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Abstract. It is shown that Einstein's vacuum field equations (respectively the
conformal vacuum field equations) in a frame formalism imply a symmetric
hyperbolic system of "reduced" propagation equations for any choice of
coordinate system and frame field (and conformal factor). Certain freely
specifiable "gauge source" functions occurring in the reduced equations reflect
the choice of gauge. Together with the initial data they determine the gauge
uniquely. Their choice does not affect the isometry class (conformal class) of a
solution of an initial value problem. By the same method symmetric hyperbolic
propagation equations are obtained from other gauge field equations, irrespec-
tive of the gauge. Using the concept of source functions one finds that Einstein's
field equation, considered as second order equations for the metric coefficients,
are of wave equation type in any coordinate system.

1. Introduction

In this article rather general results on the hyperbolicity of Einstein's and other
gauge field equations will be discussed. They were obtained by an analysis of the
conformal vacuum field equations in the context of a specific initial value problem.
The "conformal structure" of Einstein's vacuum field equations allows one to
represent the conformal vacuum field equations

Ric(ί2~ 2 0HO (1.1)

for the "non-physical" metric g and the "conformal factor" Ω by a system of first
order partial differential equations which remains regular even where Ω vanishes
[1]. By this property of the field equations it is possible to transform global "initial
value" problems for Einstein's vacuum field equations, where the solutions are to
be characterized by their limiting behaviour near past null infinity, into local initial
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value problems for the conformal vacuum field equations with data being given on
surfaces, which intersect or form part of null infinity. A crucial prerequisite for
proving existence theorems for these local problems is the possibility of casting the
regular conformal vacuum field equations, which are given in a frame formalism,
into a form to which the theorems of the theory of partial differential equations
apply. It turns out [1,2,3], that in a certain geometric gauge of the coordinates and
the frame field various characteristic and standard Cauchy problems for the vacuum
and the regular conformal vacuum field equations can be formulated as initial value
problems for quasilinear "symmetric hyperbolic" systems [4,5], These are equations
of the type

Aμtιβ + b = 0 (1.2)

for a vector-valued unknown t = t(xμ\ with matrices Aμ and a vector-valued
function b, which may depend on the coordinates xμ and the unknown t, such that

τAμ = Aμ; 3ξμ with: Aμξμ is positive definite. (1.3)

Extensive work has been done on symmetric hyperbolic systems, and existence
theorems for the standard Cauchy problem have been worked out in detail and
in great generality [6], which apply immediately to Cauchy problems for the
conformal vacuum field equations [3].

Though the regular conformal vacuum field equations are well adapted to any
situation where data are given at null infinity, the technique of reducing initial
value problems for these equations to problems for symmetric hyperbolic systems
as discussed in [1], does not apply to the particularly interesting "pure radiation
problem" [7]. Here data are prescribed on a cone representing past null infinity.
Its vertex, which represents past timelike infinity, is required to be smooth in the
sense that the non-physical spacetime may be smoothly extended through it.
Furthermore, the null curves on the cone are required to satisfy a certain
completeness condition. For rather general data solutions of the conformal vacuum
field equations near this "null cone at past timelike infinity" would yield solutions
of Einstein's vacuum field equations which are "semiglobal" in the sense that they
are past null and timelike geodesically complete. They would have an unambiguous
interpretation as representing gravitational radiation, coming in from infinity
interacting with itself and possibly going out to infinity again. It is clear that a
thorough understanding of this problem, in particular of the behaviour of the
solutions near spatial infinity and in the future, should enhance our insight into
the effects and peculiarities of the nonlinear interactions of gravitational waves
considerably.

The geometrical gauge used in [1] for the reduction of the field equations
however, fails in this situation, since the geometrically defined coordinates and
frame fields, suitably adapted to the cone, become singular at the vertex. This
illustrates that it is desirable to increase the flexibility of the formalism by extending
the reduction technique to more general classes of gauge conditions. The
investigation of this question led to a result which not only applies to the pure
radiation problem but which is of such generality that it is of interest independent
of the original problem. It turns out that by a quite general procedure a symmetric
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hyperbolic system of propagation equations can be extracted from the conformal
vacuum field equations, irrespective of the chosen coordinates, frame, and
conformal factor.

Critical for obtaining the symmetric hyperbolic form is the observation, most
easily made and stated in the spin frame formalism, that equations of the type

K'hβ = FVβ{fcy) (1.4)

imply symmetric hyperbolic systems. Here the unknown field fbβ carries a spinor
index b and some multiindex β, which may be spinorial or of quite a different
nature, and Fb.β is some smooth function. Important in (1.4) is the structure of
the principal part

\ (1.5)

where e*a. = eμ

aa. are the coefficients of a pseudo-orthonormal frame with spinor
indices α, a! taking values 0,1. Formally Eq. (1.4), written in the order

Vbvfbβ = Fvβ(fcy). (1.6)

are of the form (1.2), (1.3) with ξμ = σμ

00' -f σ/ 1 ' , where σaa> is the frame of
1-forms dual to eaa>. If, however, symmetries are required, e.g. fbβ = fbcd_h =

fφcd...h)>the symmetric hyperbolic system is obtained in a slightly more complicated
way (see (3.11)—(3.15) and the discussion in [8]).

The second basic ingredient in the reduction technique is the following idea
of a "gauge source." In Sect. 2 it will be shown that on a given Lorentz-space the
choice of a coordinate system and a frame field can always uniquely be characterized
by suitable initial data and certain functions, called gauge sources, which in a
sense represent the "pure gauge content" of the frame and the connection coeffi-
cients. For a given gauge the gauge sources can easily be calculated and, conversely,
they can be arbitrarily prescribed to locally determine a new gauge. The interest in
the gauge sources arises from the fact that by writing them explicitly into the field
equations, one has to introduce compensating terms, which combine with the
original terms in the equations to yield the form (1.5) of the principal part.

The class of solutions of the conformal vacuum field Eq. (1.1) is invariant under
rescalings of the form

(Ω,g)->{Ω,ΰ) = (ΘΩ,Θ2g), (1.7)

where Θ is a positive function. In [1] this freedom has essentially been removed
by the requirement that the Ricci scalar of the non-physical metric vanish. This
leads already in quite simple cases to the difficulty that the conformal factor, which
is obtained as part of the solution of the regular conformal field equations, will
go to zero at places where it should not. It will be seen in Sect. 3 that it is possible
to specify the Ricci scalar freely in an initial value problem for the conformal
vacuum field equations, without destroying the symmetric hyperbolic form of the
reduced propagation equations. Thus the Ricci scalar may be considered as the
gauge source for the conformal factor.

Though the discussion in Sect. 2 of how to arrive at the symmetric hyperbolic
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form is quite general, there are problems with a straightforward application of
this technique to Einstein's field equations with matter fields, if one wants to use
a second order formalism. However, as will be shown in Sect. 3, the idea of the
coordinate gauge source may be used to exhibit the hyperbolic nature of Einstein's
equations when considered as second order equations for the metric coefficients,
irrespective of the chosen coordinate system. The reduction of the equations by
the harmonic gauge [9,10] will then appear as a special case of a general procedure.

In view of the formal similarity of the vacuum field equations in the frame
formalism with other gauge field equations, it is not surprising that the method
can be used to cast the propagational part of the gauge field equations in any
chosen gauge into the symmetric hyperbolic form. This is shown in Sect. 3, while
in Sect. 2 the corresponding gauge source function is derived.

The discussion of the hyperbolic structure of Einstein's equations and of the
conformal vacuum field equations given in this paper should prove useful in general
arguments as well as in specific initial value problems. In the context of existence
proofs the question of which gauge conditions should be chosen to prevent or
postpone the development of a degeneracy or a blow-up of the coordinates and
the frame now not only becomes particularly interesting but an answer should
lead to consequences, since the evolution of the gauge can be controlled by the
form of the gauge sources. They may be coupled to the geometric fields either
algebraically or by imposing a system of partial differential equations, which is
added to the reduced equations. A similar question is how to prescribe the Ricci
scalar in an initial value problem for the conformal vacuum field equations such
that the conformal factor will show the correct behaviour. It is an interesting but
still open problem, which information on the global structure of the prospective
solution spacetime has to be encoded into the sought for form of the Ricci scalar.
Again, it may be helpful to allow the Ricci scalar itself to pick up the necessary
information on the geometry by describing for it an appropriate coupling to the
other fields.

2. The Gauge Sources

In the following the spin frame formalism, which reflects the desired structure of
the equations most naturally, will be used freely in the notation of [1,2]. All
functions will be smooth and the summation convention will hold.

On a four dimensional manifold with Lorentz-metric g and metric connection
V, let {xμ}μ=oΛi2,3 be a local coordinate system and (ωa)a = 0Λ be a normalized
(i.e. satisfying (ωa,ωb) = εab with e 0 1 = 1, where ε is the antisymmetric form on the
spinor bundle) spinframe field, defined on the coordinate patch. The spinor fields
ωaώa. correspond to a pseudoorthonormal frame field (eaa>)a = o,i,a' = o,i with

9(βaa'» βbb) = ZaΦa'b', ^ab' = eba', (2Λ)

which determines the frame σaa' of dual 1-forms by

If everything is expressed with respect to ωa respectively eaa>, the connection is
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represented by the connection coefficients ΓaaΊ}C which satisfy

Vα«-ω&: = Veaa>ωb = Γaa,
c

bωc; Γaa,bc == Γaa,φc). (2.2)

The torsion tensor taa.
bb'cc, is defined by

twaa'cc - lecc>,ew-] - Γjbedb, - ΓJb,ew + Γw

d

cedc, + Γbbfc,ecd,, (2.3)

where the square brackets denote the commutator of vector fields. Applying the
frame to the coordinate functions, one obtains the frame coefficients eaa(xμ) —:
eμ

aa>, which have a dual interpretation. For fixed lower indices they are the
components of a given vector field with respect to the coordinates xμ, for fixed upper
index they represent the differential dxμ = eμ

aa>σaa' with respect to the frame eaa,.
With the second meaning one has

Vaa*bb'X
μ = eμ

bb',ve\a' - Γjbe
μ

db - ΓJ'b,e
μ

M, = V ^ e V . (2.4)

Applying (2.3) to the function xμ, using (2.4), and exploiting the antisymmetry of
the torsion tensor one obtains an equivalent expression for (2.3) in the form of
two equations

tU'eμ

fΓ = V(/'eμ

b)r, t{fa:e
μ

ff, = Ψ{a>eμ

bΊf, (2.5)

where the brackets denote symmetrization, t{{ =-jthW

fΓ

c

h' = t{/φ and t{ζ.
is the complex conjugate of this, since eaa, satisfies (2.1). Therefore (2.3) is in
fact equivalent to each of Eq. (2.5) if eaa, = eaa,. An important point here is,
that the real-valued functions

Fμ = iVff'eμ

fr = ΪVff'VfΓx
μ (2.6)

drop out of Eq. (2.5), whence play no role in the definition of the torsion tensor.
The curvature spinor rabcc,dd> is defined by

rabcc'dd' + tec' dd'Γffab = edd'(^cc'ab) ~ Idd' c^fc'ab ~ Γdd' c'^cf'ab ~ ^dd^b^cc'af

~ \ecc'Udd'ab) — Γcc> dΓfd,ab — Γcc, d>Γάj"ab — Γc/ b'^άά'af)- (2.7)

To simplify the following expressions it is convenient to define

Vad'* bb'cd' ~ eaa'\* bb'cd) ~ -« aa' b* fb'cd ~ * aa' b'^bf'cd ~~ * aa' c^bb'fd

~ * aa' d*bb'cf> (2-8)

which is the same expression which one obtains for the covariant derivative of a
spinor field with the same index structure as that of the F's, which takes with
respect to the given spinframe the same values as the Γ's. Using this definition and
taking into account the antisymmetry of the curvature spinor in the last index
pairs, Eq. (2.7) finds equivalent expression in the two equations

rab

dc + t{fΓfΓ = V ( /Γ d ) /» + Γ ( / ^ Γ d ) Λ > (2.9)

Λ v + t{/e:rγΓ = v w + r*{cA*rd.)e»f, (2.io)
where rahdc = ̂ rahdΓ/\ rabd,c, = jrabfd/c,. Here one recognizes that the quantity

Fah:=Ψd'Γdd,ab, (2.11)
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which satisfies

Fab = F{ab) = edd'(Γdd,J - (r'd'df + Γ*f'd 's)ΓMah (2.12)

drops out of Eqs. (2.9), (2.10), respectively (2.7), whence has no effect on the definition
of the curvature tensor. While it is obvious that Fμ is obtained by applying a
gauge invariant operator to the gauge dependent quantity xμ, it is not so obvious
that Fab is defined by a similar procedure. For fixed α, b the quantities s(Vdd>ωa,ωb)
represent the components of a 1-form. Taking its divergence and observing (2.2),
(2.12), one obtains

Vdd\ε(Vdd,ωa,ωb)) = Fab. (2.13)

Equivalently one has

V W ^ . , ew)) = εa,b,Fab + εabFa,b,. (2.14)

Another interpretation of Fab which is immediately read off (2.12) is

δ9\=-F\, (2.15)

where 3a

b = Γcc,
a

bσ
cc' is the pull-back of the connection form on the bundle of

spin frames by the local section defined by ωa and δ is the codifferential. The
functions F μ , respectively Fab, will be called "coordinate gauge source," respectively
"frame gauge source." The reason for this name will become clear later, when it
will be shown that these functions act as source terms in the reduced vacuum field
equations (Eqs. (3.11)—(3.13) with Ω = 1, φabaΊ)> = 0, Λ = 0) and determine the
coordinate system and the frame field, without affecting the geometry.

Suppose real valued functions Fμ and complex valued functions Fab = F{ab),
defined on R4, are given arbitrarily. Then on the given space-time there exists a
coordinate system xμ and a spin frame ώa, such that in the coordinate system
xμ the corresponding gauge sources are just given by Fμ, Fab. Reading Eqs. (2.6),
(2.13) as differential equations suggests obtaining xμ, ώa as solution of the system
of semilinear wave equations

Vff'WfΓx
μ = 2Fμ(x") μ = 0,1,2,3, (2.16)

ψVfΓώa,ώb)) = Fab(xv) α,fc = 0,l. (2.17)

For suitably given initial data these equations determine xμ, ώa uniquely near
the initial surface. Equation (2.16) can be solved separately. Notice that on the
right of (2.16) a function of the unknowns appears, not a source term, whereas,
once xμ is known, the right member of (2.17) acts a source term. The structure
of (2.17) becomes clearer by writing it in a more explicit way. Let tb

a be the
components of ώa with respect to the basis ωb, then (2.17) takes the form

Vμ((Vμtc

a)scA) = Fab, (2.18)

respectively

VμV
μίc

α = - ^μtecS/hr V + FabΓ
lb

hε
ch.

From (2.18) and the symmetry of Fab follows

V V μ O ta tb ) — 0
v u v \babL cι d) — u>
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from which one concludes: if the initial data are given such that

εabt
a

ct
b

d = εcd, Vμ(εabt
a

ct
b

d) = O (2.19)

hold on the initial surface, then the solution of (2.18) satisfies (2.19) everywhere near
this surface, whence det (ta

b) = 1 and ώa is in fact a normalized spin basis.
Using (2.6), respectively (2.11), Eqs. (2.5), respectively (2.9), (2.10) can be written:

V/VV + W^ = & ' ? (2.20)

V W + ε «'^ = ί*v^9 (2.21)

2V/'JV* + Γ/^Γd)e

b\ + εcdF
ab = 2(rab

dc + 1%Γhh.
a% (2.22)

Oy/ p ab , pe f(ap b) , p pab _ 9/ab \ fhh' r ab\ Π ΊVi
Z V c'1 fd' ^ 2 (c' 2 d')e f^~£c'd'r — LV d'c' ^-td'c'1 W )• \l.li)

Hence by introducing explicitly the source functions, the desired form of the
differential operator on the left is obtained. In a general space-time one has

Γabdc = ~ Φabcd - M^achd + ^ab%c\ ^abd'C = ~ Φabc'd' (2-24)

with

Φabcd = Ψiabcd), 24/1 =R = R, 2φaha,h> = 2φiab){a,bΊ - 2φabaΨ

being the Weyl spinor, respectively the Ricci scalar, respectively the traceless part
of the Ricci tensor. The field equations will be formulated as conditions on these
fields and on ίJJ' respectively t^. For given right-hand sides, the pair of
Eqs. (2.21), (2.23) forms a symmetric hyperbolic system if eaa, — eaa, holds in Vaa,.
For suitable initial data and given gauge sources it determines the frame and the
connection coefficients uniquely. Then the left-hand sides of all equations are
determined. A similar remark holds for the pair (2.20), (2.22). In order that this
does not lead to contradictions, the conditions on the curvature and the torsion
tensors have to be given in accordance with the Bianchi identities, which are the
compatibility conditions for the equations above.

On a Lorentz manifold with metric gμv and Levi-Civita connection V the pure
gauge field equations for the gauge potential Aμ and the gauge field Fμv read

VμAv - VvAμ - lAμ, Av~\ + Fμv - 0, V μ F\ - [Aμi F" v] = 0, (2.25)

where the bracket denotes the Lie product. The fields Aμ, Fμv take their values
in the Lie algebra of some gauge Group G, which for the sake of defmiteness will
be assumed to be some SU(π), n ^ 2. In the following it may be understood that
all fields are given with respect to the standard representation of this group,
however matrix indices will be suppressed. Using the spin frame formalism as
before, representing the gauge field by εabφaΎ + εa.b.φab9 where φah = φm takes
its values in su(π), and defining

La'bb' = VaaΆb' ~ ^bb'Aaa' ~ lAaa'> Aw~\ + (φab8a'b' + Φa'b'εab\

K'c = Vfc<Pcf-lAf

c.,q>cf]9 (2.26)

Eq. (2.25) can be represented equivalently by

U - 0 , ftc,c = 0, (2.27)
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where the Bianchi identities have been used. The first of these equations is equivalent
to

L = l/'bf' = 0, W = ZV^ = O. (2.28)

These two equations are equivalent since Aaa, = Άaa>, where "denotes the spinor
calculus complex conjugation. There are two ways of writing lab = liab)9

lba = 2V{/Άb)Γ - lA/\ Abf^ - 2φab = 2S7/ΆbΓ + εabB - \A/\ Λ r ] - 2φab.

(2.29)

The first form shows that labi whence by (2.28) the definition of φab, is independent of
the "gauge source"

B = VffΆfr. (2.30)

The second form shows that by introducing the source function again the desired
form of the differential operator is obtained. Similar remarks hold for \a,b,, where
the same source function turns up. Equations (2.15) and (2.30) are seen to be perfect
analogues of each other. As before, one finds that locally the gauge source can be
given arbitrarily to determine together with suitable initial data a new gauge.
On the given space time let B = B be some su(n)-valued function. Assuming
that B = VfJ" Άff> where λfΓ is a gauge potential related to AfΓ by a gauge
transformation s = s(x),

Άfr = s-ί(yfrs + Afrs)9 (2.31)

one finds that 5 must satisfy the semilinear wave equation

Ψf'Vfrs = sB-Bs + (Ψf's)s~1 (V / rs) + (Vaa's)s~ 1Aaa.s - Aaa,ψ
a's (2.32)

For initial data s, VfΓs, which are given on a suitable initial surface such that
5θSU(n), s " 1 VffSesu(n\ Eq. (2.32) determines a unique gauge transformation
near the initial surface. That s takes its values in SU(n) follows from (2.32), since
this equation implies equations of the type

Wff'Vff4 s) = (s s)B - B{ϊ s) + Haa,ψ
a'{* - s),

V ^ ' V ^ d e t s) = Kaa,ψ
a'(det (s)),

where * denotes the hermitian conjugate.

3. The Hyperbolic Propagation Equations

The "regular conformal vacuum field equations" for the unknown

t = {e aa'>laa'bc'> Ψabcd> Φaba'b' > *Λ ^ a a ' S )

read

t ,bb' > = 0 Π ])

ιaa' cc' w? \ J L)

ΐabcc'dd' = ~ ΩψabcdZc'd' ~ Φabc'd'^cd + Λ £c'd'^ac^bd + SadSbc)9 (3.2)

fb'Ψabcf = ̂  (3.3)
f'Φbcd'f> = φabcfΣf

d,-2εa{cVb)dΛ, (3.4)
Vaa.Ω = Σaa>, (3.5)
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Vaa>Σw = - ΩφabaΎ + sεabεa,b,, (3.6)

Vaa'S = ~ ΦaM'b'Σ
W - 2Λ Σaa> ~ ΩV^.Λ, (3.7)

0 = 2Ωs - Σaa,Σ
aa> + 2Ω2Λ. (3.8)

These equations are "conformally invariant" in the sense that under the rescaling
(1.7) and the implied transformations of the unknowns, the equations retain their
form. They are more general than those given in [1], since the choice of the real
valued function A is left open. This function, which may be specified freely, will
be considered as gauge source for the conformal factor. The feasibility of this
interpretation is suggested by the transformation law

WkV
kΘ = 4(ΘΛ(g) - Θ3Λ(Θ2g)) (3.9)

of A = Λ(g) under the rescaling (1.7). It shows that A(Θ2g) can be given freely and Θ
will be obtained as a solution of a semilinear wave equation for suitable initial data.

Equations (3.1)—(3.8) have been discussed in [1,2] and only a few remarks will
be made here. The spinor field φabcd = Ω~1 φahcd is the rescaled Weyl spinor, there-
fore Eqs. (3.1), (3.2) are those discussed in Sect. 2. Equation (3.3) is the vacuum
Bianchi identity for the physical fields rewritten in terms of the non-physical fields.
Equation (3.4) is obtained from the Bianchi identity and Eq. (3.3). By (3.5) Σaa, is
defined and by contraction of (3.6) one finds that s'= ^Vaa,V

aaΉ. Equation (3.6) is the
traceless part of (1.1), the trace being given by (3.8). Equation (3.7) is derived from
(3.1)—(3.6) because it has a "nice" principal part and it can be shown that (3.8) is
implied by the other equations, if (3.8) holds at one point. To obtain a solution of
(1.1) it is thus sufficient to solve (3.1)—(3.7) for suitable data, which in particular
satisfy (3.8). Equations (3.1)-(3.3) with Ω = i; φaha.b. = 0, A = 0 are just Einstein's
vacuum field equations.

The symmetric hyperbolic system deduced from (3.1)—(3.7) will look
more complicated than it might be expected from the preceding discussion. Since
eμ

aa, is obtained as solution of the field equations, one must make sure that it is
possible to show that in fact one has eμ

aa. = eμ

aa.. This requirement motivates
the form of Eq. (3.11), which in turn suggests the form of (3.12). The principal parts
of (3.3), (3.4) are of the form (1.5). However, the required symmetries of the fields
Ψabcdτ Φaba'f imply an overdeterminedness of Eqs. (3.3), (3.4), which is removed
by the form of Eqs. (3.13), (3.14). It may be remarked that uniqueness results may
be derived irrespective of such considerations.

Defining

vab. _ l r e'f(a r - b) ..ab . _ i p /(«Γ b) Π 10ϊ
ycd'—2J(c 1 d)e' f> Ίc'd' —21 (e' ϊd')e f> {D.iV)

and taking into account Eqs. (2.20)-(2.23), the following system of "reduced
propagation equations" can be derived from (3.1)—(3.7):

2V 0 0 'Λi' ~ VorΛo' ~ V l o ^ μ

o r ~ 2F* = 0,

(Voo- + ViiOΛo' ~ Vio'Λr ~ V l o^oo' = 0,

. - 2F» = 0, (3.11)
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0X7 T ab \7 V ab X7 ΊΓ ab r.,ab ..ab τjab

ab —OΛp (p ) Λ-rhab

\j->ab vj j - 1 ab vj V ab \ ^ab ^ b

i r j i 1 0 ' — V 1 0 ' i i r — V 1 0 ' i 0 0 ' + 7 l l — 7 θ ' O '

2Λε1

aε1

b + φab

0^

P ab \7 y

ap b rhab

i r Γoo

b V

= - Ωφab

10 + 2Λε^ε^ - φab

vo,, (3.12)

\ Γ1 ab X7 P ab \7 y ab ..ab

i'M or — Voi'ioo' ~V 0 1 ' i — ?

2 V i r Γoo

ab -

- V'o'Ψabof + VfvΨabif = 0 in the order αb = 11,10,00,

/ (3.13)

v + 2εO(i,Vc)ryl,

- 2β 1 ( b V c ) 0 ^, (3.14)

Ω ( φ O b O , b , + φ l f c l

(φObO,b. + φ lhVh)Σw - 2Λ{Σw + Σ1V)

^ + V i r /l) . (3.15)

In these equations it is understood that Fμ = Fμ, Fab = F{ab), Λ = Λ, are given
smooth functions of four variables and that in Vαα> the frame coefficients eμ

aa.
are replaced by \{eμ

aa> + eμ

aa). Furthermore eμ

aa., φabaΊj> are considered as
complex-valued functions where the reality conditions eμ

aa> = eμ

aa, and
Φaba'b' = Φaba'b' a r e "forgotton" (hence have to be shown for a solution of
(3.11)—(3.15)). Then (3.11)—(3.15) represent a symmetric hyperbolic system of partial
differential equations for the unknown t. It may be pointed out that the type of
nonlinearity of the field equations has not been changed by the introduction of
the gauge source fields, and that the latter now act as source terms in the reduced
equations.

The system (3.11)—(3.15) may be used to obtain existence results for various
characteristic and standard Cauchy problems, each of which requires a separate
discussion of Eqs. (3.1)—(3.8) on the initial surface. The following proposition will
be formulated to cover all these cases without going into the analysis of the
constraint equations, which is of no interest here.

Proposition. For functions Fμ, Fab, Λ given on R4 and data given on some initial
surface, let t = (eμ

aa,,Γaa,bc/,φabcd,,φabaΎ,Ω,Σaa,,s) be a solution of the reduced
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Eqs. (3.11)—(3.15). Ift satisfies the conformal vacuum field Eqs. (3.1)—(3.8) on the initial
surface, then t satisfies these equations in fact in the whole domain of dependence of the
initial surface in the space-time defined by t.

Remark. It is important to know what will happen to the solutions of (3.11)—(3.15)
if the source functions are changed. This will be described here for the case of a
standard Cauchy problem for Eqs. (3.11)—(3.15), where data are prescribed on a
spacelike hypersurface S. The constraint equations implied on S by the conformal
vacuum field equations and the way data have to be given such that a solution
of (3.11)—(3.15) for these data satisfy (3.1)—(3.8) on S, have been discussed in [3].
Here it will be assumed that t is a solution for suitable data on S of Eqs. (3.1)—(3.8),
hence in particular of (3.11)—(3.15), with some gauge source functions Fμ, Fab, A.
Three types of transformation will be considered in the following:

(i) coordinate transformations xμ-^xμ(xv\ under which one has

p p

aa' dxv " ' '

and the functions given by t are expressed as functions of xμ;

(ii) rotations of the frame ωa-*ωbt
b

a with det(ία

fe) = 1, under which one has the
transitions

a\ -> ϊd'a>td

a{eμ

dd,t\μ + ΓM.*ft'b)Γ u

e ,

and similar transformations of the other fields given by t;

(iii) rescalings of the type (1.7), which, if the spinframe is rescaled in the form
ωa-*Θ~ll2ωφ imply the transformations

ΓaaΊ,c^Θ-iΓaa,bc + Θ-2εa(bVc)a,Θ,

+ 2Θ -4(Vaa.6> VbbΘ -iεabε

Ω^ΘΩ,

+ Θ~2ΣJ'J"VfrΘ.

The solution t will be transformed into a solution of (3.1)—(3.8) under these
transformations if A is transformed appropriately.



536 H. Friedrich

Let Fμ = Fμ, Fab = F{ab),Λ = Λ be arbitrary functions defined on U4. It will
now be shown that there exist transformations of the types listed above, under
which t is transformed into a solution i of (3.1)—(3.8) with Ricci-scalar given by 24/ί,
such that the coordinate and frame gauge sources obtained for fare just F μ , Fab and
that in particular Eqs. (3.11)—(3.15) (with A on all quantities) will be satisfied by Γand
the source fields A, Fμ, Fab.

The conformal factor Θ and the coordinate transformation xμ(xv) are obtained
near S by solving on the space time provided by t the following standard Cauchy
problem:

dΘ

dxμ
= 0;

s

dxμ

— =δμ

v,
s

i-Θ3A(xv)),

y y λ Aμ _ j ζ\2 cW-Λv\ _ 9 fi) - 1

The first equation is (3.9), where the scalar Λ(Θ2g) is given in such a way that in
the new coordinate system xμ one will have Λ(Θ2g) = A. The second equation is
just VΛV

Axμ = 2Fμ(xv), where V denotes the Levi-Civita connection with respect
to gμv= Θ2gμv. The rotation of the frame is now determined near S by solving
the initial value problem

*»» «>> dχμ

the existence of the unique solutions of these initial value problems can be inferred
from the results given in [6] or [11], after transforming the wave equations into
symmetric hyperbolic systems.

The initial data chosen in the construction of the transformations and the
equation for the conformal factor imply first, that on S

naa'nbh'Vaa,Vw Θ = Vaa>Vaa' Θ = 4{Λ- A),

hence

where n = naa'eaa, is a unit normal of S, and then that

ί — (£μaa'> Γaa>bc, Φabcdi Φaba'b''>Q Ajα'? S )

is related to t on S by

Cμaa' = eμaa"> ^aa'bc = Γaa'bc = J Φabcd = Ψabcdi

Φaba'b' = Φaba'b ~ i^aa'^bb' ~ SabSaΎ)(Λ ~ A),

Initial data for the conformal vacuum field equations which are related to each
other in this way will be said to belong to the same "conformal class of initial
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data." Notice that unless A — A on S, the rescaling (iii) necessarily implies a
transformation of the initial data for (3.1)—(3.8), respectively (3.11)—(3.15). Of course,
in the above construction of xμ, Θ, fb more general initial conditions could have
been given. This would have led to a more complicated relation between the initial
data implied by t and t on 5, but these initial data would still belong to the same
conformal class. The particular construction above shows that after a new choice
of coordinate and frame gauge source the reduced Eqs. (3.11)—(3.15) can be solved
with unchanged initial data and the solution will still satisfy the constraints. Since
solutions of (3.11)—(3.15) are uniquely determined by the initial data on S, the
situation described above and the proposition allow one to conclude:

Suppose t is a solution of (3.11)-(3.15) with gauge sources Fμ, Fab, A and initial data
ί0 on S, such that t satisfies (3.1)—(3.8) on S and suppose tis a solution of (3.11)—(3.15)
(with Aon all quantities) with some gauge sources Fμ, Fab, A and initial data t0 on S, such
that t0 and ΐ0 belong to the same conformal class. Then t and tare in fact solutions of
the conformal vacuum field equations (3.1)—(3.8) which can be transformed into each
other by transformations of the types listed above. In particular the solutions Ω~ 2 gμv

and ύ~2gμv of Einstein's vacuum field equations, obtained from t, respectively ΐ, are
isometric.

Hence, provided the data are conformally related, solutions of (3.11)—(3.15) for
different gauge sources belong to the same conformal class, while in the case of the
vacuum field equations the isometry class of a solution of the reduced Eqs. (3.11)—
(3.13) (with Ω = 1, φabaΊ)' Ξ O , / 1 = 0) is independent of the choice of source functions
Fμ F u

1 9 ι ab'

Proof of the Proposition. By the assumption made above on VβΛ'5 one has
Vaa>cw = Vaa>cw in formal calculations. Subtracting from (3.11) suitably the
complex conjugates of these equations, one gets a linear homogeneous symmetric
hyperbolic system for eμ

aa, — eμ

aa, with the same principal symbol as
that of Eq. (3.11). Since the determinant of the symbol is given by
i gμvξμξv(ξλ(4o' + έoo' + eίv + *ίi ')) 2 and eμ

aa, = eμ

aa, on the initial surface, the
uniqueness property of the equations implies that eμ

aa> = eμ

aa> in the domain of
dependence of the initial surface.

Addition of the first and the last equation in (3.11), respectively in (3.12), yields
the result that Fμ, Fab is indeed given by (2.6), respectively (2.11). Defining now with
e"flα'» Γaa'bc ^ obtained from t the tensors taa.

bb'cc.9 rabcc.M by (2.3), (2.7), one finds that
(3.11), (3.12) are just the equations

Jxh' +hh' (Λ ^ab ^ab r\

fhh'ιthh' _ Λ nab nab _() (3.16)
C 0 1 - r Γ 0 Ί ' — U > P 01 ~P O'l' — U>

w h e r e pabdd>cc> = rabdd>cc> — Rabdd>Cc'> Pabdc — Pabdfc > Pabd'c — Pab/d' c' a n ( 3 Rabdd'cc' —

- Ω φabcdεd>c> - ΦabdΆc + Λ εd.c, (εad εbc + εac εbd). One has to show that the

following quantities, which are calculated from r, will be called "zero-quantities,"
and denoted collectively by z, vanish in the domain of dependence of the initial



538 H. Friedrich

surface:

ted >tc'dr>Pabdc9Pabd'c'9 (3-17)

Kbcd''- = Vfd' Ψabcf>Labcd' = V r « φbcd'f ~ φabcfΣί' + 2cβ ( c Vb)d> Λ,

Ra'b'c'd = Vfa'Φfdb'C - Φa'b'c'f'Σ{' + 2ca.{c,Vb>)dΛ,

Δaba'b' = Φaba'b' ~ Φaba'b'Λ ^ = Ω - Ω,Abb,\ = Σw - Σw,

Kb' = Vbb'Ω - Σw, qWcc.: - VWΣCC, + Ωφbcb,c, - sεbcεb.c.,

P ^ : = V ^ 5 + φ b c b V X c c ' + 2yl i ;^ + ί2V b bΛ 4 s : = s - s . (3.18)

The argument is essentially the same as that used in [1]. For those linear
combinations of zero-quantities, which do not vanish already because of
(3.11)—(3.15), a linear homogeneous symmetric hyperbolic system of "subsidiary
equations" can be derived, which has the uniqueness property in the domain of
dependence of the initial surface. This will imply that the zero-quantities vanish
there bacause they vanish on the initial surface. Since Eqs. (3.13)—(315) are up to
the A -terms essentially those discussed in [1], the derivation of the subsidiary
system for the corresponding zero quantities (3.18) is similar to that given in [1] and
will not be repeated here. Therefore only the subsidiary system required for the
quantities (3.17) will be derived.

From (3.16) and the symmetries of the torsion and curvature tensors one finds
that the quantities (3.17) can be expressed in terms of ί{%, ί r ά ' - ί ϊ o * ίu\
Paboo> Pabii* a n < ^ Pabo'v ~~ Paboi* an(^ ^ a t it is sufficient to derive a subsidiary
system for these quantities.

The Bianchi-identity

ΣVjte
ki=Σ(rkijι + tJitm

k

ι)i (3.19)
(JH) (jli)

where the sum over (jkΐ) denotes sum over cyclic permutation on j , k, I holds for
any metric and metric connection. Writing the curvature tensor rk

iβ in the form

£ b'\P bee'dd' ~J" R bee'dd') + & b\P b'cedd' + R b'cc'dd'h

and observing

Z J \εa'b'Rabcc'dd' + εabRa'b'cc'dd') = εdbεc'd'^aca'b' Ί~ εb'd'εcd^aba'c'^
(bb'cc'dd')

one finds that the right member of (3.19) is in fact homogeneous in the zero
quantities. On the other hand one has

1 oc'e'de
3 6 fc Y y t hh' \ _ y / Mi' _ y f'Jih1

Z*, yee'ιcc' dd' I ~ v d'ιcf v c ιf'd'>
{ee'cc'dd') )

which by the preceding remark is equal to an expression ίψc{z\ homogeneous
in z. Using (3.16), (3.20), one obtains from (3.19) the equations

(Voo' + v i r ) ί ϊ ϊ + Λi'(ίoV - ίϊΐ) - Λo'Mo + tψo) = - ΐΌ'Ί(4



Hyperbolicity of Einstein's Equations 539

(Voo' + v i r)(ίΐV -1%) + rί0,(th

0% - t\h

v) + rov(t\\ - O = fho*όω - ίΐ'i(4

where the notation Γaa. = Vαβ' — eaa, has been used. This is the desired subsidiary
equation for the torsion tensor components. The other subsidiary equations are
derived from the second Bianchi-identity

(jkl) J l (jkl)

The right side of this equation is obviously homogeneous in the zero quantities.
After suitable contractions the left side of (3.21) takes the form

XpCe' del V"1 /Γ7 _i_ V7 Z? Ί
3 f c b 1 Zu \ y ee'Habcc'dd' ~T~ * ee>IKabcc'dd')

\(ee'cc'dd')

which is equal to

¥fd'Pabfc — Vc Pabfd + Ωhabcd> — L c a h d ' — κd.φahcd.

Whence (3.21) implies an equation of the form

vjf τ~7 f ^ / \

* d'Pabfc * c Pabf'd' ~ Pabcd'\Z) >

where the right-hand side vanishes if z = 0. From this and (3.16) ensues the system of
subsidiary equations:

(VθO' + V i r ) p α f e l l + Γlv(pah0,0, — pabll) — Γ10(pablQ + pabvo) = — PablO'(Z\

ί^OO' + V i r ) ( p f l / , 0 Ί ' ~~ PabOl) ~~ Γ01'(pab0'0' — Pabχχ) ~ ^lO'iPabl'ί' ~ PabOo)

(V 0 0' + Vll')PabOO + ^Όo'iPabί'V ~ PabOo) ~ ^Ol'iPabOl + PabOΊ') ^ Pabθl'(z)>

which together with the equations for ίj$' and for the zero-quantities (3.18)
constitutes the subsidiary system.

One may try to use (2.20)-(2.23) to find a similar reduction procedure for
Einstein's field equations Rμv — \gμvR = κTμv with matter fields, without using
a third order formalism. The field equations may be written

Λ = -24/cT.

Using Eqs. (2.21), (2.23) with t% = 0, rabc,d, = - φabc,d>, one sees that the
"geometric part" of the field equations implies a symmetric hyperbolic system for
eμ

aa,, Γaa<bc. If from these equations and the way the initial data are given,
eμ

aa, = eμ

aa> would follow, then the validity of A = — 24KT could be inferred from
the initial data, the Bianchi identities and the conservation law for the energy-
momentum tensor. Unfortunately, a way to show that the reality conditions for
the frame coefficients will be satisfied does not seem to exist. However, the
hyperbolicity of the field equations in a general coordinate system can be shown
easily, using the representation of the equations as a second order system for the
metric coefficients and the concept of the source functions.
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In an arbitrary coordinate system xμ the Ricci tensor can be written

R — Lπaβ ^μv I I/7 V Γα4- Ir7 V Γ α + f ί Π 22Ϊ
Λ μ v ~~ 2ί/ ^ α ^ βTiyμaVv1 ' 2 ί / v α v μ i ' π μ v V"3-^/

where Γ α : = gμxΓμv

a, VμΓ
a is the same expression as that obtained for the covariant

derivative of a vector field which with respect to the given coordinate system has
components Γa, and Hμv is a known function of the metric coefficients and their
first order derivatives. For the coordinate gauge source function one finds

2Fμ{xv) = Vλ W - - Γμ{xv). (3.23)

Considering again this as a given function which just characterizes the gauge, the
disturbing second order terms hidden in VvΓ

a, which destroy the "nice" form of
the principal part of (3.22), are removed.

Let Fμ be arbitrary real-valued functions defined on [R4. By the argument in
Sect. 2 we may assume that there exists near some initial surface a coordinate
system for which Fμ is the gauge source function. In this coordinate system the
geometric part of the field equations will take the form

- ^9aβ-^β - 9,JJΛ - gvaVμF* + Hμv(g, dg) = κ(Tμv -\Tgμv\ (3.24)

Assume that gμv is obtained by solving for suitable initial conditions (3.24) together
with the equations for the matter fields. Let Rμv, Γ

μ be the Ricci tensor and the
contracted connection coefficients calculated from gμv. Then (3.22), (3.24) give

Rμ, - *(Tμ v - iTgμx) = i{gμαVv(Γ* + 2F") + £vαVμ(Γ* + 2Fα)}.

Using this equality to rewrite the equation

obtained from the Bianchi identity and the conservation law for the energy
momentum tensor, one finds

VVμ(Γα + 2F«) = Ra

β(Γβ + 2Fβ).

This may be read as a linear homogeneous wave equation for Γa + 2Fα. Since this
type of equation has the uniqueness property one concludes:

Proposition. If gμv is a solution of (3.24) together with the matter equations such
that on the initial surface one has Γa + 2F« = 0, Vv(Γα + 2Fa) = 0, then gμv is in fact
a solution of Einstein's field equations, since in (3.24) Fa may be replaced by —j>Γa.

Remark . Again the detailed discussion of the initial situation, which depends on
the type of problem, has been avoided. In a given initial value problem, one will
try to arrange the coordinate expression of the initial data to obtain Γ* + 2Fa = 0
and to infer the condition Vv(Γα + 2Fα) = 0 from the fact that the data satisfy the
constraint equations and gμv solves (3.24).

Assume that for Eq. (3.24) together with the equations for the matter fields a
uniqueness theorem holds. Solving Eq. (2.16) with a new source function Fμ for
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a new coordinate system xμ and expressing Eq. (3.24) with respect to these
coordinate, one concludes from the uniqueness property that the isometry class
of the solution of (3.24) does not depend on the gauge source function.

In forming the reduced propagation equations for the gauge field Eqs. (2.27)
one may follow the pattern laid out in the case of the conformal vacuum field
equations. One finds that the following system must be satisfied

2VOo'Λu' - V 0 1 Λ 1 0 ' - V 1 0 Λ r -B= -

+ <Pll -Φθ'θ">

o' + V i r μ 0 r - Vor^oo' - V 0 1 Λ i r = ϊ&Af

v,Afl.-] -

2V1VAOO, -

+ <Poi + Φo'r> (3.25)

= -lAf

0.9φίf]9

, Φo/] 0-26)

Here B is a given su (n)-valued function on the space time and the functions Aaa,
for the different values of the indices ad are thought of as being independent. Then
(3.25), (3.26) is a symmetric hyperbolic system for Aaa>, φab = φiab).

Proposition. Let data A°aal = Ά°aar, φ°ab = φ°(αb)> taking values in su(n), be given
on a suitable initial surface, and suppose that Aaa,, φab is a solution of (3.25), (3.26)
for these data, which is given in the domain of dependence of the initial surface.
Then Aaa.9 Faa.w = εa>b'φab + ^abΦa'b' satisfy Eq. (2.25) everywhere if they satisfy (2.25)
on the initial surface.

Remark. Again one finds, following the discussion leading to Eq. (2.32) and using
the uniqueness property of the system (3.25), (3.26), that the solutions of the reduced
equations for the same data but with different source fields are related by gauge
transformations.

The proof of the proposition has the same structure as that in the case of the
conformal vacuum field equations. Taking the spinor complex conjugates of
Eqs. (3.25) and substracting these suitably from Eqs. (3.25), one obtains a linear
homogeneous symmetric hyperbolic system for Aaa, — Aaa, which allows one to
conclude that Aaa = Aaa everywhere, since it holds initially. Adding the first and
the last of Eqs. (3.25) one finds that B in fact satisfies Eq. (2.30). Calculating now
from the solution Aaa,φab the quantities laa>w, hc,c defined by (2.26), one finds that
(3.25), (3.26) are indeed the equations
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~~ ho ~ h'O' — ®>
-Λo-i=0,

' l l ~ 'o'O' = ^5

/OI + Ό Ί ' = 0, (3.27)

From this one concludes that Eqs. (2.25) will be satisfied, if it can be shown that
^1'ij Όo> hι> Ό Ί ' ~ ' O I > denoted collectively by z, vanish. Only assuming that
Aaa, = Aaa>, φab — ψ(ab)> a n d both fields take values in su(n), one finds by direct
calculation that laa>bb>, hc>c must satisfy the identities

Σ (Vaa,,lWcc, - lAaa,,/„»,„,])) = ̂  - hVe,

(aa'bb'cc) )

WX a - LΛaa\ KΛ) = [φcΛ /c /]. (3.28)

Expressing the left-hand side of the first identity in terms of lab9 \a>h>, one finds
V\'L - Vch\v = W V U - lAe

h; lwb] + Xfit c - Kc) (3.29)

One deduces from (3.28), (3.29) equations of the form

with smooth functions 35, lc>d which satisfy Λ(0) = 0, ίc,d(0) = 0. Since, however,
z = 0 initially, these equations imply that z = 0 everywhere.
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