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Abstract. We give a rigorous construction of a stochastic continuum P(φ)2

model in finite Euclidean space-time volume. It is obtained by a weak solution
of a non-linear stochastic differential equation in a space of distributions. The
resulting Markov process has continuous sample paths, and is ergodic with the
finite volume Euclidean P(φ)2 measure as its unique invariant measure. The
procedure may be called stochastic field quantization.

Introduction

Ever since the original work of Glauber [24], there has been much interest in
stochastic statistical mechanical models. Such models have been rigorously
studied by Holley, Stroock, Faris, Wick, and others [25-30]. The fundamental aim
in these works is to obtain (and study properties of) Gibbs states of classical
statistical mechanics as limiting distributions of stochastic processes. These
processes are sometimes obtained as solutions of non-linear stochastic differential
equations of the Langevin type (see later). Let etL be the associated semi-group,
and, starting from an initial state (probability measure) μ0, let μt be the evolved
state under the action of the adjoint semigroup acting on the space of measures
equipped with the weak * topology. If μf-»μ in this topology, then μ is the unique
equilibrium (invariant) measure. (Sometimes only a subsequence μtκ converges
using weak commpactness criteria.) Let μ be an invariant measure. Then μ is a
Gibbs state iff etL is a selfadjoint contraction on L2 (dμ). If the invariant measure is
unique, the process is ergodic.

In [18], Parisi and Wu proposed such a program for Euclidean quantum field
theory. We may call this the method of stochastic quantization. This is natural
because of the analogy between Euclidean quantum field theory and classical
statistical mechanics. Euclidean quantum field theory is described by a probability
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measure which is formally Gibbsian and satisfies some important properties
(reflection positivity, Euclidean in variance and some technical growth conditions),
[1-3], which ensure the existence of its relativistic counterpart. However aside
from Euclidean quantum mechanics (the so-called P(φ)1 models of which a
stochastic version was constructed [19] by Faris and Jona-Lasinio) all non-trivial
quantum field theories are plagued by ultraviolet (UV) divergences which
necessitate renormalization. Under such singular circumstances it is not a priori
obvious that the Parisi-Wu program can be rigorously pushed through. If it could,
then the main interest of this program would be in its application to non-abelian
gauge theories [18, 20-23].

In this paper we make a start on the rigorous non-perturbative analysis of this
program. We consider the simplest non-trivial Euclidean quantum field theory
which has, of course, ultraviolet divergence and hence necessitates renormaliza-
tion, albeit of the simplest kind. This is the continuum (φA)2 model [1,2,3] which
we consider (as a first step) in a finite spacetime volume ΛcR2, since we wish to
concentrate on ultraviolet aspects. We consider A to be a square, and the scalar
fields φ, with values in R, are given, for definiteness, Dirichlet boundary conditions.
Such a theory is then specified by the finite measure [1-3] μ on H-^Λ),

dμ = dμce ^ , (0.1)

= iUdφ(x)e-Siφ), (0-2)
formally x e Λ

S{φ)=\(Φλ-A + \)φ)LHΛ)+-AU
2x:φ*:(x). (0.3)

Here H-^A) is a Sobolev space of distributions, μc is the Gaussian measure of
mean 0 and covariance C = ( — zl + 1)"1 with Dirichlet boundary conditions. : :
denotes Wick ordering [1] with respect to C. Without Wick ordering the exponent
in (0.1) would not be a μc measurable random variable. The existence of (0.1) is
proved in [1-3].

In this paper we will prove the existence of an ergodic, continuous, Markov
process φt with values in H_ X{A) and having the measure μ of (0.1) as its invariant
measure. The process φt is obtained as a weak solution of a generalized Langevin
equation in the space of distributions H^^A). Thus we have accomplished the
stochastic quantization of finite volume P(φ)2 field theory.

In order to motivate the paper let us first consider a ferromagnetic statistical
mechanical spin system (with values in R) in finite volume AcZ2, with Gibbs
distribution μ:

Siφ\ (0.4)

with λ > 0. A is the Lattice laplacian.
A symmetric diffusion process φt which has (0.4) as its equilibrium measure will

have a formal differential generator L symmetric with respect to L2(dμ). The most
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general L2(dμ) symmetric second order differential operator L is then of the form:

L=\ Σ κ(ij) J2 -\ Σ κ(ί,j)^-^~ (0.6)
2 ijeΛ δφ(ι)δφ(j) 2 i,JeΛ όφij) δφ(ι)

where the operator K: L2(Λ)-+L2(Λ),

Kf(ί)=ΣK(i,j)f(j), (0.7)
J

r 2 /is any bounded, positive, selfadjoint operator on L2(Λ). We shall restrict the choice
of K so that it commutes with A.

In that case, formally, the dual semigroup (the Fokker-Planck semigroup) etL*
leaves μ invariant, etL*μ = μ, i.e. μ is an equilibrium distribution. The usual choice is
K(ίj) = δ!j.

The diffusion process with L [as in (0.6)] as its formal differential generator can
be obtained by solving the Ito stochastic differential equation [also known as a
(generalized) Langevin equation]

1 δS ~
dφt(i) = dWt(i) - - Σ K(i,j) j—r (ψt)dt,

7 (0.8)

φo(ΐ) = φ(ι),
and Wt{ι) is a Wiener process with covariance

E(Wt(ί)Ws(j)) = K(i,j) min(f, s). (0.9)

For finite lattice systems φt can be rigorously constructed by standard methods. It
can be shown to be ergodic, with μ of (0.4) as its invariant measure, when the
spectrum of the positive self-adjoint operator K (— A +1) ~ * is bounded away from
zero. The latter condition assures that the gaussian process φt [corresponding to
the case λ = 0 in (0.5)] has a mass gap. The existence of a solution of (0.8) when
Λ]Έ2, and the existence of reversible invariant measures (Gibbs states) can also be
proved [30],

We now turn to the continuum P(φ)2 model with (0.1)-(0.3) replacing
(0.4)-(0.5). We wrrite down the analogue of (0.8)-(0.9) directly in the continuum. We
choose for the operator K [the analogue of (0.7)] on L2(Λ, d2x),

with ε^ l . Further restrictions will be imposed on ε presently, for reasons to be
explained below. Then the analogue of (0.8)-(0.9) reads, in operator notation,

:$'.)dt,

Φo = Φ,

and Wt is a Wiener process in H^X(A) with covariance

E(Wt(fWM) = (/, C1 ~εg) min(ί, s), (0.12)

where /, g are test functions.
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Let φt be the unique solution of the linear stochastic differential equation in

iC-'φt,

φt is an Ornstein-Uhlenbeck (O.U.) process. Then (0.11) can be written as an
integral equation

l^Φt-^ίdse-^-^-'C1-':^:. (0.14)
2 o

Note that : : is Wick ordering with respect to the covariance C.
Now for each starting point φ, and time t > 0, the transition probability of the

O.U. process is a Gaussian measure pt(φ, dφ') on H-X(Λ). In order that (0.14) be
free of UV divergence it is necessary and sufficient that the Gaussian measures
pt(φ, ) and μc be equivalent. This imposes the condition ε>0, strictly.

Now the standard method of solving a non-linear equation like (0.11,0.14)
(Picard's method or contraction mapping) cannot be applied here since the
perturbing drift [the non-linear term in (0.11)] has no continuity properties.
: φ3: (/) exists only in Lp(dμc), l^p<co. Instead we may attempt to construct a
weak solution.1

The semi-group corresponding formally to the evolution governed by (0.11)
can be written as:

where /is a bounded μc measurable function and φt is the O.U. process satisfying
(0.13), and is considered as a functional of the Wiener process Wt, and E(W) is
Wiener expectation. For (0.15) to be well defined, it is necessary that the exponent
is a well defined random variable. This imposes the further restriction ε < 1 strictly.

In the range 0 < ε < 1 one shows straightforwardly that

EJΓVO^I, ( α i 6 )

where ξt is the exponent in (0.15). Thus etL is a contraction on L°°(dμc). However in
order to construct a weak solution we must have

Ef\e^) = i. (0.17)

To prove this we first obtain an Ito formula which permits us to rewrite (0.15) in
Feynman-Kac form. Exploiting the fact that the perturbing drift in (0.11) is a
gradient, one obtains

\ \ { φ l C - * φ s ) : . (0.18)

1 By a weak solution of (0.14) we mean a Markov family of measures Pφ on path space, such that
φt minus the second term in (0.14) has the same distributions as that of φt
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In order that this formula makes sense in L2{dP{W\Ω\ where P{W) is Wiener
measure and Ω = C°([0, oo), H^γ(Λ)) is path space, we must impose the further
restriction: 0<ε<^, (otherwise the last term in (0.18) is not a random variable).
Equation (0.18) enables us to eliminate the stochastic integral (0.15). Under the
further and final restriction:

0 < ε < ^ (0.19)

(which is not necessarily optimal), we show, using estimates of the type
encountered in constructive field theory [1-3], that etL is a strongly continuous
self-adjoint contractive semi-group on L2(dμ) with 1 as its unique ground state,

etLl = 1, (0.20)

which implies (0.17). The Markov process φt is constructed, in a standard way,
using the transition probabilities given by etL. There exists a continuous version of
the process corresponding to a Markov family of measures Pφ supported on
β = C°([0,ί), H-^Λ)). It gives a weak solution of (0.11) or (0.14) in the sense
that the process

^\dse{t-s)C~εCι~ε:φ!: (0.21)
2 o

has the same joint probability distributions (with respect to Pφ) as those of the O.U.
process φv Thus Zt can be identified as an O.U. process which is however not
necessarily measurable with respect to φv

The Markov process φt is ergodic, and also mixing (because of the existence of a
mass gap). This ensures that

lim Eφ{φlfύ- hfn))=^Uμφ{fx)-Φ{fn), μ a.e.,
Z

where the/j are test functions and Z — \dμ.
The rest of this paper gives the technical details of the above outline. We have

gone into some pedagogic details as the subject is of interest to both physicists and
mathematicians.

1. Preliminary: The (φ4)2 Finite Volume Euclidean Measure

Let ΛcR2 be & square with Dirichlet boundary conditions. The Laplacian

with the above boundary conditions is a self-adjoint operator on L2(Λ). HX{A) is
the Sobolev Hubert space of functions with norm || | | l 5

= \d2x\(-A + \yi2f(x)\2, (1.2)
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obtained by completing C°°(/l) functions in this norm. H^^Λ) = E is the Sobolev-
Hilbert space of distributions with norm || || _1?

UΫ.^ld^i-Δ + iy^φix)]2. (1.3)
A

Then the injection:

v.Rγ{Λ)^R^{Λ) = E (1.4)

is Hilbert-Schmidt. A theorem of Sazonov, Minlos [11] and Gross [8,9] assures us
that there exists a Gaussian probability measure on E with mean 0 and co variance
C, denoted μc,

jfφ J (1.5)
E

where f,ge C°°(/l) are test functions, and

C = (-Δ + \y\ (1.6)

: : denotes Wick ordering [1-3] with respect to covariance C. It is defined
recursively via

« ) ^ (1.7)

where s/ means omission. Wick ordering gives a symmetric function. Let {en, λn)
be the spectral basis of ( — A +1) on L2(A).

00 \

Because we are in two dimensions, X — is logarithmically divergent and
n=ί λn

ΣK
Λ = l

This will be used repeatedly. For any φ e E,

Φ=Σ (Φ,en)en=ΣΦnen, (1.8b)
n = l n = l

and

is the ΛΓ-fΐnite mode approximation. We can define recursively : φ(N): by
x : + nCm(x): ( ^ ( x ) ) " " 1 : ,

)2- ' }

Then we have [1-3], the following facts:

L"(dμc,E), l^p<co, (1.10)

£ ) . (1.11)
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This leads to the definition of the finite volume Euclidean (φ4)2 measure [1-3]

dμ = dμce
 4Λ U 1 Z ;

Because of Nelson's estimate (1.11), (1.12) is a well defined finite measure supported
on H-άA).

In the following we also need the space of vector valued (^-valued) functions
on E, denoted VE. The corresponding IF spaces, Lp(dμc, VE) are defined with the
norm:

It is easy to check : φn: belongs to Lp(dμci VE), 1 rgp.

2. Ornstein-Uhlenbeck Process Associated to the Euclidean Free Field,
and Some Ito Functional Thereof

Throughout this section we hold ε in the range 0 < ε < ^ .
Let ί be a positive real number, and define:

Ct = t C 1 " e = i(-zl + l ) " ( 1 " e ) . (2.1)

Let μCt be a family of Gaussian measures supported on

E^H-M) (2.2)

of mean 0 and covariance Ct obtained by the Sazonov-Minlos-Gross construction
of the previous section.

For any ί > 0 , φeE, we define a family of probability measures PtW)(Φ> •) o n E
by the formula:

pΓ(Φ,B) = μCt(B-ψ), (2.3)

where B is a Borel set in E.
The Wiener process Wt in E is defined by giving a family of probability measures

Pf] with φeE on the path space (β,B(β)), where β = C°([0, oo),£) with B its
Borel algebra, satisfying

(i)

the transition probability,
(ii) for s<t,

(iii) P^{WseA,(Wt-Ws)eB} = p^\Φ,A)p^lΦ,B). (2.4)

(i), (ii), and (iii) guarantee that P^ r ) is a Markov process supported on C°
([0, oo), E). The covariance is given by:

Ef\Wt{f)Ws(g)) = if, C1 ~εg)min(ί, s), (2.5)

where E^ is integration with respect to dP^ and /, g are test functions.
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The Wiener process Wt plays only an auxiliary role in the following. Our basic
reference process willl be an Ornstein-Uhlenbeck (O.U.) process φt e E, obtained
as the unique solution of the linear stochastic differential equation,

(2.6)

The unique solution is

(2.7)
0

which describes φt as an explicit functional φt(W) of the Wiener process.

Remark on the Stochastic Integral in (2.7). The stochastic integral of the type

(2.8)
o

encountered in (2.7) is a continuous square integrable martingale in £, with zero
Wiener expectation, and the martingale property is with respect to σ-algebras Bt

engendered by WS9 Vs S t.
To see this we introduce a finite dimensional approximation W}N) to Ws\

^-Σt^^ft, (2.9)
n = l

where {/l̂ 1,̂ } is an eigenbasis of C on L2(Λ), and β{"] is normalized Brownian
motion on the line:

E{β^β^) = δnmmm(us). (2.10)

Then

0/1=1

as an Ito Stochastic Integral in RN, [13-16], is a continuous square integrable
martingale. We have

N + p 1

since Σ λ~2<oo. Hence {I\N)} is a mean square convergent sequence, and its limit
w = l

defines It(f). To extract a continuous version we have by the martingale inequality
[13],

sup \ \ ή ή %

N + p 1

= ί " 1 . ? » j ? ( 1 - ί " l i ! ) ^ ( l ( 2 1 3 )

By a standard application of the Borel-Cantelli lemma [13] we can extract from
I{

t

N) an a.e. convergent (uniformly in ί) subsequence. Its limit defines the continuous
version of It. D
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The O.U. process φ\W) starting at φ given by (2.7) is a continuous Markov
process, which is not equivalent to the Wiener process Wt (starting at φ). Pφ is the
probability measure on C° ([0, oo), E) = Ω induced by the process. Eφ is the
corresponding expectation.

The transition probabilities pt(φ, •)

pt(φ9 B) = Pφ(φt 6 B) = Pf\W: φc(W) e B), (2.14)

with B a Borel set in E can be obtained as follows.
Let

Φ=Σ(Φ,en)en=ΣΦnen (2.15)

with {>C\eM} the eigenbasis of C on L2(Λ). Then in components (2.7) reads:

^ { i ^ i s (2.16)

where β™ is as in (2.9), (2.10).
The stochastic integral on the right-hand-side of (2.16) is also Brownian motion

with time change [13], t-^τn(ή=—(l-e~λ^). Noting also the translation by
n

c o m p O n e n t process φ\n) has transition probabilities

(2.17)

where p\W)(x, •) is the standard Wiener transition probability in R1.
It follows that the O.U. process φt of (2.7) has transition probabilities pt(φ, •)

given by:

{ ) (2.18)

where

Ct = (l-e-tC-ε)C, (2.19)

and B is a Borel set in E.
Note that

(2.20)

in the sense of weak convergence of measures. It follows that the O.U. process is
ergodic with μc as its unique invariant measure.

If we use the Ito calculus, appropriate to Wt,
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where /, g are test functions. We have directly from (2.7)

Eφ(φt(f)ΦM) = &WXΦt( W) (f)φt(W) (g))

(2-22)
E

Remark. The above construction of Pφ, our equivalently of φt(W), may be called
the "stochastic quantization" of the Euclidean free field in the sense of [18]. It
should be remarked however that the white noise in [18] has unit covariance,
whereas our white noise (Wt formally) has covariance C1~ε.

The drifts differ correspondingly. The advantage of our procedure will be the
easy mathematical control of the stochastic quantization of the interacting (φ4)2

Euclidean theory in the subsequent sections. D

The O.U. Semigroup etL° and Its Properties

The continuous Markov process φt gives rise to a semigroup etLo, the O.U.
semigroup

{etL°f) (φ) = Eφ(f(φt)) = ί pt(φ, dφ')f{φ'), (2.23)
E

where / : E^R is a bounded measurable function (to begin with). The following
proposition summarises well known properties of the O.U. semigroup, which
suffice to control the (φ4')2 stochastic quantization.

Proposition. The O.U. semigroup etL° satisfies
(i) etLo is positiυity preserving and etLol = 1,

(ii) etL° is a contraction on all Lp(dμc), 1 Sp< oo,
(iii) etLo is a strongly continuous, contractive, self-adjoint semigroup on L2(dμc),
(iv) etLo is hyper contractive: 3T>0 such that for t>T

(v) 1 is the unique ground state. etLo is positivity improving, i.e. iff, g^O a.e. are
non zero vectors in L2(dμc), then (fetLog)>0.

Note that (i) follows from (2.23) and that pt(φ9 •) is a probability measure (2.18).
(ii) follows from (i) and the Markov property, see [12, Chap. XIII]. (iii) follows from
(ii), symmetry of the transition probabilities and stochastic continuity: pt(φ, B) is
continuous in t, a.e. in φ. (iv) was first isolated in the context of constructive field
theory [2-7]. (v) follows from ergodicity, (i) [and selfadjointness in L2{dμJ\, see
[2]

An Ito Formula

We shall now derive an Ito formula which will play a key role in the subsequent
sections.

By property (iii) of the previous proposition, if L o is the infinitesimal generator,
then — L o is a non-negative selfadjoint operator. It can be realized as a second
order differential operator on the subspace of twice differentiable cylindrical
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functions which with their derivatives are also in L2(dμc). This subspace is dense in

ό(N)- T e(ώ e)= T ό e

the (finite) mode expansion of (2.15).
Then a cylindrical function is of the form

and on a twice differentiable cylindrical function which, with its derivatives, is in
L\dμc),

=\ Σ
2

Define

F(φ)=iSd2x:φ*:(x),
A

(2.25)

and we recall that we restrict ε to the range 0 < ε < ^ . Then F,G,HELp(dμc),
1SP < oo, and F(φ(N)\ G(φ{N)), H(φiN)) converge respectively to F(φ), G(φ), H(φ) in
Lp(dμc). By explicit calculation,

L0F(φW)=-±G(φW). (2.26)

We now note the following: the transition probabilities pt(φ, •) of the O.U. process
φt given by (2.18) are absolutely continuous with respect to μc(dφ/) for each φeE,
t > 0 provided ε > 0. The Radon-Nikodym derivative

, ,Λ Pt(Φ> dΦ') n ΊΊ,
e { φ ) ( 1 2 7 )

is in L2(dμc). Indeed by a straightforward calculation

" 1 e - t C " β ( l + β " t C " β ) " V ) } > (2-28)

which is well defined for ε>0, because then e~
2tC~ε is of trace class.

Let heL2p(dμc). Then,

hndμc). (2.29)

As a consequence, heL2p(dμc), \^p<oo => h(φt) eLp(dPφ, Ω), 1 ̂ p < oo.
Finally let h{φ) e L2p(dμc) be obtained as the convergent limit of h(φ{N)), N^> oo,

where h(φ(N)) is a continuous function of φ(N). Then since φs is continuous, Pφ a.e.,
in s
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t

exists Pφ a.e. as a Riemann integral. Then J ds h(φs) is defined as the convergent
o

t

limit as N-> oo in Lp(dPφ, Ω) of the sequence f ds h(φ{N)). This follows using (2.29)

(2.28) in the region s > 0 and °

μc a.e. in φ. In particular, let /z stand for any of the functions F, G, H of (2.25). Then

Eφ(\ds\h(φs)\\<π.

We will define the stochastic integral

\ (2.30)
o

where φs(W) is given by (2.7), as the covergent limit in L2(dP{^\ Ω) of the sequence
of Ito stochastic integrals

0

where WS

{N) is given by (2.9). Indeed

since

by the above.
Now by finite dimensional Ito calculus [13-16],

F(φ\N\W)) = F(φ<») + } (: (^») 3 :, d^ s ) + } L0F(φiN\W))ds
0 0

where we have used (2.25), (2.26). All terms in the above equation converge in
\Q). Hence taking the limit N-+00 in this space,

tftiJ$Sds:{φlC-'φJ:. (2.31)
Λ Λ 0 0

Finally let us define the probability measures Q{^\ Qμc on E x Ω by

and dQμc = dμc(φ)dPφ.
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Here P{™\ Pφ are respectively the Wiener and O.U. measures on Ω. We have of
course

where φt(W) is given by (2.7).
It is easy to check that if h e Lp(dμc), 1 ̂ /?< oo, then

h(φt(W))eIf(dQ«p)9 \^p<κ.

As a consequence F(φt)9 G(φt)9 H(φt\ where i7, G, H are given by (2.25), exist in
LP{dQ{^)). Moreover the stochastic integral (2.30) as well as the Ito formula (2.31) is
valid in L2{dQfc

]).

3. Markov Process Associated

to the (φ4)2 Euclidean Field Theory in Finite Volume A

We consider the stochastic differential equation in E^H^^Λ),

d& = dWt-i(C-e$t + λC1-8:φf:)dt9 φo = φ, (3.1)

which can also be written as an integral equation

^φ.-τidse-H'-xe-'C1--.^:, (3.2)
I 0

where φt is the O.U. process of Sect. 2.
The vector

belongs to LP(dμc, VE), 1 ̂  p < oo (see the end of Sect. 1 for the notation), but has no
continuity prooerties. Hence the contraction mapping principle (Picard's method)
cannot be exploited to solve (3.1) or (3.2).

Instead we will shoot for a weak solution. Namely we will construct a Markov
family of measures Pφ, φeE, on Ω = C° ([0, oo),£) such that the process

Z^b+^idse-M-v-C'-'ift: (3.3)
2 o

(where φt are paths in Ω) has as its Pφ joint probability distributions those of the
O.U. process φt of Sect. 2. In other words under the law Pφ, Zt is indistinguishable
from φt9 but not necessarily measurable with respect to it.

In this sense Pφ solves (3.2). This will be done under the restriction 0<ε<γ^.
In this section we will construct the Markov family of measures Pφ on Ω, and

prove ergodic and mixing properties. Some technical estimates are relegated to the
appendix. The unique invariant measure associated to this process is the (φ4')2

measure of Sect. 1, and in this sense we have "stochastically quantized" Euclidean
{φ4)2 theory in finite volume.

In Sect. 4 we will verify that this family Pφ actually gives the claimed weak
solution.
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To understand our strategy we first consider the finite dimensional approxima-
N

tion φ{N)-+φ, of Sect. 2. Then, in this approximation, with φ{N) = Σ Φnen identified

also with the vector (φu ...,φN) in RN we have

d$v = dW?N)-\{C~ψ^ + λC1 ~ε: ($">)3 OΛ, AN) - ^(Λ0 (3-4)

Note that,

: = (φiN\x))3 -

and C{N)(x) is finite. As a consequence, the drift in (3.4) is a C00 function on RN. Now
we can apply the standard method to construct a unique strong solution to (3.4),
[13], because we can find an increasing nested sequence of compacts in RN on each
of which the drift is bounded and Lipschitz. To make sure that there is no
explosion, i.e. the solution is defined for all times, it suffices, [14], to construct a C00

function ρ on jR ,̂ such that it is non-negative and

(i) ρ R = inf ρ(φiN)) • oo ,

where \\φiNψ = (φ<N\φ{N))= Σ Ψl
(ii) there exists a constant C > 0, such that

where L{N) is the differential generator associated to (3.4).
In our case it is easy to see that the choice

(3.5)

where

= Σ κ-ψn
B = l

does the job, using the explicit expression,

2 AX A δφ^N\x)

Thus there is a unique, non-explosive solution fyN) of (3.4) which is a diffusion
process, and the associated semigroup etLiN)

can be expressed by the Cameron-Martin-Girsanov formula [14] as

' ) e t } ' (3.7)
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In the above φ\N)(W) is the unique solution of (3.4), for λ = 0, and is thus the
finite dimensional approximation to the O.U. process φt of Sect. 2.

We also have,

etLiN)l=E^\eξ(N))=U (3.8)

because of the absence of explosion.
We now proceed to the infinite dimensional system (3.1), (3.2) by simply

defining the semigroup etL by:

(e'Lf) (φ) = Ef\f{φt(W))eξt(W)), (3.9)

where

ξt{W)=-~\(:φl:,dWs)-^-\{:φ3

s:,C
ί-°:φ3

s:) (3.10)
I o o o

and φs is the O.U. process of Sect. 2.
In Sect. 2 we showed that each term in (3.10) belongs to L2(dP(^\ Ω). Moreover

ζtN)-*ζt in L2(dP^\ Ω). Thus ξt is a well defined non-anticipating random variable.
Theorem 1, proved below, shows that etL as defined by (3.9), (3.10) exists for / a
bounded measurable function, and moreover etLl= 1. This shows in particular that
etL is a contraction on L00 (dμc). Theorem 2, proved below, shows that etL is a
strongly continuous, contractive selfadjoint semi-group on L2(dμ) with 1 as the
unique ground state.

First we need

Lemma 1. Let 0<S<JQ. Then,

(i)

where Cttφt\Λ\ is a generic constant depending on t,φ, \Λ\ and independent of N.

Proof.

Now use the Ito formula (2.31). Hence

(3.11)

q(dμc), 1 ̂ q< oo by Nelson's estimate (Sec
follows by virtue of (2.29) that
Since e~^rL:φ4''d2χ belongs to Lq(dμc), 1 ̂ q< oo by Nelson's estimate (Sect. 1), it
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Define

M(φ)=:(φ\C-°φ):.

It is shown in the appendix that exp( — M(φ)) e Lq(dμc), l ^ g < o o , and also that

exp(-UsM(φsψU(dPφ,Ω),

Hence

which is (i).
Moreover, as stated in the appendix we have (by the method of [31]) not only

integrability but also stability bounds for each factor in (3.11): replacing φ by φ{N\
each of the two factors in (3.11) is uniformly bounded above, independent of JV.
This gives (ii). D

Now we proceed to Theorem 1.

Theorem 1. The semi-group etL is well defined (i.e. the right-hand side of (3.9) exists)
for f bounded and measurable. Moreover

As a consequence, etL is a contraction on L°°(<iμc).

Proof. That the right-hand side of (3.9) is finite follows from (i) of Lemma 1. Now
we prove the next statement

where we have used (3.8).
Hence

As iV-χχ), the first factor tends to zero, whereas the second factor is uniformly
bounded above by Lemma 1. Hence, letting JV-»oo

We now turn to Theorem 2.

Theorem 2. Let etL be defined by (3.9). Then etL is a bounded self-adjoint, strongly

continuous semi-group on L2(dμ), dμ = dμc exp ί — - j d2x: φ*: (x)), etL is positivity

\ 4 A J

preserving and improving, and 1 is the unique ground state provided

Remark. Because, etL is symmetric in L2(dμ) it follows that

\dμetLf=\dμf
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ϊovf(=L2(dμ). It follows [12, Chap. XIII] that etL is not only bounded on L2(dμ)
but also contractive. Hence the infinitesimal generator L is a self-adjoint operator
and - L ^ O .

Proof of the Theorem. Let

U:L2(dμ)-±L2(dμc) (3.12)

be the unitary map given by

7 τir * i

=Uf=e SΛ

Let etL be defined by (3.9); then

We now use the Ito formula (2.31) of Sect. 2. Let/ g be the unitary transform of
fg into L2(dμc) given by (3.12). Then we obtain:

aetLg)L2{dμ) = (fetLg)LHdμc), (3.13)

where

^:(φ\C-εφ): + ^(:φ3:9C
1-B:φ3:). (3.15)

φt is the O.U. process of Sect. 2 and we recall that 0<ε<χ^. First note that

V(φ)eLp(dμc), l ^ p < o o . We show in the appendix that exp— -:(φ3,C~εφ): is in
L\dμc) ϊor 2iny λ>0.

This fact, together with the fact that the second term in (3.9) is positive, implies
that exp( — V)εL1(dμc). Moreover the O.U. process φt is hyper-contractive
(Sect. 2). It follows [2-6], [6] gives the abstract setting used in this paper, that etL is
a strongly continuous bounded self-adjoint semi-group on L2(dμc).

Moreover 3T>0 such that for ί^T, etL is a bounded map from L2(dμc) to
L4(dμc), see e.g. [6]. Hence, by virtue of [10], etL has a ground state with finite
multiplicity. It now follows, because of (3.13), that etL is a strongly continuous
bounded self-adjoint semi-group on L2(dμ). Moreover etL has a ground state with
finite multiplicity.

The representation (3.9) shows that etL is positivity preserving. We now prove
that etL is positivity improving: i.e. if/, g, ^0 are positive vectors in L2(dμ) then

(f,etLg)LHdμ)>0 (3.16)

(by a positive vector we mean non-negative and not identically zero).
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If/, g are positive vectors in L2(dμ), then/ g their unitary transforms via (3.12)
are positive vectors in L2(dμc). Then (3.16) will follow, because of (3.13), from

(f,etLg)>0. (3.17)

Inequality (3.17) follows from a standard argument [2]. Namely, recall Qβc the
measure on E x Ω given at the end of Sect. 2. Then if / g e L2(dμc), are positive
vectors, then

ί dQj{φ)g(φ) = {I e'L°g)LHdμc) > 0,

since the O.U. semigroup etLo is positivity improving. It follows that f(φ)g(φt) is a
positive vector in Ω x E. Moreover

-\v(φs)ds

e h >0, Qμca.e.

Hence

W ) = J/e,/(^M«^F(Φs>dS>0 (3.18)

We conclude that etL is positivity improving. Hence by the Perron-Frobenius
argument [1,2] it follows that etL has a unique ground state. That 1 is the ground
state

follows from Theorem 1. D

Remark. Theorem 2 implies by standard results [12] that the semi-group etL is
ergodic. In other words, if feL2(dμ), and Z = \dμ,

lim I J ds(e°Lf) (φ)=U dμ(φ)f(φ), μ a.e. (3.19)

However, in our case we have a stronger result, namely that etL is mixing:

1

Z
lim (/ etLg)LHdμ) = - (f dμ/) (J rfμg). (3.20)

This follows from the fact that etL has a mass gap.
The existence of the mass gap follows from the following facts (for details see

[4,6]): a) the resolvent of the O.U. generator R0 = (λ — L0)~ί in a finite box is
compact; b) the resolvent R = (λ — L)~1 is also compact as V is an almost
semibounded perturbation of Lo and Lo generates a hypercontractive semigroup;
c) etL has a ground state. Hence etL has a mass gap.

The Markov Process φt

The previous Theorems 1 and 2 and the representation (3.5) enables us to
construct the desired ergodic Markov process φt which gives the stochastic
quantization of continuum (φ4)2 Euclidean field theory in finite volume.
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We define transition probabilities pt(φ,dφr) as probability measures on

where χ is the characteristic function of an event and B is a Borel set in E.
The exponential in (3.21) is integrable by virtue of Theorem 1. Moreover

etLί = 1. From the countable additivity of E{^} it now follows that pt(φ, •) is a family
of countably additive probability measures on E. Moreover the theorems assure us
that pt(φ9 B) is μc measurable in φ, and dt measurable in ί.

Hence pt(φ9 B) are "stochastic kernels" and qualify as transition probabilities of
a Markov process φt with values in E. Its joint probability distributions are defined
in the standard way: ( 0 < ί 1 < ... <tn)

pφ{$tίeBl9...JtneBn}

= ί ... f PtSΦ>dφ1)pt2-tl(φ1,dφ2)...ptn-.tn_1(φn-1,dφά
Bί Bn

= ptl...t£B1xB2x ... xBn), (3.22)

which defines p f l... ίπ as a consistent family of probability measures on (£)". We
shall show later that Pφ can be realized as probability measures on Ω, our path
space, and then (Ω, pφ) constitutes our Markov process with continuous sample
paths. Let us note, from (3.22), that if/1? ...,/„ are test functions,

EΦ(k(fi) • • • kifn)) = £ Γ 4 L ( / I ) ΦtSfn)exp { - \ ϊ (: ΦliW):, dWs)

(3.23)

By the preceding remark after Theorem 2, etL is mixing. Hence we have:

lim Eφ(k(fι) • • • kifn)) =Udμ (φ)φ(f1)... φ(fn), μ a.e., (3.24)
ί » o o Δί-»oo

which is the aim of stochastic quantization of the (φ*)2 theory.
We shall now show that the Markov process φt constructed from its transition

probabilities has a continuous version. In other words, there exists μ a.e. in φ a
Markovian family of probability measures Pφ on Ω = C°([0, oo),£ = J7_1(yl)) of
which (3.22) are the joint probability distributions. For convenience, we run off the
Markov process φt with initial distribution μ. We shall prove:

Proposition. Let 0 < s < t < T. Then

s\\CτΓ
s. (3.25)

Corollary. By virtue of the estimate (3.25), Kolmogoroff's theorem, see e.g. [14],
assures us that there exists a probability measure QμonΩ — C°([0, oo), E) such that,
if Bu ...,Bn are Borel sets in E,

Uμ{$tίεBl9...JtneBn}

,dφί)pt2-tι(φudφ2)...ptn-tn_1(φn-udφn), (3.26)μ{φ
E Bί Bn
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(Qμ, Ω) is a stationary Markov process. We can write

where B is a Borel set in Ω. (Pφ, Ω) is the Markov process started off at φ.

Proof of the Proposition. It is straightforward to verify that the continuous O.U.
process φt of Sect. 2 satisfies

idμc(φ)Eφ(\\φr-φs\\2

E

r)ύC\t-s\r (3.27)

for any positive integer r ^ 1. Next we note

= $dμ(φ)jpt-s(φ,dφ2)\\φ-φ2\\2

E

r,

where we have used the fact that etL leaves μ invariant. Hence (φt is the O.U.
process)

o 0

and, on using the Ito formula (2.31)

where V(φ) is given by (3.15). Apply Holder's inequality

ύ{5dμe(φ)Eφ(U-φ,-ΛlΊ)ll* {idμe(φ)Eφ(e'^'φA:(')i2ΛV'*

(3.28)

-±μ*x:φ*:M ,1-4(1-^1,1/4
L2(dμc) \\e IlL'W,

where the last factor in (3.28) has been estimated using the Riemann sum
t-s

approximation for J ds1..., Holder's inequality (see e.g. [5]) and that etLo leaves
o
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μc invariant. The latter was also used for the second factor. It is easy to check

and

π -4(r-s)Fιι / < ( | | g ~ ^ | | 4 T Y~ s. (3.31)

From (3.29), (3.31), and (3.27),

choosing r = 2 in (3.32), the proof of the proposition is complete.

4. The Process φt as a Weak Solution of (3.2)

It is legitimate to ask in what sense the ergodic Markov process (Ω, Pφ) constructed
in Sect. 3 solves Eq. (3.2), which was our starting point.

Let Ωτ = C°([0, T], E) and Pφ the Markov family of measures on Ωτ obtained
from the joint probability distributions (3.22) by what we have shown previously.
Then the answer to the question is given by the following proposition.

Proposition.

2 o

has the same joint probability distributions (with respect to (Ωτ,Pφ)) as the O.U.
process φt of Sect. 2. Thus we have a weak solution of (3.2). Note that Zt which can be
identified as an O.U. process is not necessarily measurable with respect to φt.

Proof. We merely have to show that the transition probabilities of Z ί 5 with respect
to Pφ, are that of the O.U. process φt. Let Eφ be the expectation with respect to Pφ

and / a bounded measurable function on E. We have from (3.5)

, (4.2)

where

(4.3)

\ ^ \ \ (4.4)

and φt(W) is the O.U. process, starting at φ, given by (2.7). By virtue of Theorem 1
of Sect. 3

(4.5)

and moreover

H^ τ (4.6)
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Let B r be the σ-subalgebra engendered by Ws, Vs S t. Then it is a straightforward
consequence of (4.6) (see e.g. Lemma 2.3, Chap. 7, [16]) that the conditional
expectation

φ .s.. (4.7)

Define on Ωτ the probability measure P(W) by

dP^ = e^dPf\ (4.8)

and let Eφ

W) be expectation with respect to Pφ

W).
Note that, using (4.8) and (4.7),

= Ef\f(Zt)e^Eφ(e^t)) = Ef\f{Zy°). (4.9)

Hence from (4.2) and (4.9) we have,

. (4.10)

Thus to prove our proposition we have to show that Zt given by (4.3), is an O.U.
process, with respect to the measure P^\ whose joint probability distributions
coincide with that of the O.U. process φ\W) of Sect. 2.

Because of (4.5) and (4.6) we are assured by the Girsanov theorem [valid in our
context because of (4.6)], that (Wt is the Wiener process of Sect. 2)

Wt=Wt+~\dsCι~&:φl{W)\ (4.11)
2 o

is also a Wiener process in Ωτ with respect to the measure P{W) with the same
covariance as Wt

E^\Wt(f)Ws(g)) = (/, C 1 -<g) min(ί, s). (4.12)

Then, Zt is just the unique solution of

dZt = dWt-^C-εZtdt, Z0 = ψ. (4.13)

Indeed, the solution of (4.13) is:

Zt = e 2 ψ+ϊdse 2 dWs
o

2 o

^ (4.14)
2 o

which is just (4.3). Comparing (4.13) and the differential equation corresponding to
(2.7) we see that Zt is with respect to P{W) an O.U. process with the same joint
probability distributions as φt of Sect. 2. This proves the proposition.
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Appendix

Define

M=:(φ\C~εφ):. (A.1)

In this appendix, C will be the covariance with free boundary conditions. In fact by
Theorem VII.9 in [2], Propositions 1 and 2 below imply similar estimates for our
field with Dirichlet boundary conditions in Λ.

Then in this appendix we will prove the

Proposition 1. For any λ>0 and for ε restricted to the range

e~λMeL\dμc). (A.2)

This result was used in the proof of Theorems 1 and 2 in Sect. 3.
Note that M e Lp(dμc) 1 ̂  p < oo, for ε < \. The restriction ε > 0 was imposed in

Sect. 2, to ensure that the transition probabilities of the O.U. process are
absolutely continuous with respect to μc. The upper bound ε<γo turns out to be
sufficient for (A.2) to hold.

The proof of the above proposition and (A.2) is based on a series of lemmata.

Lemma 1. For 0 < ε < 1,

(ψ\C-εψ)^$d2xψ\x). (A3)
A

Proof. We let || ||p denote the LP(Λ) norm.
Define

oo 5 - l + 2ε

aε=\ds
2

which converges for 0<ε< 1.
We have the representation, converging for 0<ε< 1,

o

Hence

(03,C,2 + 1 0 | ) , (A.4)
0

where

Cs2 + 1 = (-zl + l + 5

2 ) - 1 .

Using Holder's inequality,
3 | (A.5)
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Now use Young's convolution inequality

\\f*Φ\\P^\\f\\q\\Φl' ~ = l q + l ~ 1 '

with the choice / = integral kernel of Csi + l9 p = r = 4, q= 1.
Note that

Hence

||CS2 + 1 ^ | | 4 ^ ~2—ΓII^IU (A 6)

From (A.5), (A.6), we have

(A.7)

D

ι + l

From (A.4), (A.7)

Next we turn to Lemma 2.
Define UV cutoff fields φκ(x) by

ΦM= ί ^ e i

\κ\^κ(2κ)
Define

Mκ= : (φl C'*φκ): = : (φl(-Δ + \Yφκ):. (A.8)

Then for 0 < ε < |
Mκ-^^M, in U(dμc),

Undoing the Wick ordering,

Mκ = (ψl(- A + l)Vκ)

κ, φκ)) + 3M|Cκ(0)Cί - ε(0), (A.9)

where Cκ(0) = Cκ(0,0) and Cκ(x, j ) is the integral kernel of Cκ the covariance of
φK9 Cι

κ~
ε(0) = C1

κ~
ε(0,0X and C^ ε (0,0) is the integral kernel of Cι

κ~\
Now use primitive positivity, i.e. Lemma 1, and

to obtain from (A.9)

MK ^ \d2x{(φκ{x)Y - 3(cκ(0) (κ2+ιγ+cy \0)) (φκ(χ)f
A

+ 3Cκ(0)CΓ ε(0)).
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Now use

CM ~ O(ln K), Cί ~ ε(0) ~ 0(κ2ε In K)

to obtain immediately:

Lemma 2.

M κ ^ - const 0(κ:4ε(ln κ)2). (A. 11)

MK = M-MK.

77ten iί is straightforward to verify via Feynman graph calculations

Lemma 3.

/or any j , some m>0. b is a constant independent of j and K.

The proof of the proposition at the beginning of the appendix now follows from
Lemmata 2 and 3 by Nelson's argument [1-3].

Namely, we have

S (j I )4bψn κ)mκ - 2+4f. (A. 14)

Using Stirling's approximation for;! and an optimal ^-dependent choice of), we
have

2 — 4ε

This estimate, together with Lemma 2, assures us that for ε<γ^ e~λM eL1(dμc),
λ>0, and the proposition has been proved. D

Remark. It can also be shown by methods very similar to [31], that we have a
uniform bound

In Sect. 2, we verified that

\\dsM(φs)
o

with M defined by (A.I) is a random variable in Lp(dPφ, Ω),l^p<co and Pφ is the
O.U. measure.

Now pt(φ, dφ% the transition probability of the O.U. process, is absolutely
continuous with respect to μc9 for every t > 0 and starting point φ, and its Radon-
Nikodym derivative is in L2(dμc). This fact, and the proof of Proposition 1 of this
appendix leads to,
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Proposition 2. For any λ>0, and provided

Eφ{e ° J<oo,

where Eφ is expectation with respect to the O.U. measure Pφ.

Proof. Define

M^jdsMiφs), M*κ = ]dsMκ(φ8),
0 0

Mκ as in (A.8). Then from Lemma 2,

M <? ^ - const 10(κ4ε(ln κ)2). (A. 17)

Analogous to the step before Lemma 3, define

= M<f> - M!?> - } ώ M K ( ^ . (A.18)
o

Lemma 4.

£/|^|)2^C^((2j0!)2&/(OnK)mK-2 + ^ (A.19)

for any j , some m > 0 , and large K.

Note that for large j , by Stirling approximation, ((2j)!)2^(2j)4 7 whereas
0'!)4 ~j4j s o that (for large j) Lemma 3 and Lemma 4 are the same, as are Lemma 2
and (A. 17), (ί, is fixed).

This Suffices to Prove Proposition 2. It remains to prove Lemma 4.
We have

Eφ(\M«ψj) £ f 2 ' - 1 J ds Eφ(\Mκ(φs)\2J)

S t2>-ιCφ (\ dshsΦ, dφ')\Mκ{φ')A', (A.20)

where we have used the fact that ps(φ, dφ') is absolutely continuous with respect to
psφ9dφ') and the radon-Nikodym derivative is in L2(ps(0,dφ% and Schwarz
inequality.

Now pt(0, dφf) is a gaussian measure with mean 0 and covariance

and we have for integral kernels

lim (Cr(x, y) - C(x, y)) = δCt < oo . (A.22)
x-+y

Mκ(φ) has Wick ordering with respect to C. By virtue of (A.22) we can change the
Wick ordering in Mκ(φ) to Cs-Wick ordering at the cost of introducing lower order
terms with finite coefficients [1].
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Now, because of (A.21), we have by Feynman graph calculations exactly as
leading to Lemma 3, for large K

0
(A.23)

(A.20) and (A.23) imply (A. 19), which prove the lemma. D

Remark. Analogous to (A. 16) we also have the uniform bound

( A . 2 4 )
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