Holder's inequality and assuming γ = + 1:

|x-y|</?lX /I \x-y\>R\

ί

ί l*-yΓ2^+llp(0IL/3 ί i\χ-yΓ2)*dy
\x-y\<R \

Taking R = (|| p(ί) | |4/3/|| p(ί) || ̂ J*'9, we have

Ί 1 / 4

Now using Proposition I and (10),

+ ̂ y J JC^τl|/ILF3(t)J = CP5'3(t),

which completes the proof.
Now we use the method of Batt to treat the case γ = — 1. Fix Γoe(0, T). By
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Lemma I for ίe[0, To],

r~2M{r, t) S min(Mr~2,100M1 / 31| / Hi/3P2(ί))

^mmiMr-WOOM^WfW^P^ToVSiA + Br)-2, (11)

where

B = ±M~1/2 (12)

and

A = i(100M ^H / \\2f P2(T0))~ u\ (13)

Let us consider a characteristic through some point (ro,wo,αo) with rouo

s inα o >O. For notational convenience we denote R(s) = R(s,0,ro,uo,ao\
U{s) = U{sf 0, r 0, M0, α0), and i4(s) = A(s, 0, r0, MO>

 αo) A l s o

L = R(s)U(s) sin ,4(s) is a positive constant. (14)

Define ξ:[0,oo)->R by

ξ(u) = J\+u2 - J (A + Bη)"2dη for w > 0 and ξ(0) = 1. (15)
L/u

ThenξisC 2 on[0, oo),infactΓ(w) = (1 + w2)~3/2 + 2AL{Au + BL)-\$oξ"(u)>Ofor

Comment. There exists a unique positive u0 such that £(u0) = 1 and ξ is monotoni-
cally increasing on (u0, oo). ξ " 1 will denote the inverse of ξ:[u0, oo)->[l, oo).

Lemma II. For all z^.1,

Proof. By (15) note that

ΰ 2 - J (A + Bηy2dη
L/u

^ - 1 ^ - 1 for all u>0.

For any z ^ 1,

so

and

Lemma III. For all

z-ξ{

[

ίe[0,

z + A - l β - 1 2 j 1 / 2 >

To],

I7(ί) ̂  ί/(0) + Γ H x Λ + I^ίO)), w/zβn y = - 1.

. Let ίe[0, Γo]. Suppose π/2 < >4(ί), and define

tx = inf {TG[0, ί]:π/2 < A{s) for all se[τ, ί]}.
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Then A{s)^π/2 on [tut], so U(s)= -(M(R,s)/R2)cosA^0 on [tx,t], and hence
)£E/(ti).
Note that by (8) and (11)

Note also that L = R(t)U(t) sin Λ(ί) < K(ί)l/(ί), so L/U(t) < R(t). Combining these we
have

) - j (/l + B i ί Γ ^ ^ y H - l / 2 ^ ) - l(A + Bη)-2dη
R(tι) R(t)

by definition (15).
If A(tx) = π/2, then K ^ ) = L/UitJ, so (16) becomes f ( ί /^)) ^ ξ(U(ή). Recall that

U(ή ^ U{tx) and ^ is increasing on (ξ - 1 ( l ) , oo) so U(t) ^ cj~ 1(1).
If i4(ίi) > π/2, then t1 = 0, and so (16) yields

- J
Λ(0

Hence L/(ί) ̂  ξ ' ^ ^ / l + l/2(0)). In both cases (^(ί j = π/2 and Λ ^ ) > π/2),

Suppose X(ί) ^ π/2 and define

ί2 = inf {τ G [0, t]: >l(s) ̂  π/2 for all s e [τ, i] }.

^ π/2 on [ί 2 , ί], so U(s) = - M(R, s) cos A/R2 ^ 0 on [ί 2 , ί],
and hence U(ή S U(t2).

If ί2 = 0, U(t) ^ (7(0). Suppose t2 Φ 0, then there exists a sequence {ί2} such that

0 S A < t, t2 -*ί 2 as ί-> oo, and Λ(ί2) > π/2. By (17) L/(ίι

2) S Γ V l + ί/2(0J), so by
continuity C/(ί2) ̂  ^ " ^ Λ / I -f t/2(0)). In both of these cases (t2 = 0 or ί2 ^ 0)

C/(ί) g l/(ί2) ^ 1/(0) + Γ x (y/ί + C/2(0)). (18)

Therefore by (17) and (18), U(t) ^ Uφ) + ξ~1(y/l + U2(0)\ which completes
the proof.

Theorem I. Let f be a classical solution o/(R VP) on some time interval [0, T) with y =
— 1 and smooth, nonnegative, spherically symmetric data f which has compact support
and vanishes for (r, u9<x)φφ9 oo) x (0, oo) x (0,π). //40M 2 / 3 | | / 1 | ^3 < 1, then P(t) (as
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defined in (9)) is uniformly bounded on [0, T), and hence (RVP) possesses a global
classical solution.

Proof. By Lemmas II and III,

U{ή ^ (7(0) + ξ-^y/l + U2(0)) S U{0) + [(^/l + U2(0) + A " 1 ^

for all ίe[0,T o ]. From (9),

P(ί) = sup {17(5,0, r, M, α):0 g s g ί, (r, M, α)6support/}

P2(0)

^ P(0) + y i + P2(0) + A-'B'1 for ίe[0, ΓO].

Recall the definitions of A and B ((12) and (13)) to get P(T0) ^ P(0) + J\ + P2(0)
+ 40M2 / 31| / 1 | Jo/3^(T0). If 40M2 / 31| / 1 | J/3 < 1, Λen P(T0) cannot exceed a certain
constant depending only on P(0) and M 2 / 3 1| / H^. Now since To was an arbitrary
element of [0, T), the theorem follows.

To treat the case γ = + 1 we define

G(r,t)= - \mm{Mλ-2,CιP
5l\t))dλ (19)

r

for r ^ 0 and t ^ 0. Note that G is continuously differentiable in r and increasing in r.
Also, letting R = M 1 / 2 (C 1 P 5 / 3 (ί))~ 1 / 2 , we compute

G(0, ί) = - ] C.P'^ήdλ - J Mλ~2dλ = - C.P'^ήR -MR'1

0 R

= -2M 1 / 2 (C x P 5 / 3 ( ί ) ) 1 / 2 .

We summarize these comments and restate Lemma I with the following:

Comment. \E(x91)\ = r~2M(r, t) ^ dG/dr(r, ί), and there exists a positive constant C 2

such that | G ( r 1 ? ί ) - G ( r 2 , ί ) | ^ C 2 P 5 / 6 ( ί ) f o r all r ^ O , r 2 ^ 0 , and ί ^ 0 .
As before we consider a characteristic Λ(s) = Λ(s,0,ro,Mo,αo), U(s) =

ί/(s,0,ro,uo,αo), and v4(s) = Λ(s,0,ro,uo,αo) through a point (ro,wo,αo) with
rowosinαo ^ 0 .

Lemma IV. Assume either R ^ 0 on [ ί 1 ? ί 2 ] or R^0 on [ ί 1 ? ί 2 ] Then

I V l + ί / 2 ( 7 ^ - 7 1 + L/ 2 ( ί t ) I ̂  I G ( Λ ( ί 2 ) , ί 2 ) - G(Λ(ί x ) , ί 2 ) |, f o r y = + l .

P r o o / . N o t e t h a t

\G(R(t2),t2)-G{R{tί)9t2)\ =
•}dG
j—(R(s\t2)R(s)ds '̂ ds,

since R is of one sign on [ ί x , ί 2 ] and δG/δr ^ 0.
Note also that for ί2 ^ s,

^{R(s\ t2) = min(MR ~ 2(s), C. P5/3(f 2)) ̂  min (Mi? " 2(s), CiP^^s)) = ̂ (Λ(s), s).
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Now by the characteristic equations, (8), and by the comment

(R(s\s)R(s)™(R(s),t2)R(s)
dr

M{R(s),s)U{s) cos A(s)

R2(s) u2(s)

U{s)U(s)

Therefore

ds

^ I J\ + u2(t2) -

which completes the proof.

469

Lemma V. Assume γ = + 1. R can be zero for at most one value ofs. IfRitJ = 0, then
R has an absolute minimum at t1.

Proof. Recall that R(s)(7(s)siny4(s) = r o u o s inα o ^ 0 by hypothesis, so JR(S)^O,
U(s) Φ 0, and sin A(s) φ 0 for all s. From (8),

. U(s) cos A(s) .
R{s) = —j=— , so R(s) = 0

only if A(s) = π/2. But also from (8)

R2(s)U{s) R(S)^TTUΨ)J

for all s. So A is strictly decreasing for all s, and hence can attain the value of π/2 at
most once. Therefore R can be zero at most once.

Suppose /^(ίJ^O, then A(s)>π/2 for s < ί l 5 A(tί) = π/2, and A(s) < π/2 for
s>tλ. But from (8),

JR(5) =
U(s) cos A(s)

so .R(s) < 0 for s < ί j , R(ti) = 0, and R(s) > 0 for s > t1. Therefore R has an absolute
minimum at t1.

Theorem II. Let f be a classical solution of(R VP) on some time interval [0, T) with γ =
+ 1 and smooth, nonnegative, spherically symmetric data f which has compact support
and vanishes for (r,u,α)<£(0, oo) x (0, oo) x (0, π). Then P(t) (as defined in (9)) is
uniformly bounded on [0, T), and hence (RVP) possesses a global classical solution.

Proof Let ίe[0, T). Suppose 0 ^ tx ^ t2 ^ ί, and either i? ^ 0 on [ί 1 ? ί2] or R ^ 0 on
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[*i,ί2]
 B y Lemma IV,

Λ/1 + U2(t2) g y i + Ό^t,) + I G(R(t2), t2) - G W J , ί2)|.

Now by the comment preceding Lemma IV,

y/ί + U2(t2) ^ y i + U2^) + C2P
5/6(ί2). (20)

Now if # is never zero on [0, ί], then by (20),

Now suppose R vanishes somewhere on [0, ί]. By Lemma V there is only one point
where R vanishes, call it ί t e[0, ί]. Then R cannot change sign on [0, t{] or on [tx, ί].
Hence by applying (20) twice we have

y/l + U2(t) S >/l + U2(tx) + C2P
5/6(t) ^ y i + U2(0) + C2P

5 / 6(f j)

+ C 2P 5 / 6(ί) ^ y i + L/2(0) + 2C2P5 / 6(ί).

Therefore in both cases (whether R vanishes or not) we have for ίe[0, T)

JY+ΰHf) ^ y/i + u2(0) + 2c2p
5/6(o.

Now since P(ί) = sup {U(s, 0, r, w, α):0 ̂  s ^ ί, (r, w, α)esupport /} (see (9)) we have

P(t) ^ y 1 + P2(t) S y 1 + P2(0) + 2C2P
5/6(ί).

It follows that P is uniformly bounded on [0, Γ], which completes the proof.
Although we will not pursue this here, we point out that if a background charge

distribution were present, a modification of Lemma V would probably be required
to extend the theorem to this case.

III. Blow-up of Radial Solutions

Let γ = — 1 and consider the equation

7xu, Λu = p.

From part (C) of Proposition I, Sect. I, the total energy is

-\ J \E\2dx = const = S0. (21)
u3

From experience one knows that this bodes ill for global existence (unless the second
term \\E\\l can be dominated by the first, as is the case in classical (VP), where the
first term (the kinetic energy) is actually \\\\υ\2fdvdx).

To motivate our nonexistence result, we note that
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By the singular integral inequality [5], we have

and further

II n II < II n I I 1 / 3 II n ll2/3 < /If1/3 II n ll2/3

I I P I I 6 / 5 = II P l l i I I P I l 4 / 3 = i V i I I P I U / 3 -

I t f o l l o w s t h a t

WEWUcM^WpWtΊl (22)

However, inequality (5) shows that

p*'3(x,t)^c$jl + \v\2fdv (23)

holds pointwise.

Inequalities (22) and (23) then show that the kinetic and potential energies in So

are of the same order of magnitude. Thus one expects global solutions only for small
data, as we have shown in Sect. II. Indeed, for large data we have the following result:
Theorem III. Let f be smooth, nonnegative, radial and of compact support on U6. Let
f(x, v, t) be a classical solution o/(RVP) on an interval 0 < t < T for which — oo <
<f o<0. 1 Then T<oo.
Proof. We begin by deriving the "dilation identity" (cf. [6]),

(24)

Indeed, a direct calculation using (RVP) gives

d t u6

u6 u6

= f ί (V, ( ~ X'vfB) +fΰ'Vx(x υ))dxdv
u6

dvdx- J px-Edx.

R6V1 + N 2

N o w since A u — p a n d E = Vxu, we have

1 The condition $0 < 0 is easily achieved by replacing/ by λf, where λ > 0 is chosen sufficiently large
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= ί Σ ( "xJlxjUxj -u

XkΣ
u3 k \ L J Jxk j

Thus we find

u | 2 r f x - J |V W |

=fdυdx,

as claimed.
Given the dilation identity, the proof proceeds as follows: first integration of the

dilation identity in t produces

^x-vfdvdx ^ ^x vfdvdx + δot.

Next, using (RVP) we compute

E-VvΠdvdx

(25)

-dvdx

= 2jjχ-vfdvdx — J r2E jdx, (26)

where = j ί/di;.
R 3

We now use the radial nature of the solution: by Lemma I \E(x9t)\ ^M
Moreover \j\ ^ p9 by definition. Thus for the last term we have the estimate

J r2E-jdx\ g M J \j\dx g M J pdx^ M2,
u3 u3 u*
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so that by (25) and (26)

d , ,
1 + \v\2fdvdx S 2$jχ vfdvdx + M2

•£0t\ + M2

= Constant + 2Sot.

Integrating in time we get

ίίr2 jϊTWfdvdx ^
6

M2 )t + gQt

Now since d?0 < 0 by hypothesis, the right-hand side here becomes negative for large
t. The left-hand side is nonnegative so the existence time T must be finite, completing
the proof.
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