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A Classical Solution of the Non-Linear Complex
Grassmann o-Model with Higher Derivatives
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Abstract. We construct a soliton solution of the non-linear complex Grassmann
o-model with higher derivatives, and show that this solution, as a continuous
map, represents a generator of the K-group of a sphere.

Introduction

Non-linear g-models such as the CP" g-model or complex Grassmann ¢-model in
two dimensions are interesting objects to study not only for physicists but also
mathematicians. They have non-instanton solutions with finite action other than
instanton solutions. Moreover, a discrete symmetry transformation has been
constructed in their solution spaces. See, in detail, [5] and its references.

In three or more dimensions, the situation is different. With usual action form, it
is well known that a classical solution with finite action, which we call a soliton, does
not exist, by the scaling argument of Derrick’s type. Therefore we must alter the
action to obtain a soliton.

In this note we construct a new Lagrangian on R?>™ and show that it has at least
one non-trivial soliton solution. Moreover we show that this one represents a
generator of the K-group K(S?")(= Z) of the sphere S*™.

I. The Model

We define a configuration space H which we consider hereafter. For natural
numbers m, N we set
Goyn={AeM(Q2N;C)|A*=A,A" = A, Tr A= N}, (1)

H,,, = {P:R*" - G,y y C*-class}. 2)
It is known that G,y y is a Grassmann manifold and G,y y = U(2N)/U(N) x U(N).

We call an element P in (2) a projector.
For the space H,,, we define a new Lagrangian as follows

L(P)=%[d*"X Tr(0,,...0,,P)% 3)
0,,=0/0x, (j=1,...,2m).
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Here and hereafter we adopt the Einstein rule on summation. The new Lagrangian
coincides with original one form = 1 [5], and was introduced by Kafief[4] form = 2.
Hereafter we consider only a classical configuration.

Lemma 1. The equation of motion of (3) is given by
[P,A"P] =0, 4)

where A™ stands for the m-times iteration of the Laplacian A on R*™ and [ , ] stands for
the Lie brackets.

The proof is easy. PeH,,, satisfying (4) and L(P) < oo we call a soliton. On the
other hand our Lagrangian has a topological number. We explain this. For P in (2),
a global form of the curvature F is defined by

F = PdPAdP, )]
see [2,6]. Then a topological index is given by

1 F Am
ColP) =55 jTr(zn \m> ©)

where Am denotes the m-times exterior product. For example when m = 2 we have

—1
CalP)= 553 TrFAF.

This is the first Pontrjagin number. We shall construct a soliton solution with
topological index = 1 for any 2m(m > 0).

II. A Solution

For any natural number m, let efj=1,...,2m — 1) be generators of the Clifford
algebra, ee; + eje; = 26;;. Now we realize {¢;} in M(2"~*;C) by the usual embedding.
Then we may assume e =ej(j=1,...,2m—1). We set N = 2m~1 and

Z=Xuly+/ — 1x5;. 7

Now we state our main result.

Theorem 2.

1 [ty z* 2m
PE—— N : 2= 2
1+X2[Z leN]’ Xi= X% ®)

is a non-trivial soliton solution.

Note that P in (8) is a CP!-instanton projector for m=1 and a Yang—Mills
instanton projector for m = 2.

Before giving the proof of Theorem 2 we make some preparations. We resolve a
Laplacian A as

% 2m—1 0

A= +————
ax2T Tx ax

+ (angles-parts)
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using the polar coordinate. Remarking that

X

k
A1+X2

A*0;log(1 + X?) =40,4%log(1 + X?),

we compute as follows:

Ak 1 az+2m—1i 1
1+ X2 \ox? X 0X)1+Xx?%

2 _
A¥log(1 + X?) <5 2m—10

Il

- 2
6X2+ X aX)log(l—l—X)

Proposition 3.
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A* ! s =(— 4)k[ZkC{m—(J+2)}{m (G+3)}{m—k+ 1)}k +))

1+X

1 1
x (1 + X2FHitT +(2k)!(1 +X2)2k+1]’

(10-1)

A*log(1 + X?) = —(—4)"[5‘;1 WCitm— G+ D} {m — G+ 2)}+{m — K} (e +j — 1)t

1

Proof. The proof is by the mathematical induction on k.
When k =m (10-1) and (10-2) become very simple equalities.
Corollary 4.
1 1-Xx?
(1+ X321 + X%’

m 1 m
Am = (= 4em)!

A™log(l + X2) = — (— 4"2m — 1)!

1+ X%
From Corollary 4 and (9) we have
Corollary 5.
X2 1
" wr = AN T
1+X 1+ X
X; 1 X;
aA™ =(—4)"2 .
1+X2 ( )(m)(1+X2)2m1+X2

Using the above corollaries we prove
Proof of Theorem 2. From Corollaries 4 and 5 we obtain

1 [(1 — X1, 2Z*

AP = (= 4 Qm) e

2Z —(1—-X%1

J

(10-2)

(11-1)

(11-2)

(12-1)

(12-2)

(13)
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Therefore

1
PA™P = (—4y"(m)! P=A"P-P,

1
(1 + Xx?)*m
that is, [P, A™P] = 0. Next we show L(P) < co. Substituting (8) into (3), we obtain a

rational function on X inside integration (in polar coordinates). The highest
exponent of X in the numerator of the rational function is 2(m + 1). Therefore if

X2(m+ 1)
then L(P) < co. We show (14). Putting X =tan,

© dX X4m+1
left hand sid 14)=
eft hand side of (14) £1+X2(1+X2)2m+1

[ X2m=tax <o, (14)
0

n/2
= [ dbcosBsin*"*16 < oo.
0

Finally we show our solution is non-trivial. Substituting (8) into (6) we have

C.P=1 (15)
in a similar way as in [3;§1]. Since (6) is a topological invariant, our P is non-trivial.
QED

ITI. A Relation with K Theory

We sketch in this section the relation of our solution with K-theory. For
j=1,...,2m, we set

2x; 1—-Xx?

qﬁj:ﬁ?; ¢2m+1=1+—X5~ (16)

Clearly Z¢? = 1. Using (16), we rewrite (8) as follows:

ﬁzl[ (14 Gom+ )1y Gomly — \/——lquej} a7
2 ¢2"‘1N+\/Tl¢jej (1= @om+ )l ’

This P represents a generator of the K-group K(52™) of 2™, namely, in the diagram

R2m

|

§2m— __’F Gunn G GzN+2,N+1 S "G BU,

the homotopy class of the composite of the bottom horizontal arrows is a generator
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of

lim[$2", G,y x] = [S*™, BU] = K(S*™), (18)

where we remark that K(S?™) = Z, K(S*"*1)=0.
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