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Abstract. The classical O(3) non-linear o-model is generalised to a theory of
fields defined on a compact Riemann surface M with values in a compact Kihler
manifold V. The dimension of the space of self-dual fields from M to the complex
projective space PV is calculated and the classifying space for the inequivalent
quantisations of the theory is also calculated.

1. Introduction

The main reason for studying the classical O(3) non-linear g-model in two
dimensions is its similarities with pure Yang—Mills theory in four dimensions. The
O(3) model [1] is a theory of a smooth three component real field ¢ =(¢)
(a=1,2,3)defined on R, i.e. ¢:R? - R is a smooth map. The action of the theory is

S[g1=14 [ 0,¢:0"pd*>x =75 | 6"0,¢%0,¢"d"x, (1.1)
- R2 - - RZ
where 0*” is the Euclidean metric on R?. The field ¢ is subject to the constraint
P* =P = 1. (1.2)
The action (1.1) is invariant under a conformal change in the metric
Guy =276, (1.3)

for © a smooth real-valued function on R? Taking
Q=2/(1+x% (1.4)
for x = (x,, x,)eR?, and assuming that the field ¢ obeys the boundary condition

P(x)—>d,, as |x[—o0, (1.5)
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where ¢, is a constant, shows that the field defines a smooth map ¢:5% — S2, from
the conformally compactified Euclidean 2-space to the unit 2-sphere in R>. The
maps from S? to S? are partitioned into homotopy classes which form a group
7,(S?) ~ Z; this isomorphism is given by the degree of the map. Associated with each
homotopy class of maps is a topological charge

1
Q@k@;i%@@@X%@f% (1.6)
R
and it follows from the inequality

[ (0. + epp x 0°¢) (0% £ £¢ x 0. P)d*x 20 1.7

R

that
S > 4n|0]. (1.8)

The equality in (1.8) will hold if and only if
0up £ e x 0°¢ =0, (1.9)

and such a field is said to be (anti-) self-dual. In discussing the solutions of (1.9) it is
important to remember that the 2-sphere S? has a unique complex structure. This
arises when it is regarded as the complex projective line P*. Under this identification
the (anti-) self-dual fields correspond to (anti-) holomorphic maps from P! to P!,

In this paper a generalisation of the O(3) model is considered in which the field ¢
is a smooth map from a compact Riemann surface M into a compact Kihler
manifold V. Using techniques from the theory of harmonic maps it is shown in Sect. 2
that the action of this theory is bounded below by a topological charge and that the
fields which realise this absolute lower bound are the (anti-) holomorphic maps from
M to V. For suitable choices of M and V' this model coincides with the classical O(3),
CP" and complex Grassmannian models (see, for example, [1, 2, 3 and 4]). In Sect. 3
the case when V' = PV (the N dimensional complex projective space) is discussed. In
particular, the dimension of the space of self-dual fields from M to P of degree n is
calculated in terms of N, n and the genus g of M. This result gives, for example, the
number of independent instanton solutions (of a given degree) of the O(3) or CPY
model. The existence of holomorphic maps from a compact Riemann surface to the
complex Grassmannian G,(C") is also briefly discussed. The topology of the
configuration space 2 of maps from M to V is considered in Sect. 4. The homotopy
groups of the configuration space are calculated in terms of the homotopy groups of
V and the genus g of M. The first homotopy group of 2 is related to the existence of
inequivalent quantisations of the theory and the classifying space for these
quantisations is calculated. Finally, the relationship between the topology of the
space of self-dual fields and the topology of the space of all fields is considered. It is
shown, for example, that the space of self-dual fields, of degree greater than one, in
the O(3) model is not simply connected.
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2. Generalised Non-Linear ¢-Model

Let M be a compact Riemann surface with metric g and V' a compact simply
connected n-dimensional Riemannian manifold with metric 4. Given the Rieman-
nian metric ge I(TM® TM)*, we write {u,v) for g.(u,v), xeM, u,ve T.M, ||u|?
=<{u,v),and similarly for he T(TV ® TV)*. If ¢:M — V is a smooth map, then the
differential of ¢ at xeM is a linear map

dp(x): T M > Ty, V, 2.1)

and hence dp(x)eTiM ® T, V. The norm [ d(x)| is defined using the metric
induced on T¥M® T,V from the Riemannian structures on M and V. The
generalisation of the O(3) model is a theory of smooth fields ¢:M — V with the

action given by the “energy” of the field. The Lagrangian density £ (¢): M — R=’is
defined (see [5]) to be

L(@)x)=3ldp(x)]?, 2.2
and the action is
Sle]= %]& l[dep(x) 11 *dulg), (2.3)
where du(g) is the canonical volume measure associated with g. In local coordinates
0¢* 0¢®
=1 P T
L@ =10"5 55 has 24)

and the correspondence between (2.3) and (1.1) is clearly seen.

An important feature of the O(3) model is that the range S? has a complex
structure, S? ~P!. To incorporate this aspect of the O(3) model into this
generalisation it will be assumed that V' has a complex structure.

An (almost) complex structure on the manifold V is a section J, € I End TV such
that J2 = — id, similarly J,,e I" End TM such that J4 = — id is an (almost) complex
structure on M (see [6] for further details). It will be assumed here that these almost
complex structures are integrable and hence define complex structures. A map
¢: M — V is holomorphicifits differential d¢) commutes with the complex structures
on M and V, ie.

do-Jy=J,de. (2.5)
A Hermitian metric on ¥ is a Riemannian metric h such that
<u,vy =<LJyu, Jyv) (2.6)
for all u, ve TV, peV. The Kihler from wel (A2T*V) is defined by
ou,v)=u,Jyv). 2.7)

If w is closed then V is a Kdhler manifold. The complexification of TM is
T°M =TM®,C, and J,, may be extended by complex linearity to JS eI’
End T°M. Since (J§,)? = —id, there is a direct sum decomposition T°M =
TY°M ® T M, where T*°M and T°* M are the eigenbundles corresponding to
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the eigenvalues +i and —i of J§,, respectively. The differential of any map
¢: M -V can be extended by complex linearity to d°¢: T*M — TV, with the
canonical decomposition d“¢ = d¢ + d¢, where

a¢: THOM — TV,
3¢: THOM - T,

(2.8)

are defined to be the composition of d“ followed by projection in T°V. A map
¢:M -V is (anti-) holomorphic if and only if (d¢ = 0)d¢ = 0.

Using the derivatives given in (2.8) we can define the (1,0) and (0, 1) Lagrangian
densities by

LEOh)(x) = | 0d(x) ]2,

(2.9)
ZODV@)x)=10p(x)]2,
with the corresponding actions
SHOTe] 2154” 0 (x)[1*du(g),
(2.10)
SOV[4] =§4” 0 (x)[1*du(g)
The natural decomposition of the Lagrangian density
Z(p) =L+ 2V (¢) (2.11)
induces the decomposition
S[¢]=S"V[¢] + 5V [4] (2.12)

of the action.
To obtain a lower bound on the action we introduce the topological charge
Q[ ¢] of the field ¢:M — V given by

0[¢] :%Ajﬂ’*“” (2.13)

where w is the Kéhler form of V. Then a direct calculation (see [7]) shows that

gltb*w = Afl LI I12 — 110¢(x) [21dp(g) = STO[¢] — SOV[].  (2.14)
Thus the ihequality
SHO[9] + SOV [$] 2 |SMO[9] SOV [] (215)
is the equivalent to the inequality

S=2|0|, (2.16)

and we see that the action is bounded below by a multiple of the absolute value of the
topological charge, just as in the O(3) model. In general, the topological charge
defined by (2.13) is not invariant under continuous deformations of the field ¢, and
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thus does not define an absolute lower bound on the action in each homotopy class
of maps from M to V. This defect can be remedied by requiring V to be a Kihler
manifold. Let ¢,;, ¢,:M —V be homotopic (denoted by ¢, ~ ¢,) and let
@:M x [0,1]— V be a homotopy of ¢, and ¢,. Then

[to—[pto= [ O*0— [ P*o= [ @*o= [ &Xdo). (2.17)
M M

M x {0} M x {1} (M x [0,1]) M x [0,1]
and thus
0[¢1-0l¢, 1= [ @*dw). (2.18)
M x [0,1]

If V is a Kdhler manifold, then dw = 0 and the topological charge Q defined by (2.13)
is a homotopy invariant. Henceforth it will be assumed that V' has a Kaihler
structure. Note that the topological lower bound on the action of the theory is
exactly analogous to the topological lower bound on the Yang—Mills action which
leads to instanton phenomena.

The space of maps ¢:M — V (which will be assumed to be basepoint preserving)
are partitioned into homotopy classes, the set of which is denoted by [M;V],.. The
manifold V is simply connected, and thus by the Hopf classification theorem [8],

[M; V1, ~ HX(M;my(V)) ~ m,(V). (2.19)

Thus non-trivial topological classes of maps will exist for those spaces V which have
a non-trivial second homotopy group. In each of these homotopy classes the action
of the model will be bounded below by twice the absolute value of the topological
charge Q. Those fields which realise this absolute lower bound are called instanton
solutions of the model. It is clear from (2.15) that an instanton field satisfies either

3p=0 or d¢=0, (2.20)

and hence is either holomorphic (self-dual) or anti-holomorphic (anti-self-dual). For
certain choices of ¥ such maps exist. The case when V = PV, the N-dimensional
complex projective space, is discussed in the next section.

3. The Space of Self-Dual Maps from M to PV

The complex projective space PN with the Fubini-Study metric is a compact simply
connected Kihler manifold with 7,(P") ~ Z, for all N = 1. Thus, by (2.19) there exist
non-trivial topological classes of maps from any compact Riemann surface M to PV,
For V=PV it is possible to write the topological charge (2.13) in terms of deg ¢, the
degree of the map ¢:M — PV and Q is given by [9]

Ql¢]=2mdeg¢. (3.1)

There is a bijective correspondence between deg ¢ and the elements of 7, (PY)~ Z,
and thus within each homotopy class of maps of a given degree the action is
minimised by the (anti-) holomorphic maps. If we denote the space of all maps from
M to V by Map(M; V) and the space of all holomorphic maps by Hol(M; V), then
Map (M;P"), and Hol(M;P¥), denote the component of Map(M;P") and
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Hol (M ; P") of degree n, respectively. In this section we calculate the dimension of
Hol (M ; P"), which is the number of independent self-dual fields from M to P of
degree n.

To calculate the dimension of Hol(M;P¥), it is necessary to introduce a
correspondence between holomorphic maps from M to PV and holomorphic line
bundles over M. Before explaining this correspondence we will first recall some
notions from algebraic geometry (see [10]).

A divisor D on a compact Riemann surface is a finite sum D = Z'n;x; of points
x;€M with multiplicities n;. The set of divisors on M forms an additive group,
denoted Div M. If n; 2 0, for all i, then D is called effective. In terms of sheaves, a
divisor D on M is a global section of the quotient sheaf 9t*/0*, where M* denotes
the multiplicative sheaf of non-zero meromorphic functions on M and O* the
subsheaf of non-zero holomorphic functions on M. Thus we have the identification

Div M = HO(M; I*/0%). (3.3)

Let n: L— M be a holomorphic line bundle over M. For an open cover {U,} of M
there are trivialisations

Ya: Ly~ U, xC
of Lly =7~ (U,) and transition functions g,,:U,nU;— C* for L given by

9upX) = Wy thy V)] €C*

The transition functions g,,; are holomorphic, non-vanishing and satisfy the
standard cocycle condition. Given a holomorphic line bundle L— M with trivialis-
ation {i,} and transition functions {g,,}, then for any collection of non-zero
holomorphic functions on U,, f,e0*(U ), we can define a new trivialisation over

{U.} by
Vo= faVe

and new transition functions

oo =jf—;-ga,;. (3.4)

As any trivialisation of L over {U,} can be obtained in this way, the collections {g,,}
and {g,,} of transition functions define the same holomorphic line bundle if and only
if there exist functions f,e 0*(U ,) satistying (3.4). In terms of sheaves the transition
functions {g,,€0*(U,nU,)} represent a Cech cocycle and two cocycles {g,;} and
{g.p) define the same line bundle if and only if their difference {g,;'g,; '} is a Cech
coboundary. Thus, the set of all line bundles L over M is H*(M; ©*). The set of all
line bundles over M has a group structure with multiplication given by tensor
product and inverses given by dual bundles. This group structure coincides with the
group structure of H'(M; ©*) and is called the Picard group of M, denoted by Pic M.
The exact exponential sequence of sheaves

0-7-02%0%-0 (3.5)
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induces in cohomology the boundary map

HY(M; 0% HA(M; 7). (3.6)

For a line bundle LePic M = H*(M; 0*) the first Chern class ¢, (L) is defined to be
S8(L)e HA(M; Z). The degree deg L of the line bundle L is defined to be c¢,(L). The set
of all holomorphic line bundles LePic M of degree n is denoted by Pic"M.

Let L— M be a holomorphic line bundle with trivialisation ,: L|,,—» U, x C
over {U,} and with transition functions {g,,} relative to {i,}. The trivialisations v,
induce isomorphisms

Y 0L)(U,)-0U,),
and from the correspondence
seO(L)(U)~ {5, = y*(s)eOUNU,)}

it is clear that a holomorphic section s of L over U = M is equivalent to a collection
of functions s,e O(U N U,) satisfying

Sa = Gap'Sp
in UnU,nU,. Similarly, a meromorphic section s of L over U is given by a
collection of meromorphic functions s,eMM(UnU,) which satisfy s,=g,4s; in

UnU,nU,. If s is a global meromorphic section of L then the order of s is
independent of {y,} and we may define the divisor (s) of s to be

(s) =X ord, (s)x.

The section s is holomorphic if and only if (s) is effective and the space of
holomorphic sections of L over M is I'(L) = H°(M;O(L)).

We now describe the correspondence between holomorphic maps from M to PV
and holomorphic line bundles L over M. Associated to any subspace E of the vector
space I'(L) is the linear system | E| of effective divisors corresponding to the sections
in E, ie.

|E|= {(5)}sg < DivM.

As M is compact (s) =(s') only if s=As', for AeC*, thus |E| is parametrised by
P(E), the projectivisation of E. The linear system | E| is said to have no base points
if not all the sections se E vanish at any xe M. In this case the set of sections se E
which vanish at xe M define a hyperplane H, < E. Equivalently, the set of divisors
De|E| which contain x forms a hyperplane H, < P(E). Thus, one can define a
map from M to the dual projective space P(E)* (P(E)* is the set of hyperplanes in
P(E)) as

Se: M - P(E)*

by sending a point xe M to the hyperplane H eP(E)*.
This map can be described more explicitly by letting E< I'(L) be N +1
dimensional with a basis s,,...,sy. For any trivialisation {y,}of L over U = M let
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Sie=WX(s)eO(U), then the point [s, ,(x),...,Sy.(x)]eP is independent of the
trivialisation {y,} and can be written as [sy(x),...,sy(x)]. The map fr:M—
P(E)* = PN is then defined by

Je(x) = [50(x),..., sn(x)]

for xeM, and f; is seen to be holomorphic. Thus a subspace E of the space of
holomorphic sections of a line bundle L— M determines a holomorphic map to PV,
Conversely, let fz: M —P" be a holomorphic map and let H be the hyperplane
bundle on PV, then L = f* H and any section seE is the pull-back of a section of H
on PV, ie.,

E=f§H°(PY;0(H)) = H°M; 0(L))

Thus, the map f;: M — PV determines both the line bundle L and the subspace
E < I'(L). This results in the following:

Correspondence Holomorphic maps f: M —P", modulo projective auto-
morphisms <> holomorphic line hundles L—» M with E < I'(L) such that |E|
has no base points.

Note that the maps f are only determined up to automorphisms of P¥ because a
different choice of basis s,, ..., sy for E gives different homogeneous coordinates on
PV, Also note that maps f: M —P¥ of degree n correspond to E < I'(L) for line
bundles L of degree n.

To obtain the dimension of Hol (M; PY),, we need the following result:

Lemma 3.1. Let L be a holomorphic line bundle of degree n over a compact Riemann
surface of genus g. Then for n=2g the complete linear system |I'(L)| has no base
DOInLS.

Proof. For any xe M, we have the short exact sequence of sheaves

0->O(L—x)->0O(L)—>L,—0 (3.7

which gives rise in cohomology to the sequence

.. HY(M; O(L)) S HO(M; L) > H (M; O(L — X)) ..., (3.8)

where r, is evaluation at x. Let K,, be the canonical bundle of M and L, any
line bundle over M. Then it follows from the Kodaira vanishing theorem that if
deg L> deg K, then H'(M; (L)) = 0. On a Riemann surface of genus g the degree
of K is given by the Riemann—Hurwitz formula to be deg K, = 2g — 2. Applying
this to the line bundle L— x we obtain that if deg(L—x)=degL—1>2g—2
then H'(M; O(L — x)) = 0. Thus, for deg L = 2g the exact sequence (3.8) reduces to

...>H(M; O(L))5 L, —0.

Hence, the evaluation map r, is surjective and not all the section se I'(L) can vanish
at x.

We now calculate the dimension of Hol(M; P¥),.
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Theorem 3.2. Let M be a compact Riemann surface of genus g, then for n > 2g the
dimension of Hol(M; P¥), is given by

dim Hol(M; PY), = (N + )n — N(g — 1).

Remarks. (i) If L is a line bundle of negative degree over M then H(M; (L)) = 0.
Thus, by the correspondence introduced above there are no holomorphic maps from
M to P¥ of negative degree.

(i) If Lisaline bundle of degree n over a compact Riemann surface M of genus g,
then for n = 2g — 1 the dimension of I'(L) = H°(M; (L)) is given by the Riemann-
Roch theorem to be n — g + 1. Thus, the dimension of | I'(L)| = dim P(I'(L)) =n —g.

Proof. Consider the short exact sequence (which follows from Lemma 3.1)

0->K,»>I'(L)3L,—0,

where K , = kerr, and thus dim K, = n — g. The point xe M is a base point of | E| if
and only if all the sections se E vanish at x. Thus, if x is a base point, the map

relgr Ec T(L)—> L,

obtaining by restricting r, to E, which takes a section seE to s(x)eC, is zero,
ie. E =kerr,|p < kerr,. Thus, x is a base point of |E| if and only if E = K, and con-
versely, | E| has no base points if any only if E ¢ K, for all xe M. For a given
xeM, K, =kerr, gives a hyperplane in the projective space P(I"(L)) parametrising
I'(L), and thus K,eP(I"(L))*, the dual projective space. For a fixed K, eP(I(L))*
we have the Grassmannian Gy, (K,) of N + 1 dimensional spaces E in the n — g
dimensional space K,. This Grassmanian is the fibre over K, of the fibre bundle

GN+ 1(K) — 7
pry

P(L))*

where % is the flag manifold consisting of pairs (K, E) with E < K < I'(L) and
dimE =N+ 1, dimK =n — g. The total space % has two canonical projections
priK,E)=KeP(I'(L))* and pr,(K,E)=EeGy,,(I'(L)). By Lemma 3.1, if
deg L = 2g then | I'(L)| has no base points and there is a well defined map f: M —
P(I'(L))* given by the correspondence introduced earlier. Thus we have the diagram

Gy+1(K) Gy+1(K)

pra

f*7F —7—_"‘_’ f—’GN+1(F(L))

| B
—_—
M 7 P(I(L))*
E c K, for some xe M, if and only if E€im pr,° f, thus there is no xe M such that
E c K if and only if E¢im pr,° /. Hence, im pr,° f consists of exactly those E for
which |E| has a base point. The dimension of Gy, (I (L)) is (N+ 1)[n—g+1—
(N+D)]=WN+Dn—g+(N+1)—(N+1)*> and dim(impr,cf)<dim f*7 =
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14 (N + 1)(n —g) — (N + 1)%. Thus, dim (im pro f) < dim Gy, ((I"(L)) if N = 1 and
hence pr,° f is not surjective. Im pr,o f is a closed subvariety in Gy, ,(I"(L)). The
complement Gy, (I"(L))\im pr,°f is open and consists of those E’s with no base
points. The Grassmannian Gy, (I (L)) can be considered as the fibre over
LePic*(M) of the fibre bundle

Gy, (I'(L) Gn+1(M)

7

Pic"(M)

where the total space ¥y, (M) consists of pairs (L,E) E < I'(L), and 4(L,E)=
LePic(M). From the above argument those E’s for which |E| has no base points
from a Zariski open set in ¥y, ,(M) which 1s the complement of a sub-
variety in 9y, (M). Thus the dimension of the space of holomorphic maps from
M to PV, modulo projective automorphism, is equal to dim%y,,(M)=
g+ (N +1)(n—g)— N(N + 1). Finally, the dimension of Hol(M; PV), is equal to
dim¥%, . (M) plus the dimension of PGLy,,(C), the group of automorphisms
of P¥. Hence

dim Hol(M; PV), =dim% ., ,(M )+ dim PGLy, ,(C)

=g+(N+1)(n—9g)— NN+ 1)+(N+1)*—1
=(N+1)n—N(g—1).

An application of this result is to calculate the number of independent self-dual
solutions, of degree n, of the classical CPY model. This corresponds to calculating the
dimension of Hol (S%; PY),. Recall from the remark made earlier that there are no
holomorphic maps from S? to PV of negative degree and therefore there are no self-
dual fields of negative topological charge. As S? has g = 0 we have for all n = 0 that

dim Hol (8%, PY), =(N + )n + N. (3.9)
The classical O(3) model corresponds to the CP! model and hence, for all n >0,
dim Hol (% PY), =2n + 1, (3.10)

which agrees with the number of independent parameters in the general, explicitly
known, self-dual solution of degree n.

To conclude this section we note that a theory of maps from M to the complex
Grassmannian Gg(C™) generalises the complex Grassmannian model (see [4]). The
Grassmannian Gg(C™)is a simply connected Kéhler manifold, and thus the self-dual
fields from M to Gg(C™) are given by the holomorphic maps Hol(M; Gg(C™)).
Although the analogoue of Theorem 3.2 for the dimension of Hol (M; G(C™)) is not
known, certain holomorphic maps from M to G (C™) do exist. For example, if M is
holomorphically immersed in PV, then the Gauss map (see [10])

7:M - G,(CVH)

is holomorphic (see [5], for example).
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4. Topology of the Configurations Space

An interesting feature of field theories with non-simply connected configuration
spaces is that they can possess inequivalent quantisations. If 2 is the configuration
space of the theory in question then the the inequivalent quantisations are classified
by (see [11 and 12])

0 = Hom (r,(2), U(1)). (4.1)

In fact, the arguments leading to this result are not quite complete as they ignore
the possibility of the theory possessing a Wess—Zumino type term. This problem can
be seen most clearly from the canonical viewpoint. Let 2 be the configuration space
of the theory and the cotangent bundle n:T*2 — 2 is the phase space; this carries a
canonical non-degenerate symplectic 2-form (2, defining the natural Hamiltonian
structure. In canonical quantisation we choose a complex line bundle .¥ — 2; the
Hilbert space # of states of the quantised theory is the space of sections of ¥ and the
equations of motion of he theory are implemented as operator equations on #. If
the canonical symplectic structure on T*2 defined by £2,, can be changed by adding
a curvature term pulled-back from 2, then the equations of motion defined by this
new symplectic structure will differ from those defined by €2,,. An example of such a
change in the symplectic structure occurs when one considers the motion of a
charged particle in the field of a magnetic monopole. The quantisation of the
magnetic charge of the monopole is a consequence of the modification in the
symplectic structure. A second important example of such a modification in the
equation of motion of a physical system is the addition of the Wess—Zumino term in
the SU(3) non-linear g-model. It is the presence of this term in the model that is
responsible for the important consequences discovered by Witten [13]. The way in
which the Wess—Zumino term arises in the SU(3) o-model by changing the
symplectic structure has been investigated by Ramadas [14]. If, however, we
consider a theory which has no Wess—Zumino typer term then to eliminate the
possibility of altering the canonical symplectic structure we can require that the
complex line bundle .¥ — 2 must be flat. Then it is well known that the flat complex
line bundles over 2 are classified by Hom (r,(2), U(1)), which gives (4.1). As there are
no Wess—Zumino type terms in the non-linear o-models being considered here the
classification (4.1) is valid.

For a non-linear o-model in 1 + 1 dimensions 2 = (V). Thus, for V = P¥,

6 =Hom(z, U(1)) ~ U(1)

For a non-linear s-model in 2 + 1 dimensions the spatial topology may be
represented by a compact Riemann surface M. The configuration space is 2
= Map, (M; V) and the homotopy groups n,(2) are given by the following theorem
(the space Map, (M; V) is assumed to have the compact-open topology (see [18])).

Theorem 4.1. Let M be a compact Riemann surface of genus g and V a compact
topological space. The homotopy groups of Map(M; V) are given by

nq Map*(M’ V) =~ [nq+ 1([/)]29@ ch+2(V)
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for gz 1.

Proof. Recall that 7, (M) = free group on a;b,a,b,...a,b, subject to the relation
aybyay'by 't lagb,a; thy ' =1. M can be obtained from the wedge product of 2¢g
circles by attaching a cell in dimension two via the map a=a;b,a; 'b;!
.aghga; byt de.

Now

and its suspension

Saen,(V S?)
29
is null-homotopic (Sa ~ 0) because 7, is Abelian. Thus, the suspension of M is
SM:VSZU63:VSZVS3.
29 Sa 29
Suspending this ¢ — 1 times gives
SIM ~ Vv Sty §9t2
29
and the homotopy groups of Map, (M; V) are given by
n,Map,(M; V) ~[SIM; V],
~[STL V@[SV,
>[4 (V) ¥ @y o(V).
We also have the following consequences:
Corollary 4.2.

7*®7, for N=1

nlMap*(M;IPN):{Zzg for N=2'

Proof. This follows from the homotopy groups of P¥ which are obtained from the
exact homotopy sequence of the Hopf fibration
U(1)— S2N+1 L pN,
Corollary 4.3. For m>k +2,
7, Map,(M; G, (C™) ~ 7.
Proof. This follows from the homotopy result (see Appendix)
T (GC™) ~m,_(U(k)) for gq<2(m—k).
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Thus, the classifying space for inequivalent quantisations for V=PV is
@z{Hom(ZZ"@Z, U(l)), for N=1
Hom (7%, U(1)), for N22
and for V = G,(C™) is
® =Hom(Z*, U(1)) for m>k+ 1.

Note that for M = S? (i.e., g = 0) both the complex Grassmannian model and the
CPM(N = 2) model have a unique quantisation. Only the O(3) model has a non-
trivial @ for g =0.

To conclude, we briefly consider the relationship between the topology of the
space of self-dual fields Hol (M; V) and the topology of the space of all fields
Map,(M; V). For M = S* and V = P this problem has been solved by a theorem of
Segal’s [15]. This theorem states that the inclusion Hol, (S*; PY),  Map, (S*;PY),
is a homotopy equivalence up to dimension n(2N — 1). For example, when N = 1,

n,Hol, (8% 8%), ~ n, Map,(S% S?), ~ 7, ,(S?)
for ¢ <n. For g =1, we obtain
7, Hol (S2; %), =~ 75(S?) ~ 7

for n> 1, and hence the space of self-dual fields of degree greater than 1 in the O(3)
model is not simply connected.

Appendix

We prove here the formula for the stable homotopy of G,(C™) used in Corollary 4.3,
namely

T (GUC™) =7, (U(k)). (A1)
for g <2(m—k).

First recall that as a homogeneous space

U
GUCM = ()

(k) x U(m— k)’ (A2)

We know that U(m+ 1)/U(m) = S?™*! and from the homotopy exact sequence of
the fibration

U(m)—U(m+1)

S2m+1

we see that the inclusion U(m)g U(m+ 1) is a homotopy equivalence up to
dimension 2m, i.e., 7 (U(m)) ~ n,(U(m + 1)), for g < 2m. Applying this result to the
inclusion U(m — k) g U(m) gives

n,(U(m — k)) ~ 7, (U (m)), (A3)
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for ¢ < 2(m — k). The homotopy exact sequence of the fibration

Um—k)- U(m)

U(m)/U(m — k)
together with (A3) result in
n, (U(m)/U(m —k)) =0, (A4)

for g <2(m— k). Finally, from the expression (A2) for G,(C™) as a homogeneous
space it is clear that we have a fibration

U(k)— U(m)/U(m — k)

G(C™)

and the homotopy exact sequence of this together with (A4) results in the desired
formula (A1).
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