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Abstract. We prove that discrete Schrodinger operators on Z¢ with a random-
potential have almost-surely only pure point spectrum and exponentially
decaying eigenfunctions for large disorder or large energy. This is the first proof
of localization for multi-dimensional Anderson models.

Introduction

Disordered systems are presently widely studied from the mathematical point of
view. One of the challenging questions concerns the Anderson localization theory,
which in mathematical terms amounts to studying the nature of the spectrum of
random self-adjoint operators, such as a discrete Schrodinger equation with a
random potential, which is among condensed matter physicists the most popular
model for describing the electron propagation in a disordered system. A brief
survey of these problems can be found in ref. [12], whereas [11] presents a very
large bibliography on them.

In this paper we consider the multi-dimensional discrete Schrédinger operator
with a random potential given for YeR” d > 1, by

H'P)x) =~ Y PO +Vx)PX),
ly—xl=1
where V= {V(x)} ¢ s a random potential chosen with a probability distribution u
in 2 = R, For all potentials, H is a self-adjoint operator on [*(Z%) and admits as a
core the set of those ¥ with a finite support.

For d =1, it is known that exponential localization occurs even for arbitrarily
weak disorder. Several works have dealt with these one-dimensional problems;
for the simplest proof of localization for one and quasi one-dimensional systems,
and for a set of older references, we refer to a companion paper [3] which uses
the same techniques as the present paper.
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For d > 1, localization is expected to occur for all energies at sufficiently strong
disorder and for any disorder at sufficiently high energies (if they are in the
spectrum!). In the case d =2 the scaling theory predicts exponential localization
for arbitrarily small disorder.

The only rigorous results for multi-dimensional systems are the following:

i) the spectrum of H is exactly known for a large class of random potentials
[9] (see also [7])

i) The exponential asymptotic decay of the Green’s function for a.e. value of the
energy is proven by Frohlich and Spencer in ref. [4] (see also [5]) in the case of
large disorder or at large energy. The almost-sure absence of diffusion is also
proven there. We will use this result on the Green’s function in the present paper.
iii) absence of an absolutely continuous component in the spectrum of H for
almost-every potential [10].

In the present paper we prove that for d = 1, almost-surely, H has only pure
point spectrum of multiplicity one and exponentially decaying eigenfunctions for
all energies at large disorder and at large energy for any disorder in a large class
of discrete Schrodinger equations with a random potential. We use a recent very
clarifying idea of Kotani [8] to obtain the first proof of Anderson localization for
multi-dimensional disordered systems. The approach of the present paper is
basically the following: we consider a situation in which roughly speaking the
Green’s function is exponentially decaying with distance for a.e. energy E in some
interval and a.e. potential. This is the type of results obtained in ref. [4] on the
Green’s functions. From this we deduce that for a.e. energy and potential, the
polynomially bounded solutions of the equation H W= E ¥ are in fact exponentially
decaying in space; it is essentially here the same idea as the one used in [10] to
prove that the spectrum of H has almost-surely no absolutely continuous part.
We then use the fact that the spectral measure of the Hamiltonian, if averaged
with respect to the random potential, becomes absolutely continuous with respect
to the Lebesgue measure [9,2], together with the idea of Kotani [8] mentioned
above, which is implicitly contained also in [1]: he remarks that thus a property
true for Lebesgue-a.e. energy E and a.e. potential (namely that all polynomially
bounded solutions of the equation H ¥ = E ¥ are in fact exponentially decreasing
with distance) can be made a property true for almost every potential and spectrally
almost every E; thus it follows that for spectrally almost every E the generalized
eigenfunctions which are polynomially bounded are necessarily exponentially
decaying and this in turn implies the result. This strategy is developed in the next
section, whereas applications of the main result and extensions are treated in the
last section.

[It is fair to mention here, as we have just learned while we were completing this
paper, that other groups have reached similar conclusions:

—Ya. G. Golds’heid has announced [13] a proof of multidimensional localiza-
tion, as we learned from [147]. There does not seem to be any written text concerning
this work and we can compare neither his methods nor his results to ours.

—J. Frohlich, F. Martinelli, E. Scoppola and T. Spencer, as we have learned
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at the Rencontre de Physique Statistique in Paris, also have a proof of multi-
dimensional localization [15]. They use quite different techniques than ours,
constructing more or less explicitly the configurations of potentials for which there
are localized states and relying on estimates stronger than those of [4], whereas
we use in fact estimates weaker than these. This method seems to adapt more
straightforwardly to continuous Schrodinger equations; on the other hand, it does
not yield non-degeneracy of the spectrum as our proof does, neither does it prove
that the smallest Lyapunov exponent associated to the strip model does not go
to zero as the width goes to infinity [3].

—B. Simon, M. Taylor and T. Wolff have announced in a letter [14] a proof
of multidimensional localization. The main ingredients of their proof are the same
as ours, although the processing is slightly different so that they get neither the
non-degeneracy of the spectrum nor our result on the behaviour of the smallest
Lyapunov exponent of the strip model.

In connection with the results of the present paper it is also interesting to
mention the works of G. Jona-Lasinio, F. Martinelli and E. Scoppola [16] on
hierarchical models of localization.]

Main Result

In this section we prove localization for multi-dimensional systems under some
hypothesis on the behaviour of the Green’s function. Applications of our results
and extensions are described in the next section.

Let HY be given as above. In all this section we fix an interval B (possibly R itself)
of R, and denote by L the Lebesgue measure on B. Consider, for a finite box A < Z¢,
the restriction H, of H” to A, with free (Dirichlet) boundary conditions. Let
G ,(x,y; V, E) denote the Green’s function of H , for the energy E taken between the
sites x and y. We make the following assumptions:

H1. There exist a positive constant o and positive-valued functions C(e) on R, and
a(E)> o on B such that for L-a.e. E€B, for any finite box A < 7%, neZ¢ and ¢ >0
one can find Q(A,n,E,e)cQ with w((A,n,Ee))>1—¢ such that if
VeQ(A,n,E,c) then for all min A

|G A(n,m; V, E)| < Cle)exp (— a(E)|m — n])

(This hypothesis is fulfilled in the case studied in [4], where moreover bounds are
given on the asymptotic behaviour of C(e), of the type C(e) < exp (1/¢F))

H2. For almost every configuration of the potential outside the “slice” Z*~* x [0,1]
the distribution of the potentials in the slice, conditioned by the potential outside, has a
bounded density with respect to the product of the Lebesgue measures.

The aim of this section is to prove the following theorem, the applications being
discussed in the next section.
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Theorem 1. Let H1 and H2 true. Then p-a.s. the spectrum of H” in B is pure point
and non-degenerate and all the corresponding eigenvectors are exponentially decaying
at infinity.

Proof: Let Ve be given. Let P, be the resolution of the identity of H".
For xeZ* we denote o, the (V-dependent) measure {x|P,|x», where |x) is
the vector associated to x of the canonical basis. Let o= ) > 2 Vg(z,i). Forany

=017 . .
Yel?(Z79, {¥|Py,|¥) is absolutely continuous with respe?:tl to o; in particular H”
has pure point spectrum if and only if ¢ is a point measure. By this remark, Theorem
1 is a mere consequence of the following Proposition 2. |

Proposition 2. Let xeZ“ be given. Let H1 be true. Let the potential V(x) be given
according to a distribution with bounded density p with respect to the Lebesgue
measure (Hypothesis H2'). Then g, is pure point in B and o,-a.s the eigenvalues are
simple and the corresponding eigenvectors decay exponentially at infinity.

Proof. We first use the Borel-Cantelli lemma to find a property of the Green’s
function which is u-almost sure. Let E be given in the set of full measure on B on
which H 1 holds, and neZ be fixed. Consider the sets 2(A,n, E,¢) described in H 1.
Then, let {A,},. be any sequence of increasing finite boxes such that A, 7 for
k— oo, and let

=) U QA,.nE.e),

NeN >N

whichstill depends on Eand nthat wekeep fixed. If V e £(¢), then thereis asubsequence
of A,, still denoted A,, such that:

G 4 (n,m; V, E) < C(e)exp( — o(E)|m — n|)

for all min A,. On the other hand, u(Q(¢)) > 1 — ¢; so by the Borel-Cantelli lemma,
we can thus obtain:

Proposition 3. Let H1 be true. Then for u x L-ae. (V,E) and for any neZ®, from
any sequence of finite increasing boxes A, containing n such that A, 17 one can
extract a subsequence still denoted A, and a finite constant C(V,E,n) such that for all
min Ay

G a(n,m; V. E) < C(V, E,n)exp (— «(E) [m — nl). (1)

We are now going to use Proposition 3 to prove that “most” solutions of the
equation H ¥ = E Weither increase exponentially, or decrease exponentially. So let
I and E be such that (1) holds. We consider now the equation

(H” —E)¥ =al|x){x|¥ 2

where a is some non-zero real number. Let some WeRZ’ satisfy (2) and assume that
| ¥(n)| increases slower than exp «|n| in the sense that

Y | ¥(n)|exp—aln| < oo (3)

Let yeZ? be given and A, be an increasing sequence of finite boxes containing x and
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y; if we write the scalar product of (2) with {y|G 4 (.,.;V, E) we get:

VG A VLEy (H p, —E)NY ) + Y|G4 (., sV,Ey(H—H 4 )| ¥ >
=aG 4 (y,x; V,E) ¥(x),

and we note that the first term of the sum is equal to ¥(y). Let now A, be a sequence
such that the conclusions of Proposition 3 are valid for n = x and n = y; then by
(3) the second term of the sum goes to zero as k increases and we get:

¥(y) = lim aG »,(y,x; V, E) ¥(x),
k=

[P <1a¥(x)|C(V, E, x)exp (— «(E)|y — x]).

This proves that, for u x L-a.e. (V,E) if (H' —a|x)>{x|) ¥=EY¥ and |¥(n)|
satisfies (3) then such a ¥ is unique up to a multiplicative constant and

limsupLog | ¥(n)|"" < — a.

In|—> 0

A fortiori, we obtain the

Proposition 4. Let xeZ%begiven. Let H1betrue.If i denotesthe projectionof ponthe
set £2, of the potentials outside x, then for p, x L-a.e(V,,E) in 2, x B and for any
choice of V(x), the solution ¥ of H ¥ = E ¥ such that ZI ¥(n)|exp —a|n| < oo is
unique and satisfies:

limsup Log|| ¥(n) | < —a. 4
nj— o0
In order to be in a position to achieve the next step we need to recall that the
spectral measure averaged with respect to the potential is in fact absolutely
continuous with respect to the Lebesgue measure L[9,2]. Since in our setting an
elementary proof can be made we present it now in order to be self-contained:

Proposition 5. Let H2' be true. Then the measure | p(v)o.dv is absolutely continu-
veR
ous with respect to L, where v stands for V(x).

Proof. Let the potential V' be fixed; consider a finite box A and denote P, the
resolution of the identity of the restriction H , of H to A. Let 6 , = {x|P 4|x). For
A17% 6, converges weakly as a measure to o,. But o, can be written explicitly:

o,(dE) = ; S(E — EQ(¥i(x))*/]| Wi |*dE,

where the sum on k runs on a basis of eigenvectors ¥, of H,, the corresponding
eigenvalues being denoted E,. If ¥ (x)=0, ¥, remains an eigenvector for the same
eigenvalue as v = V(x) varies and does not contribute to ¢,(dE). We can thus
restrict the sum in o, to those k such that ¥, (x) # 0 (for all v). In the case when
there is a degenerate eigenvalue of degeneracy n, we can choose an orthogonal
basis of the corresponding eigenspace such that at least n — 1 vectors take the
value 0 at site x. Thus we can suppose in the following that no ¥, (x) is 0 and that
the eigenvalues E, are non-degenerate. Each E, is a monotonous function of v
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and, as noted in [2], we have
dE,/dv = (F(x))*/|| ¥|I*.

Moreover, as is easily seen, the 2 sets of eigenvalues obtained respectively for
v—— oo and v— + oo are identical except for the eigenvalue corresponding to the
vector |x ) which goes to — o0 and + co respectively. This means that when v goes
from — oo to + oo one and only one among the eigenvalues E, crosses any given
value E. In turn this implies the existence of disjoint open sets O, of R such that the
applications v — E(v) are diffeomorphisms from R to O,. This allows us to make the
following change of variables:

ff(E)dEj dUz S(E — E(0)(Y())*/Il Wil
jf(E)dEz f dvS(E — E,(v))dE,/dv

= [ f( dEZ#{veR E(v)=E}

where f is any continuous function with compact support. Thus in view of the
expression for ¢ ,(d E), we get:

| p)dvo,(dE)< | pldE,

veR
and by the weak convergence of g, to a,:

§ p(v)dvo(dE)< | pldE.
veR
We now use the idea emphasized by Kotani [8], namely that given V _, by
Proposition 5, a property true for L-a.e. E is true fora.e.vand ¢, -a.e. Ein B. Thus a
property true for u_-a.e. V, and L-a.e. E is true for p-a.e. V and o,-a.c. Ein B. In
particular, in view of Proposition 4, for p-a.e. Ve and g,.-a.e. Ein B, a solution ¥ of
HY = EY which is polynomially bounded necessarily decays exponentially at
infinity and is the only eigenfunction for E.
On the other hand it follows from spectral theory that for any V and o-a.e.
E, thus a fortiori o -a.e. E, the generalized eigenfunctions for the generalized
eigenvalue E are polynomially bounded. Then, o,-a.s. in B, any generalized
eigenfunction decays exponentially at infinity, thus it is in [*(Z%) and o, is pure
point and of multiplicity one in B. This ends the proof of Proposition 2 and thus
of Theorem 1. |

Applications and Extensions

1— Localization for the Multi-Dimensional Anderson Model. The Anderson model
corresponds to the case where the random potential {V(x)} _,« is a family of
independent random variables with a common distribution having a density p
that we suppose bounded (in fact the original Anderson model corresponds to the
case where the V(x) are just equidistributed on some interval).
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Under these conditions, for which H2 holds, the hypothesis H1 follows from
ref. [4] with B= R for large enough disorder (e.g. for large 4 if we multiply our
potential by a coupling constant 4) and with B=(— o0,E_)U(E,, + o) for any
disorder, E_ and E, depending on the disorder. Thus we get localization in the
intersection of the spectrum with these domains; it is known [9] that the spectrum
is almost-surely exactly the set { E=o + f,ae[ —2,+ 2], fe Support of p}.

2—A Remark on Ergodic Random Potentials and on non Absolutely
Continuous Distributions. The previous case is an example of a random potential
which is ergodic with respect to the translations of 7% For ergodic potentials,
pure point spectrum and exponential decay of eigenfunctions can be derived in
a slighty different way: they follow directly from Proposition 2 using translation
invariance of the distribution of potentials. In fact ergodicity can be used to weaken
the hypothesis H2:H2 can in this case be replaced by the condition that the
common distribution of potential has a component absolutely continuous with
respect to Lebesgue measure. Under this assumption, by restricting V(x) to a
subset of this component on which the density is bounded and using Proposition
2 one gets localization with positive probability, whereas it is known [9] (see also
[6]) that for ergodic potentials localization holds with probability 0 or 1. However
the hypothesis H1 has not yet been proven under such conditions for multi-
dimensional systems. For one- and quasi one-dimensional systems, see [3].

3— Weaker Conditions on the Green's Function. It is clear from the proof that we
do not need for Theorem 1 as strong conditions on the Green’s functions as
hypothesis H1; in particular we do not need exponential decay but just some
property ensuring that the Green’s function can be applied to any generalized
eigenfunction in a convergent way. This can be useful for situations where the
potential is less disordered for sites at large distances and for which the Green’s
function decays with a power law.
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