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Abstract. We map out the low-temperature phase diagrams of dilute Ising
ferromagnets and predominantly ferromagnetic ferrites, obtaining nonper-
turbative and essentially optimal conditions on the density of ferromagnetic
couplings required to maintain long-range order. We also study mappings of
dilute antiferromagnets in a uniform field onto random field ferromagnets.

For the randomly dilute systems, we prove that ferromagnetically ordered
states exist at low temperature if the density of ferromagnetic couplings exceeds
the (appropriately defined) percolation threshold, thereby extending the result
of Georgii to three or more dimensions. We also show that, for these systems, as
the temperature tends to zero, the magnetization approaches the percolation
probability of the corresponding Bernoulli system. In two dimensions, we
prove that low-temperature ordering persists in the presence of antifer-
romagnetic impurities if the ferromagnetic couplings percolate and if the
density of antiferromagnetic couplings is bounded above by the order of the
inverse square of the corresponding percolation correlation length. For these
systems, we rigorously compute the first order decrease in the zero-
temperature nominal spontaneous magnetization, in terms of derivatives of the
percolation probability, thereby establishing the existence of ferrimagnetically
ordered states. Finally, we introduce a model of a random ferrite which exhibits
spontaneous magnetization anticorrelated with the boundary conditions.

1. Organization and Main Results

In this paper we study the phase diagrams and order parameters of disordered
Ising magnets. Our main rigorous results concern dilute, predominantly fer-
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romagnetic Ising magnets at low temperatures, but we also discuss effects such as
anticorrelation and frustration and reconsider random antiferromagnets in a
uniform magnetic field.

The magnetic systems studied below have the following features : At each site J,
of a regular lattice, henceforth chosen to be f, there is an Ising spin, σp with values
± 1. If A is some finite subset of Zd, we denote by σΛ the configuration of spins σp

with j e Λ, and by σΛC the configuration of σ/5 i e Ac.
The Hamilton function, or energy, of a configuration σA, with σΛC fixed, is given

by

jr(σA,σΛ.)=- Σ JtWj-Σhjσj, (U)
iJ .jeΛ j

where the exchange couplings J/7 are random variables with distribution

^9 (1.2)
u

and dρy is a probability measure depending only on i—j. Typically,

. ,n , \i-j\ = l ,
d^(J)={δ(J)dJ, otherwise, (U)

where dρ is a probability measure favoring ferromagnetic couplings. The
distribution (1.2) describes systems with bond disorder. Another popular choice is
site disorder, as given by

_ , ,
y~lθ, otherwise, l j

where {τj}jeZd are i.i.d. random variables, and, by convention, J > 0. Although, for
definiteness, we shall restrict attention to random bond systems, most of our
results go through mutatis mutandis for systems with site randomness.

The variables {hj}jezd are local magnetic fields which will generally be chosen
as follows :

(a) hj = Q, for all;, or
(b) hj = h>0, for all;, or
(c) the hjS are i.i.d. random variables with mean 0 and variance H > 0.

The joint distribution of the magnetic field variables is denoted by dL(h) and is a
product measure in all three cases.

We note that the Hamilton function ffl is really a random function, as it
depends on {Jί7 } and {hj}. The equilibrium expectation of a function, jp, of the spins
σΛ in a system with Hamilton function given by (1.1), where J = { Jtj} and h = {hj}
are arbitrary, but fixed samples, and with boundary condition α = α(σylc) imposed on
the spins outside Λ, is given by

Γ1 Σ e-W* σ^F(σ)*(σΛe), (1.4)

where β is the inverse temperature, and the partition function, ZβiΛ<x(J, h\ is chosen
such that
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Clearly, (FyβtΛlx(J,h) and Zβ>Λ«(J,h) are random variables through their de-
pendence on J, h. We define the free energy per site by

f(β, h; R, L)= \im - -OgZβtΛJ(J, h), (1.5)

where \Λ\ denotes the number of sites in Λ (and ΛTTLd e.g. in the sense of van Hove).
It is well known [1] that, for couplings Jtj of not too long range, the limit in (1.5)
exists, is independent of the b.c. α and is almost surely (a.s.) constant in J and h
[i.e. independent of the particular sample. It does, of course, depend on the
distributions dR(J) and dL(h)~\. There are other quantities which, under suitable
hypotheses, are sample-independent, e.g. the correlation length or the sponta-
neous magnetization, but local correlation functions do, of course, depend on J
and h. This motivates defining quenched expectations:

A*(J> h)dR(J)dL(h) . (1.6)

The spontaneous magnetization is defined by

and a variant of a result in [2] yields

m(β)= lim max Ml" 1 Σ <?ϊ>f.ΛJ(J). (1.7')
Λ / Z d α jeΛ

Finally, the Edwards- Anderson order parameter [3] is given by [2]

βEA08)= lim maxμiΓ1 Σ C<σ^,^(Λ/ι)]2. (1.8)
ΛTTLd α jeΛ

We now proceed to summarize our main results.
In Sect. 2, we analyze a simple example of a predominantly ferromagnetic

random Ising model in zero magnetic field. The exchange couplings J/7 are
distributed as in (1.2), (1.3), with the distribution dρ given, for example, by

dρ(J) = (]/2πAΓ1Q^pl-(J-T)2/2A2']dJ. (1.9)

For J large enough and/or A small enough, we show that on a set of exchange
couplings of d#-measure close to 1, the Peierls-Griffiths estimate [4, 5] converges
if + boundary conditions are imposed on the boundary, dΛ, of A (i.e., σ7 = 4- 1,
Vj 6 Ac). This enables us to prove positivity of the magnetization for β large enough.
(Although this argument is quite simple, it does not - to our surprise - seem to have
appeared in the literature.)

Unfortunately, the straightforward arguments of Sect. 2 do not provide
optimal, or even necessarily good bounds on the values of the parameters J (the
mean of J^ ), A (the spread of Jtj), and β at which ferromagnetic ordering
disappears. We, therefore, turn attention to a simple, special example for which one
can find some optimal results, and which is, moreover, experimentally realizable
(as e.g. Rb2COpMg1_pF4, see [6-8]). This model is the dilute Ising ferromagnet
with exchange couplings, Jtj, given by

f J = JF > 0 , with probability p,
ij ~ JO , with probability (1 - p) , ( ' }
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if \i —j\ = 1, and Jtj — 0, otherwise. For this model, we can derive essentially optimal
results on the parameter p in all dimensions.

The couplings above are distributed as in (1.2), (1.3), with dR here being the
Bernoulli bond percolation measure, dμp, at density p. We say that a bond </,y> is
ferromagnetic, or occupied, iϊJij>0, which happens with probability p; otherwise,
it is empty.

The theoretical status of dilute Ising ferromagnets with Bernoulli coupling
distribution may be found in any of several fine reviews [9-12]. The system was
first analyzed rigorously by Griffiths and Lebowitz [1], who showed that, when p is
large enough, there is ordering at low temperatures. One rightly expects that the
correct condition is p >pc; that is, if p exceeds the percolation threshold, the model
should exhibit spontaneous magnetization at low temperature. Such a result has
been proved in d = 2, by Georgii [13].

Since the appearance of ferromagnetic order at low temperature depends, in a
crucial way, on the structure of ferromagnetic clusters, and since the ferromagnetic
bonds are distributed according to the Bernoulli percolation measure, we shall
need to review some results of percolation theory. This is done in Sect. 3. In
particular, we review (and slightly extend) the results of [14] to show that in two or
more dimensions and for densities, p, of ferromagnetic bonds above the
(appropriately defined) percolation threshold, there a.s. exists an infinite cluster of
ferromagnetic bonds containing a subset with the structure of a coarse-grained, at
least two-dimensional lattice of renormalized bonds. Only a small fraction of the
renormalized bonds are broken, and this fraction vanishes with the degree of bond
rescaling. This result is intuitively clear in two dimensions. However, in higher
dimensions, the renormalized bonds may miss each other, even if their projections
onto two-dimensional lattice planes intersect. This difficulty can be overcome by
studying percolation of bonds in slabs of the form

Z2x{0,...,fc}d-2, (1.11)

with k chosen large enough, depending on p, and by using the fact that for p above
the (appropriately defined) threshold, the infinite cluster in such slabs is a.s.
unique [14].

In Sects. 4 and 5, we combine the results just described with a Peierls argument
and some fairly standard combinatorial estimates to prove that if the density, p, of
ferromagnetic bonds exceeds the appropriate percolation threshold, then the
spontaneous magnetization is positive at low enough temperatures, depending on
p. We also prove the widely believed conjecture that as the temperature tends to
zero, the spontaneous magnetization approaches the probability of connection to
infinity in the corresponding Bernoulli percolation system. This is, of course, a
prerequisite to establishing a crossover from thermal to percolative behavior in
dilute magnetic systems.

The above results show that percolation of ferromagnetism is sufficient to
achieve ferromagnetic ordering at low temperature. That it is necessary is trivial to
verify. Indeed, if p is below the percolation threshold, then almost surely all
connected clusters of ferromagnetic bonds are finite, and hence the Gibbs state is
a.s. unique at all temperatures; in particular, there is no spontaneous magnetiza-
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tion. It is well known that in a homogeneous magnetic field /iΦO there are no
phase transitions and the Gibbs state is a.s. unique [15].

The above results, combined with previously known properties described
below, give us a fairly detailed picture of the phase diagram of dilute ferromagnets.
Let Tc(p) denote the critical temperature of the model described above, with Tc(l)
the transition temperature of the pure Ising model. Modulo the usual conjectures
of rigorous percolation theory, we now know that

(1.12)
) = 0, for p<pc,

rc(p)>0, for p>pc,

in two or more dimensions. Here pc is the percolation threshold. The usual
conjectures referred to above are simply that in d^ 3, pc coincides with the limit of
thresholds for slabs of the form (1.11). The critical temperature Tc(p) in (1.12) may
be related to the Ising critical temperature through the upper bound of Falk and
Gehring[16]:

Γc(p)<pΓc(l). (1.13)

The bound (1.13) can also be proved by using the correlation inequalities due to
Olivieri [17]. Improved upper bounds are given by Harris [18], and much
improved upper (and lower) bounds are given in the paper of Bergstresser [19].
Putting these together with our results (1.12), the phase diagram of the system may
be summarized as in Fig. 1, below.

Griffiths
singularities

in h, at h = 0

0

Fig. 1. Phase diagram of dilute ferromagnet

In order to complete the (rigorously known) phase diagram, let us briefly
mention several other results. First, as was shown by Griffiths [20], the free energy
/(/}, h\ p) of the dilute magnet, as a function of the magnetic field h, has an essential
singularity (now termed a Griffiths singularity) at h = Q for all pe(0,1) and
T< Tc(l). These singularities cause the high temperature expansion to diverge at
temperatures well above Tc(p). (See [21] for a discussion of these singularities and
for an improved high temperature expansion which converges for temperatures
below 7^(1) but still well above Tc(p).) Second, we note that by using the Lebowitz
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inequality [22], it can be shown that the susceptibility tends continuously to oo as
T\Tc(p). Finally, for d = 2,Georgii [23] has recently obtained very accurate
bounds on the rate at which Tc(p) tends to zero as p\pc. (See also [19].)

Given the detailed picture of the phase diagram and critical behavior of dilute
ferromagnets described above, it is natural to ask whether this picture remains
stable when a small density of antiferromagnetic bonds are introduced. This
question is addressed in Sect. 6. It turns out that in two dimensions we can give a
much more detailed answer than in higher dimensions, so two-dimensional models
are discussed first. Consider an Ising model with nearest neighbor exchange
couplings Jtj distributed as follows

JF, with probability p,

0, with probability 1-p-ε, (1-14)

— JA, with probability ε,

with Jp > 0, JA > 0. We must distinguish three cases:
(1) p + ε<pc,
(2) p<pc, ε<pc, p + ε>pc,
(3) p>pc, ε<pc.

In three or more dimensions, there is also a fourth case, p > pc and ε > pc, but this is
excluded in two dimensions, since pc=l/2 [24].

In case 1, the Gibbs state is a.s. unique for all β and /ι, since there are a.s. only
finite connected clusters of nonzero J^ 's. Case 2 is very difficult! Depending on the
values of the parameters, it describes systems ranging from random field Ising
models (for /zφO) to spin glasses. Some heuristic considerations may be found in
Sect. 6.C(ii). Since in this case local ordering and frustration compete, fairly
complex behavior must be expected.

Our principal results concern case 3. This model has, almost surely, an infinite
ferromagnetic cluster. The first question we address is whether, and under what
circumstances this infinite ferromagnetic cluster tends to align with the direction
prescribed by the boundary conditions, and hence magnetize. While the analogous
question was straightforward in the case of dilute ferromagnets, it is clear that the
presence of antiferromagnetic bonds can tend to disorder the ferromagnetic
infinite cluster. Among our results is a bound on the critical antiferromagnetic
tolerance, i.e. the density of antiferromagnetic bonds which can be present without
destroying the magnetization of the infinite cluster at low temperatures. Let ξ(p)
denote the correlation length of the pure Bernoulli percolation system at density p.
We prove (see Theorem 6.3) that the infinite ferromagnetic cluster maintains order
at low enough temperature if

— ε^O(Γ2(P» (1-15)
Jp

Assuming the unproven conjecture that ξ(ρ) has an associated critical exponent, v,
this provides a bound in terms of v on the antiferromagnetic tolerance as p\pc. A
consequence of magnetization of the infinite cluster is

(1.16)
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for p>pc, ε satisfying (1.15) and β large enough (depending on p and ε). In three or
more dimensions we can, for technical reasons, prove (1.16) only for fairly large
(but nevertheless nonperturbative) values of p. Although our higher dimensional
results are not optimal, they do represent an improvement over other bounds [25,
26] on the critical p for systems with antiferromagnetism.

Next we examine the effect of finite ferromagnetic clusters. Many of these will
be coupled to the infinite ferromagnetic cluster by antiferromagnetic bonds.
Heuristically, one can see that, if ε is small enough so that most finite clusters which
are connected to the infinite cluster at all are actually connected through a single
antiferromagnetic bond, then the majority of the spins so connected will tend to
align in the direction opposite to the one prescribed by the boundary conditions.
This makes clear that the square of the spontaneous magnetization may be
considerably smaller than the Edwards-Anderson order parameter, and that
pronounced hysteresis phenomena and "path-dependent behavior" may arise as
an external field is varied.

Our next result addresses the effect of the antiferromagnetism on the
magnetization. To simplify the discussion, we take JF>JA so that frustration
effects are less severe. Let P^(p) denote the density of sites belonging to the infinite
cluster in the pure Bernoulli percolation system at density p. We show (see Lemma
6.4 and Theorem 6.5) that

dP
lim m(β)^PQO(p)-s--^ + o(ε). (1.17)

j8-»oo Up

Moreover, if m+(β) is the spontaneous magnetization in the state with +
boundary conditions, then

lim m+(β) = Pΰ0(p)-sd^ +o(s) (1.18)
β-+ao dp

(see Theorem 6.6). This result is what one would have expected on the basis of the
heuristic considerations presented above. It represents the appropriate generali-
zation of our result, mentioned earlier, that m(β) /"P^(p) as β^co in the dilute
ferromagnet.

Thus far, we have only considered the first order effect of antiferromagnetism.
Suppose now that JF > JA and p is so close to pc that

Pco(P + e)>Pco(p) (1-19)

Note that P^p + ε) is the density of all sites which are ferromagnetically or
antiferromagnetically connected to infinity. If, nonperturbatively in ε, the spins on
finite ferromagnetic clusters still have a tendency to align, in the majority, in a
direction opposite to those of the infinite cluster, and if p and ε are such that (1.19)
holds, then the total magnetization will tend to be opposite to the magnetization of
the infinite ferromagnetic duster (i.e., the direction imposed by the boundary
conditions) for h = Q. We call such a phase a (correlated) random antiferrimagnetic
phase. We introduce a simple model of a random ferrite for which we can
rigorously prove that the random antiferrimagnetic phase occurs and is stable to
perturbations in p and ε. See Sect. 6.C(i). We do not know whether this phase
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rigorously
established
behavior

I random
I antiferrimagnetic
I phase
• ( k n o w n to occur in special examples)

Fig. 2. Behavior of magnetic order parameters in random ferrites

actually occurs in the Bernoulli system or other related random systems. However,
if it does occur, our analysis suggests the rather surprising behavior of the
spontaneous magnetization illustrated in Fig. 2.

Finally, in Sect. 6.C(ii), we reconsider the Fishman-Aharony map [27] of dilute
antiferromagnets in a uniform external field onto a random field ferromagnet. We
also speculate on how case 2(p<pc,ε<pc,p + ε>pc) may be related to a somewhat
frustrated random field Ising model.

2. Ordering in Predominantly Ferromagnetic Systems

In this section, we present a simple but general argument which shows that
predominantly ferromagnetic Ising systems exhibit a Curie transition. For
simplicity, we restrict attention to a system in which (1.3) is a Gaussian distribution
of couplings :

(2.1)

We show that for J sufficiently large and/or A sufficiently small, the system has
positive magnetization at low temperature.

The strategy is to use a Peierls estimate on "good" coupling configurations,
which are shown to occur with large probability. In subsequent sections, similar
estimates will be combined with nonperturbative information on the nature of
percolation clusters to obtain sharper results. As usual, the Peierls estimate is
performed on contours separating spins of opposite type. In a given configuration,
J = {Jij}> the energy of a contour y is simply

<^(y) = 2 Σ Jij (2.2)
<U>*ey

Here <zj>* denotes the (d— l)-cell dual to the bond <ij>.
The key ingredient in the analysis is the definition of bad coupling configu-

rations. For some fixed δ > 0, we define these by

B= U {J|^ω<2<%|}, (2.3)
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where the union is over all contours with interior containing the origin. Notice that
the complement, G ~ Bc, has the property that, for J e G,

<$j(j) ^ 2δ\γ\ , for every γ with 79 0 . (2.4)

We first observe that , uniformly in β, bad configurations are improbable in
predominantly ferromagnetic systems :

Proposition 2.1. Provided that J><5,

Prob(B)<ε1(J,A),

with ε^J, zl)^0 as either J / c o o r A \0.

Proof. By subadditivity of the measure dR(J)= Π dρ(Jti)9 we have
<u>

^ Σ Prob{JKJ(y)<2(5|y|}. (2.5)

The individual terms in the sum (2.5) may be estimated by noting that $j(y) is
simply a sum of Gaussian random variables, and hence is itself a Gaussian random

variable, with mean 2J\y\ and variance 2]/jy]zl. Thus

= Cexp[-(J-<S)2|7|/zl2]. (2.6)

The result now follows from a standard Peierls estimate on the contour entropy :

γ\ = n}£<f". D (2.7)

The previous proposition allows us to focus on good coupling configurations.
Next we show that such configurations exhibit ferromagnetic behavior:

Proposition 2.2. Let Ac%d be any regular finite box, with + boundary conditions.
Then, for every J e G,

with ε2(β)\0 as β /oo, uniformly in \Λ\.

Proof. We use the usual Peierls-Griffiths inequality [4, 5] :

-2 Σ e~ "•*•». (2.8)

Noting that for all J e G, δj(y) obeys the bound (2.4), and using the entropy
estimate (2.7), we obtain

<>oW( /)^l-2 Σ e-™*-c*\ D (2.9)
n = 2d

In purely ferromagnetic systems (i.e., J0 ̂ 0, Vz'J), positivity of the magneti-
zation is an immediate consequence of Propositions 2.1 and 2.2. Indeed, for
such systems, the magnetization is given a.s. by [1]

m(β) = \im <σoyβ,Λ + (J) = J (σ0yβt+(J)dR(J) . (2.10)
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The result then follows from decomposing the measure into good and bad
configurations, and using the Griffiths-Peierls estimate for J e G.

For systems with antiferromagnetic couplings, the magnetization cannot be
related to the expectation value of the spin at the origin, except perhaps as a bound.
As usual, the magnetization is defined thermodynamically [see Eq. (1.7)].
Following mutatis mutandis the arguments of van Enter and Griffiths [2], it can be
shown that the magnetization so defined is given a.s. by

m(β)= lim maxμiΓ1 Σ <>;>/? ̂ )> (2.11)
ΛTTLd α ieΛ

where the maximum is taken over all boundary conditions in a finite volume A,
and the limit Λ ?TLd is in the sense of van Hove. In general, the quantity on the
right-hand side of (2.11) cannot be expressed in terms of the value of the spin at a
given site. Indeed, even in predominantly ferromagnetic systems, there is a nonzero
probability that any given site lies in a cluster which is antiferromagnetically
connected to the bulk. The physical consequences of this observations will be
examined in some detail in Sect. 6.

In order to deal with the above complication, we restrict attention to a finite
volume A, and partition the measure dR(J) separately for each i e A. Thus we
define bad configurations with respect to /, B(ΐ), by an expression analogous to
(2.3), with the union taken over all contours with interior containing i. For each
J e G(0 = B(i)c, we have an energy estimate of the form (2.4). It should be clear that
the analogues of Propositions 2.1 and 2.2 hold, uniformly in i. This enables us to
show:

Theorem 2.3. For J sufficiently large and/or A sufficiently small, the nearest
neighbor Ising magnet with coupling distribution (2.1) exhibits spontaneous
magnetization for β large enough.

Proof. By (2.11), the magnetization is a.s. bounded below by
1 Σ ^CwGO (2 12)

ΛTTLd

Consider some box A in the van Hove sequence. By Proposition 2.2, for each
ieΛ

Here we have used χE to denote the characteristic function of an event E.
By the Birkhoff ergodic theorem, the characteristic functions converge a.s.:

(2.14)

(2.15)

The desired result now follows from Proposition 2.1:

D (2.16)

Remark. The argument presented here is not limited to Gaussian distributions.
Indeed, these methods can be applied to other coupling distributions provided
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that the mean is large enough and the variance is small enough to allow a bound of
the form of Proposition 2.1 on the probability of bad configurations.

3. Nature of the Infinite Cluster in Percolation

Although the analysis of the previous section establishes the existence of a Curie
transition in dilute magnetic systems, it does not provide optimal results on the
amount of dilution which can be tolerated. It turns out that the crucial issue is
percolation of ferromagnetism. Indeed, consider a system with a nearest neighbor
coupling distribution of the form

dρ(J) = ί(l-p)δ(J) + pF(JKdJ, (3.1)

where δ(J) is a delta-function at zero coupling, and F(J) is a normalized dis-
tribution (without an atom at 0). Then it is easy to show that percolation (P^tp) > 0)
is a necessary condition for the existence of long range order. In Sect. 4-6, we
shall show that percolation of ferromagnetic bonds is also sufficient to achieve
ferromagnetic ordering in systems with purely nonnegative couplings in any
dimension1, and in two-dimensional systems with a limited amount of antifer-
romagnetism. Our analysis depends on certain properties of infinite clusters,
which are reviewed below.

For simplicity, we restrict attention to bond percolation on the hypercubic
lattice TLd. It should be noted, however, that the methods and results presented here
extend in an obvious fashion to other forms of percolation (e.g., site) and to other
lattices. For bond percolation, we regard ΊLd as a lattice of sites, and denote by Bd

the set of all bonds between nearest neighbor pairs of sites. The bonds b e Bd are
taken to be occupied independently with homogeneous probability p e [0,1]. We
denote by Ω = {0, l}Bd the set of configurations of occupied bonds. The Bernoulli
measure, μp, on Ω is simply the product of the single bond measures at density p.
The percolation threshold is given by

Pc-inf{p(P00(p)>0}, (3.2)

where P^(p} denotes the /^-probability that the origin is in an infinite cluster of
occupied bonds.

The results we shall need in our subsequent analysis concern the structure of
the infinite cluster. According to the approach developed in [14] (see also [28]),
whenever p exceeds a threshold value (presumably pc), it is possible to explicitly
construct a subset of the infinite cluster which has the appearance of the original
lattice, but occurs with large probability. This may be done by considering block
bond events, the probabilities of which approach the unit density fixed point under
rescaling. In the remainder of this section, we shall define the block bond events
and review their rescaling properties.

In d = 2, the events we consider are simply crossings of rectangles by occupied
bonds. Let rn L be a rectangle of width L and length nL. We denote by Rn L the

1 For d>2, this result is proved modulo the usual conjectures of percolation theory [cf.
Eq.(3.15)]



410 J. T. Chayes, L. Chayes, and J. Frδhlich

probability of the event that there exists a crossing of rn^L in the long direction by a
path of occupied bonds. The following theorem shows that above the percolation
threshold, the quantities Rn L tend exponentially to one with L.

Theorem 3.1. Whenever p>pc, there exists a ξ(n,p)<co such that

Rn^\-e~Ll^p\ (3.3)

Proof. It is a fundamental result of two-dimensional percolation theory [29, 30]
(see also [31]) that whenever p>pc, lim Rn L — 1. On the other hand, it can be

L->oo

shown [14, 28] that there exists a constant c(n) such that

R^l-φ)*-1 => R^^l-φK2', (3.4)

which establishes that the convergence is exponential. D

Remark. Although (3.3) is sufficient for our purposes, it is not difficult to establish
the stronger result that

limΓ-}log(l-iί11.I)l=r1(p) (3-5)
L-»oo [_ Li J

exists and is independent of n. Indeed, it can be shown that ξ(p) is precisely the
correlation length of the system, which is here defined as the inverse of the decay
rate of the dual connectivity function. That is, if τ$x is the probability that the
points 0 and x are connected by a path of dual bonds, then

Γ l(p)= lim Γ- -logroll. (3.6)
x-»co[_ x J

That the above limit exists has been known for some time [32, 33] (see also [31]).
With regards to the claim (3.5), we note that if L0(p) is defined to be the smallest

length such that the reseating hypothesis (3.4) is satisfied, i.e.,

-φ>-1}, (3.7)

then we have :

Proposition 3.2. Up to logarithms, L0(p) coincides with ξ(p).

Proof. For definiteness, we take n = 2 and use c(2) = 1/16. First observe that if we
surround the origin with an annulus consisting of four translations (and rotations)
of r2 L, and if crossings occur in all of them, then there is no path of dual bonds from
(0,OJto(0,L). Thus

τ*L^l-£4L. (3.8)

If we now take L— 21L0 and use (3.4) this implies

τSL^~L/Lo, (3.9)

which, by the existence of ζ~l(p), implies ξ"1(p)^L^i(p).
On the other hand, suppose we have L0 > 1 satisfying (3.7). Denote by Sλ and S2

the two long faces of the rectangle r2 L o_ 1 . By subadditivity

l-K2,Lo-ι^ Σ τ£. (3.10)
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Using the (easily verified) fact that τ*y ̂ e~(L°~ 1)/(% and the rescaling hypothesis, we
have

-^-w, (3.11)

which implies

Γ'^fcilogLoOO + cJ/LoCp) (3.12)

for some explicitly computable c1? c2. Π

The quantities Rn>L will enable us to construct, with large probability,
configurations which guarantee ferromagnetic ordering in two dimensions.
However, such a construction relies on the obvious intersection property of bonds
in d = 2, namely that overlapping paths of bonds necessarily intersect. In higher
dimensions, intersection of rescaled bond events is not guaranteed by purely
geometrical considerations. For d = 3, this difficulty was overcome in [14] by
formulating conditions which ensure uniqueness of the infinite cluster, and then
using the uniqueness to "force" intersection of bond events on sufficiently large
length scales. We shall invoke such a procedure, as reviewed below, for all d^3.

Consider a partition of the lattice Tίd into layers of finite thickness k in all but
two dimensions: Zdx {0, ...,fc}d~2. Let Pk^(p) denote the probability that the
origin is part of an infinite cluster of occupied bonds which lies entirely within a
given quadrant of the fc-layer. This defines a quadrant percolation threshold for the
fc-layer:

>0}. (3.13)

Since the thresholds pk are monotone decreasing in fc, we may define

pc°° = limp*. (3.14)
fc-> oo

Indeed, it is natural to conjecture that the limit of the quadrant layer thresholds
coincides with the percolation threshold for the full d-dimensional lattice2:

#°=Pc (3-15)

Our results on ferromagnetic ordering for d^3 will be proved modulo this
conjecture, i.e. for p>p™.

The strategy is to note that if p > p™, then there is some finite fc such that p > pk.
Thus we may deal exclusively with the fc-layer, Έ2 x {0, . . ., k}d~2. The block bonds
can now be constructed using a coarse-graining argument. Consider a partition of
the fc-layer, Ί? x {0, ..., k}d~2, into LxLx kd~2 hypercubes oriented at 45° with
respect to the Z2 axes. At the center of each hypercube, construct a lxlxkd~2

hypercube (/ < L), oriented in the same fashion. The larger boxes will be denoted by
CL(ί) and the smaller by Cz(f), where i indicates a point on the coarse-grained,
rotated lattice. Roughly speaking, the smaller boxes, Q, should be regarded as

2 One can define an analogous critical point, p£°, as the limit of full (i.e., nonquadrant) /c-layer
thresholds. It is, in fact, possible to show [34] that pc°° = pc°°, thereby reducing the conjecture (3.15)
to pf =pc. The analogue of this latter conjecture for Ising systems has recently been proved by
Aizenman [35]
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sites, and nearest neighbor pairs of larger boxes, CL(/)uCL(/), should be viewed as
bonds of the coarse-grained lattice. Block bonds may be constructed from the
following two events :

(1) Let i and) denote a pair of nearest neighbor sites (separated by a Euclidean

distance |/2L). The bond connection event, ^< f > 7 >, is defined to be the occurrence
of a path of occupied bonds connecting dC^ί) to dCz(/) which lies entirely within
CL(ί)uCL(j).

(2) Let i denote a site on the coarse-grained lattice. The site uniqueness event, όb

is the event that all paths of occupied bonds which connect dCt(ί) to dCL(ί) are
connected to each other within CL(ί). That such events occur with large probability
is expressed in the following:

Theorem 3.3 [14, Propositions 4.6 and 4.7]. Suppose p>p*. Then
(1) for all ε>0, there exists an I large enough so that

>)^l-ε (3.16)

uniformly in L, provided that L>L
(2) For any fixed /, for all ε > 0, there exists an L large enough so that

l^l-ε. (3.17)

Using Theorem 3.3, we may now construct block bonds of arbitrarily high
density by "pasting together" bond connection events for pairs of sites with
uniqueness events at the vertices. This will be the strategy followed in Sect. 5.

4. Ferromagnetic Ordering in Two Dimensions

In the next two sections, we consider a dilute ferromagnet with a coupling
distribution of the form (3.1), where F(J) is any nonnegative distribution (without
an atom at 0). Modulo the usual conjectures of percolation theory, it is shown that
wherever p exceeds the percolation threshold, the system exhibits spontaneous
magnetization at sufficiently low temperature.

In order to establish this result, it suffices to consider a system with Bernoulli
coupling distribution

where JF > 0 is the ferromagnetic bond strength. Indeed, given a system of the form
(3.1) with p>pc, it is possible to define a coupling strength JF(i)>0 by

λ(p-pc) (4.2)
o

for some3 Ae(0,1). Bonds of strength exceeding JF(λ) occur with density p(λ)
= pc + (l—λ)(p—pc)>pc. By the GKS inequality [36], the magnetization of the
original system (3.1) is bounded below by that of the Bernoulli system with bond

3 If F( J) is smooth and has support for all J > 0, we may choose any λ e (0,1). If F( J) vanishes on
some open set and/or contains delta functions at positive couplings, λ must be adjusted
accordingly to obtain a well-defined value of JF(λ)
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strength JF(λ) and density p(λ). In fact, in two dimensions, the more general result
follows without the use of correlation inequalities by simply replacing our energy
estimates on the Bernoulli system for bonds of strength JF and density p by
estimates for bonds of strength exceeding JF(λ) at density p(λ).

For the two-dimensional system, existence of ferromagnetic ordering for p>pc

was first established by Georgii [13]. In this section, we offer a simple proof of the
two-dimensional result which has the additional advantage that it makes no use of
correlation inequalities. This will enable us to prove that ordering persists in the
presence of some antiferromagnetic impurities (see Sect. 6).

Our argument is again a Peierls estimate on good coupling configurations;
however, good is now defined with respect to a coarse-grained lattice. To this end,
we divide ΊL2 into 2L x 2L boxes and denote the resulting lattice by 2LZ2. The
boxes may be grouped into four sublattices, 1LI? ...,1LIV, each sublattice consisting
of boxes which have no sides in common (see Fig. 3a). The annulus of width L
surrounding a given box Cx, x e 2L1L2, will be called the boundary region, 3CX, of
the box Cx. Although the boundary regions of different sublattices overlap, the
boxes and boundary regions of a given sublattice form a disjoint partition of Z2

(see Fig. 3b).
A box, Cx, is said to be ferromagnetically sealed if there is a circuit of

ferromagnetic bonds surrounding Cx which lies entirely in δCx. If a box is not
sealed, it is said to leak. It is easy to see that the sealing events

is ferromagnetically sealed} (4.3)

have probability independent of x, and are statistically independent for each pair
x, y belonging to the same sublattice.

When the density of ferromagnetic bonds exceeds the percolation threshold,
the probability of a leak tends to zero exponentially with the scale of the coarse-
graining:

-π-

m

Π

\τττ

-π--

\\\
\TTT

ΊL--

π-
\\\
ΊH

X \ N

Part i t ion of Z

Fig. 3a and b. Partition of Z2

Proposition 4.1. Suppose p>pc and define

Then PieakCp? L) may be made arbitrarily small by taking L sufficiently large. Indeed,

Plβak(p,L)^(const)e-L/«4 '>.
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Proof. By subadditivity of the measure,

Λeak(A^4(l-#4,L), (4.4)

where ^4^ is the probability of crossing a 4LxL rectangle. The result is an
immediate consequence of Theorem 3.1 and Proposition 3.2. D

Remark. The length ξ(p) will determine the scale on which we must coarse-grain
the lattice. It turns out (see Sect. 6) that this scale also determines how much
antiferromagnetism the system can tolerate. Since we may identify ξ(p) as the
correlation length of the associated percolation system (see Remark following
Theorem 3.1), this implies that the critical antiferromagnetic tolerance is related to
the divergence (presumably a power law) of the correlation length as p\pc.

We are now in a position to outline the basic strategy. Any Peierls contour can
be classified according to the boxes that it visits. (This amounts to a coarse-
graining of the contours.) If, with large probability, a given fraction of these boxes
are sealed, the contour typically has an energy which scales with its length. This
drives a Curie transition at sufficiently large β.

Let us introduce the relevant notations and definitions. An arrangement is a
finite, connected collection of boxes which surrounds or contains the origin. The
set Γ of all arrangements may be partitioned into four disjoint subsets: /^CΓ are
those arrangements containing at least as many boxes of ]Lj as of any other
sublattice; Γ^cΓ^ are arrangements containing a plurality of boxes of 1LΠ, and so
on.

An arrangement is said to be bad if more than (say) half of the boxes of the
dominant sublattice leak. A configuration, J, is said to be bad if it has any bad
arrangements of boxes. We denote the set of all bad configurations by BL and its
complement by GL.

Proposition 4.2. Suppose p>pc. Then Pτobp(BL) may be made arbitrarily small, by
taking L sufficient large.

Proof. A given arrangement with M boxes on the dominant sublattice is bad with
probability

N>M/2

V I I P^ Π — P }M-N<^MpM/2
2. jy/Meakl 1 rleak/ = Z Meak

\J

The number of such arrangements is bounded above by the number of
arrangements of not more than 4M boxes. This in turn is bounded above by e4a2M,
where α2 < oo can be related to the two-dimensional polymer constant. Thus

(4.6)
M = l

The desired result now follows from Proposition 4.1. D

We are now ready to establish the existence of a ferromagnetic transition :

Theorem 4.3. Suppose p>pc. Then the nearest neighbor I sing magnet with coupling
distribution (4. 1) exhibits spontaneous magnetization for β large enough. Moreover,

m(β)^P^(p) as β/co.
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Proof. Consider the restriction of the system to a finite box, A C 2L2£2, with -f
boundary conditions. Let ΘΛ denote the event that the origin is in the ferromagnetic
connected component of the boundary, dΛ. Defining dμ = Π dρ p(Jί7 ), the

<U>
magnetization is given a.s. by

m(β)== 2

, (4.7)

since <tf0>/? j y l + (J) vanishes for those configurations in which the origin is
disconnected from dΛ. Defining (9 ̂  as the event that the origin is in the infinite
cluster, we have }.

by continuity of the measures. Thus it suffices to show that the integral on the
right-hand side of (4.7) tends to 1 as β /oo, uniformly in \Λ\.

To this end, we first decompose the measure into good and bad4

configurations :

ί
G&Λ

5Ln0,1) + J <σ0yβ<A.(J)dμp(J). (4.8)

Now note that BL is a negative event, while GL and &Λ are positive. Thus by
the FKG inequality [37] for percolation (first proved by Harris [38]), we have

£ ( - 1) Probp(£L) + {f <σ0W (J)dμp(J\GLnOΛ)} Probp(GL) . (4.9)

Next, we must obtain a lower bound on {<σ0>j8 5yl + (J)|JeGLnd?00}. This is
done by again invoking the Peierls-Griffiths inequality [4, 5] :

where Ay denotes the event that y is the outermost contour surrounding the origin
which separates spins of opposite type. Here, however, our estimate on <u^7) will
be performed on coarse-grained contours.

Each contour y can be classified according to the boxes that it visits. Recall that
Γκ denotes those arrangements which have a plurality of boxes on sublattice ]LK.
We partition each Γκ on the basis of the number of boxes of the dominant
sublattice, denoting by Γ™ those arrangements in Γκ which contain M boxes of
sublattice K. Then the set of all arrangements is given by the disjoint partition

IV oo

Γ= U U /1M. (4.11)
K = I M=l

4 Since this system has purely nonnegative couplings, correlation inequalities allow us to
bound <σ0>/})yl + (Je BL) below by zero, rather than by (— 1). We use the less efficient bound in
order to facilitate the introduction of antiferromagnetic bonds (see Sect. 6)
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A contour y is said to be in Γ™, denoted by y e /"£*, if the arrangement of boxes that
it visits is in Γ&.

In order to estimate <u,4y>, we first use subadditivity:

U Ay) (J)^ Σ ( U A\ (J). (4.12)
'••ysO / β,Λ + K,M \yeΓ™ / β,Λ +

If J e GL, then every contour y e Γ™ must visit at least (1/2)M sealed boxes. Unless
M = 1, this means that y must cross at least 2(1/2)M — M ferromagnetic bonds. If, in
addition, Je@Λ, then the same result holds for M=l, since y must cross the
connection of the origin to 8Λ. This provides the energy estimate

<£j(y)^2βJFM VJεGLnGΛ and V y e Γ / . (4.13)

The size of Γ^ can be bounded above by the number of contours encircling the
origin of length smaller than (4M)(2)(2L)2. Thus

* [y\y e Γg*} ^ (const) Σ eC2" ̂  e'ML2 (4.14)
«

for some c < oo. By (4.12)-(4.14), we have

Aγ (JeGLnΘ^4 Σ e'
2βjFMe+δML\ (4.15)

vi+ M = I

uniformly in \Λ\.
Thus

Γ oo Ί

) 1-8 Σ e~(2βjF~'cL2}M .
L A f = l J

(4.16)

By Proposition 4.2, the lower bound can be made positive by first choosing L then
β sufficiently large. Indeed, as L->oo and β-»oo, the bound tends to 1. Π

Remark. For future reference, we note that Prob(GL) > 1/2 is a sufficient condition
for positivity of the lower bound (4.16), provided that β is large enough. By
Proposition 4.1 and Eq. (4.6) this in turn implies that we need only coarse-grain up
to the scale of the correlation length to establish spontaneous magnetization.

Corollary. For p>pc and β sufficiently large, the infinite cluster is almost surely
magnetized with constant magnetization

Proof. The overall magnetization is given a.s. by

m(β)= lim -1- Σ <*t>P,A + (J). (4-17)
ΛfΊL2 \Λ\ ieΛ

Defining ^^(J) to be the infinite cluster in configuration J, this may be rewritten as

J)| 1 <σ>

\Λ\ l/ln^O/)! ie/lntf^J) μ \Λ\

(4.18)
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We first argue that the second term above vanishes as A T TL2. Indeed, it consists
of spins in finite clusters which make a nonzero contribution only if the cluster is
connected to dΛ. However, these boundary effects vanish in the infinite volume
limit.

By the ergodic theorem, the factor l/Ln^^J)!/!/!.! tends a.s. to P^Cp) as A TTL2.
Evidently

Σ <*iWG/) (4.19)

is a.s. constant = w ( 8 P 0 . D

Remark. I. The corollary immediately implies the a.s. existence of at least two
Gibbs states in this system. Indeed, it provides a convenient and intuitive
characterization of the Gibbs states in terms of the (+ or -) magnetization of the
infinite cluster.

2. Although the overall magnetization is the appropriate order parameter for
this system, the magnetization of the infinite cluster will turn out to be the relevant
quantity for analysis of systems with some antiferromagnetic couplings. Indeed,
since the infinite cluster contains a finite fraction ( = Pao(p)) of the spins in the
system, its magnetization always implies positivity of the Edwards-Anderson
order parameter #EA.

5. Ferromagnetic Ordering in d^3

We now extend the results of the previous section to dilute ferromagnets in d ̂  3. It
is shown that whenever p>p™, the Bernoulli system exhibits spontaneous
magnetization for β sufficiently large.

Existence of ferromagnetic order above the percolation threshold is a delicate
question in more than two dimensions. Indeed, a naive extension of the methods of
the previous section does not apply. This is a consequence of two related properties
of the percolation system in d^3:

1. Overlapping paths of bonds need not intersect.
2. For p>pc, the (d— l)-cells dual to vacant bonds can form infinite clusters.

Of particular concern is the formation of infinite "tubes" of (d— l)-cells which do
not interfere with the infinite bond cluster. A sufficient condition to prevent
(w p -1) the existence of such objects is p> 1 — π*, where π* is the threshold at
which the expected size of (d— l)-cell clusters diverges.

In d = 2, it is known that pc=l—π? [29, 30]. This absence of percolation of
dual objects was crucial for the analysis of the previous section. There, the
infinite cluster formed a mesh which partitioned the lattice into finite regions on
the scale of the correlation length. As a consequence, the intersection of a dual
contour with the infinite cluster was, with large probability, a connected set with
size proportional to the size of the contour. It was this property which provided
the necessary energy estimates to drive the Peierls-Griffiths argument.

In d^3, it is generally the case that 1 — π* >pc. As one might expect, for p> 1
— π*, it is possible to apply the arguments of the previous section and indeed,
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Fig. 4. A Peierls contour (plaquettes) of the 3-dimensional percolation cluster

Fig. 5. The renormalized lattice

Key

= S (sites)

= B( bonds)

= E (empty)

— A "blocked" bond

even to extend the results obtained in Sect. 6. Similar conditions have been
exploited in the analysis of other random media problems [39,40]. However,
when pc<p<l—πf, paths can dodge the infinite cluster indefinitely. Thus the
intersection of a dual surface with the infinite cluster need not form a connected
set, no matter how we coarse-grain the lattice (see Fig. 4).

In systems with purely nonnegative couplings we may, however, invoke the
GKS correlation inequalities [36]. For our purposes, this translates into the
proposition that if we can establish spontaneous magnetization utilizing only a
subset of the infinite cluster, then there is magnetization in the full system. Thus we
will assume that p > pc°°, which implies that p > pk

c for some finite ίc, and show that (a
subset of) the infinite cluster in a fc-layer has nonzero magnetization for β
sufficiently large.

The scheme is to retain only a portion of the (unique!) infinite cluster which has
the connectedness properties of Έ2. To do this, we use a modification of the
construction outlined in Sect. 3. First, the fe-layer Z2 x {0,..., k}d~2 is partitioned
into LxLxkd~2 hypercubes oriented at 45° with respect to the 2£2 axes. The cubes
are then grouped into three sublattices, E, S, and B, as shown in Fig. 5. We shall
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regard the cubes of S and B as the sites and bonds, respectively, of the coarse-
grained lattice. Thus we denote by Cί? i e 2LZ2, a cube of sublattice S, and by Ctj

that cube of sublattice B between the nearest neighbor pair Cb Cj e S.
The ferromagnetic bonds discarded from a particular cube will be determined

by the sublattice to which the cube belongs. From cubes of sublattices E, we shall
delete all ferromagnetic material. If Ct e S, we shall retain only a subset, S(Ct ), of
ferromagnetic bonds which satisfies the following two conditions :

1) Each b e S(Q) is connected by a path of ferromagnetic bonds to all four
walls of dCt.

2) Each pair b,bΈS(Cj) is connected by a path of ferromagnetic bonds
within Ct.

The ferromagnetism we shall retain in Q/eB is that subset, B(Ct^ which
constitutes the shortest crossings of ferromagnetic bonds from the set S(Q) to the
set S(Cj). [If either S(C^ or S(Cj) is empty, or if there is no such crossing, delete all
ferromagnetism. If there are several such sets, it is easy to devise prescriptions for
choosing a single one.]

It should be clear that the events S(Cf) φ 0 and B(C^ φ 0 are easily constructed
from the site uniqueness event, ob and bond connection event, ^< ί f ι/>9 discussed in
Sect. 3. It then follows immediately from Theorem 3.3 that the block bond event

and B(Cy)Φ0 and S(Cj)Φ0} (5.1)

occurs with arbitrarily large density :

Proposition 5.1. Suppose p>pk

c. Then, for any ε>0, there is an L so large that

The scheme of the proof is now straightforward. We shall deal exclusively with
the coarse-grained lattice, and define "good" configurations in terms of the block
bond events. Then, provided that we delete from any configuration, J, those
ferromagnetic bonds which are not necessary for J to be "good," it will be possible
to do a Peierls-Griffϊths estimate similar to those done previously.

Let V denote the coarse-grained, rotated lattice. The dual lattice, V*5

has as "sites" the cubes of the sublattice E. A contour Γ on V* is sait to be good if
the event ^tj occurs for more than (say) half of the bonds </,;'> eV which Γ
crosses. We denote by GL those configurations in which every contour surround-
ing the origin is good. By proof along the lines of Proposition 4.2, we can show:

Proposition 5.2. Suppose p>pk

c. Then Probp(GL) may be made arbitrarily close to 1
by taking L sufficiently large.

Our principal result is the following:

Theorem 5.3. Suppose p>pc°°. Then for β sufficiently large, the nearest neighbor
Ising system with Bernoulli couplings exhibits spontaneous magnetization.

Proof. Let fe be the smallest integer such that p > pk

c. Consider a partition of the
k-layer 2£2 x {0, . . ., k}d ~ 2 into cubes of scale L large enough so that Prob^, (GL) > 0.
Let GL C GL denote those configurations for which the origin is part of S(C0).
[Clearly Probp(G9>0 since, with nonzero probability, every bond in C0 is
ferromagnetic.]
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Microscopic
contour passes
through
site cube

Fig. 6. Coarse-grained Peierls contour

Given J e G'L, we delete from the (full d-dimensional) lattice all ferromagnetic
bonds which do not participate in the event G'L. Let R(J) denote the resulting
configuration. By the GKS inequality [36], it suffices to estimate <σ0>^ +(jR(J)).

Thus consider R(J\ JεG'L, restricted to a finite volume AdTLά. In any spin
configuration in which σ0 = -1, there is a collection {Q} of cubes, each of which
contains a minus spin in the connected ferromagnetic component of the origin (see
Fig. 6). Clearly (CJ is a connected set, and hence is surrounded by a contour Γ
on V*. This allows us to do a Peierls-Griffiths estimate.

For every three steps of the contour Γ across bonds in which ^Stj occurs, the
corresponding microscopic contour must cross at least one ferromagnetic bond.
(The worst case is when the microscopic contour passes through a "site" cube - see
example in Fig. 6.) This provides the energy estimate

The contour entropy (i.e., the number of microscopic contours consistent with
a macroscopic contour) is bounded by an estimate of the form

Φ {y|yeΓ}^eα | /Ί, (5.3)

where α = α(L, d). Finally, the number of coarse-grained contours of a given length
is bounded above by the usual two-dimensional Peierls estimate. Let us define

Combining these estimates, we have

(5.4)

The lower bound is positive for β large enough. D

As in Sect. 4, this implies:

Corollary. For p>p™ and β sufficiently large, the infinite duster is a.s. magnetized,
with constant magnetization.



Low-Temperature Behavior of Disordered Magnets 421

We note again that this result suffices to establish the a.s. existence of at least
two Gibbs states.

6. Two-Dimensional Systems with Antiferromagnetism

A. General Considerations

It has already been shown that dilute ferromagnetic systems have at least two
Gibbs states a.s. provided that the density of ferromagnetic bonds is above the
percolation threshold and that β is large enough. The question we address here is
whether this behavior persists for dilute two-dimensional systems with some
antiferromagnetic couplings. To be specific, let us consider a system with i.i.d.
nearest neighbor couplings which can assume only three values:

JP , with probability p,

0, with probability 1—p —ε, (6.1)

— JA, with probability ε.

It is expected that the behavior of the system will depend crucially on the relative
density of the couplings. The decisive factor is again percolation, on the basis of
which we may distinguish three5 cases:

(1) p + ε<pc,
(2) p<pc, ε<pc, p + ε>pc,
(3) p>pc,ε<pc.
It is easy to show that systems in the first class exhibit no long-range order and

hence have a unique Gibbs state for all β; they are rather uninteresting, except
perhaps for the presence of some Griffiths singularities [20].

We have no rigorous results on the phase structure of systems of the second
type. However, these may provide realizations of somewhat frustrated random
field Ising models [see Subsect. C(ii)].

The principal results of this section concern systems of the third type, with the
additional assumption that the antiferromagnetic density and/or coupling
strength is small. Under such circumstances, one expects persistence of "fer-
romagnetic behavior." Indeed, we shall show that there are a.s. at least two Gibbs
states at low enough temperature. Moreover, we obtain bounds, in terms of the
percolation correlation length, on the amount of antiferromagnetism that the
system can tolerate without destroying the Curie transition.

These results are derived by showing that the ferromagnetic infinite cluster
exhibits spontaneous magnetization. By the ferromagnetic infinite cluster, we
mean that those sites of Ή2 which are part of an infinite path of exclusively
ferromagnetic bonds. An equivalent formulation is as follows: Consider the
construction of the coupling configurations as a two-stage process. First, the
ferromagnetic bonds are distributed at density p. Then, each bond which is not
ferromagnetic is examined and, with probability ε/(l— p\ an antiferromagnetic

5 In d = 2, the Kesten theorem [24] (i.e., pc = 1/2) excludes the fourth natural case, namely p > pc

and B> pc
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bond is placed there. The ferromagnetic infinite cluster is the set of bonds which
were part of the infinite cluster before the second stage of the construction.

As a corollary to the magnetization of the infinite cluster, we show positivity of
the Edwards-Anderson order parameter under the same circumstances. This does
not, of course, imply positivity of the spontaneous magnetization - even at zero
temperature. The latter is demonstrated only for ε sufficiently small. Moreover, in
this limit, we obtain the first order correction to the nominal spontaneous
magnetization with + boundary conditions.

Although our principal analysis is restricted to systems with small amounts of
antiferromagnetism, it suggests the possibility of rather bizarre phases when larger
amounts of antiferromagnetism are present. In Subsect. C(i), we consider a model
of a ferrite which has an αrcίmiagnetized phase [i.e., m+(/?)<0]. The dynamical
behavior of such a system is discussed. Whether antimagnetization occurs in the
TL2 Bernoulli system remains an open problem.

B. Systems with Antiferromagnetic Dust

(i) Existence of Long-Range Order. We now extend the results of Sect. 4 to
systems with a small amount of antiferromagnetism. The scheme is to employ the
coarse-grained Peierls estimate used previously, with an additional requirement
on good coupling configurations. Recall that a contour was said to be good if it
crossed a ferromagnetic seal upon entering (and leaving) some fraction of the boxes
through which it passed. When there is antiferromagnetism present, we must also
be concerned with the behavior of the contour within the box; namely, we must
control how much antiferromagnetism it typically encounters. This can be done by
controlling either the relative coupling strength or the density.

The first alternative is technically easy, but physically unrealistic. Clearly, if a
box contains k antiferromagnetic bonds of strength JA, then a contour can lose no
more than 0(kβJA) in energy while wandering through the box. Thus, if L is large

enough so that Prob(GL) > 1/2, then the condition -—• —^ ̂  0(1) ensures that the
JA L

infinite cluster will magnetize, even if all nonferromagnetic bonds are antifer-
romagnetic. However, for L^ 1 (i.e. p near pc), such a condition requires JA<ζJF,
which is not experimentally realizable. Henceforth, we will assume without loss of

generality that —- —^ < 1.
JA L

A physically more interesting question is, then, for fixed J'A/JF, what density ε
of antiferromagnetic bonds can be tolerated by the system. We therefore fix, once

and for all, the ratio R=--~. (The factor of 8 is for numerical convenience.) The
8 JA

relative amount of antiferromagnetism encountered within a box is measured by
the parameter

λ = -~ εL2 = — εL2 . (6.2)
JF R

Our goal is to show that if λ is not too large, the system exhibits ferromagnetic
behavior. As will be shown, this indicates that the critical antiferromagnetic
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tolerance is bounded above by ε0 = 0(ξ~2(pj) as p\pc. We start with the follow-
ing elementary calculation.

Proposition 6.1. Let nA denote the number of antίferromagnetic bonds in an
arrangement of N boxes. Then

with α(/l)-»oo as λ-»0.

Proof. Recall that the boxes contain 4L2 sites and hence no more than 8L2 bonds.
Furthermore, by assumption,

Thus
8NL2

ε\l-ε)8NL2'k. (6.3)

For λ < 1, jRJV is larger than the mean number of antiferromagnetic bonds in box
( = λRN), which implies that the sum is dominated by its first term. Performing the
usual asymptotics, we obtain

(RN)RN(8L2N - RN)(&L2N ~ RN>
1 -\RN

..ίi-xJ ^(^)RN. Π (6.4)

Let us define an arrangement of TV boxes to be weakly antiferromagnetic if it
contains fewer than RN antiferromagnetic bonds. The set of configurations in
which all arrangements are weakly antiferromagnetic will be denoted by Gf. For λ
small, it is these configurations which dominate:

Proposition 6.2. As λ->0, Prob(Gf)-»l.

Proof. This follows from Proposition 6.1 and (as in the proof of Proposition 4.2)
from an exponential bound on the number of arrangements. We have

l-Prob(Gf)^ Σ ea2N(λe)RN. D (6.5)
N=l

Let us relate the previous proposition to a statement on the critical
antiferromagnetic tolerance. We now have two notions of good configurations:
(1) ferromagnetically good configurations, here denoted by G£, and (2) weakly
antiferromagnetic configurations, Gf. By Proposition 4.2, whenever p>pc, the
former can be made arbitrarily probable by taking L sufficiently large. Indeed, as
noted earlier (cf. Remark following Theorem 4.3), we need only take L on the scale
of the correlation length, ξ(p). By the previous proposition, weakly antifer-
romagnetic configurations are probable whenever λ is small enough. Thus, if
L=0(ξ(p)), this requires ε<ε0(p) with ε0(p) = (const)ξ~2(p) for some small, but
p-independent constant. Combining these ingredients, we have:
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Theorem 6.3. Suppose p>pc and ε<ε0(p) = 0(ξ~2(p)). Then, for β sufficiently
large, the ferromagnetic infinite cluster is a.s. magnetized.

Proof. For any zeZ2, let #£(0 denote the event that the site i is in the infinite
ferromagnetic cluster. The magnetization of the infinite ferromagnetic cluster in
configuration J is defined6 by

ro£(/?, J)= liminf max Σ χ
a ieΛ

liminf
Λ?Z2 ieΛ I ieΛ

Ξm^OM). (6.7)

In the above, the maximum is taken over all boundary conditions on A, and AfTL2

through a van Hove sequence.
As in the proof of Theorem 2.3, we deal directly with the quantities {tf^^-t . To

this end, let Λc2L%2 and define the set of arrangements Γ(ί) to be all finite,
connected collections of boxes surrounding or containing the site i e A. This, in
turn, allows us to define ferromagnetically good and weakly antiferromagnetic
configurations with respect to the site i, denoted by GF

L (ί) and Gf(ϊ), respectively.
Let A denote the union oίAC 2LZ2 with the surrounding annulus of width 2L.

Now consider a configuration J e ̂ F^(i)r^GF

L(i)r\G^(i), restricted to the box A with
+ boundary conditions. It is clear that every contour y 6 Γ^(ί) has an energy
estimate

δj(i) ^ 2β(MJF - 4MRJA} = βJFM . (6.8)

Thus the standard Peierls-Griffiths estimate shows that

M = l

= s(β9L) for J6^(OnG£(OπGf(0. (6.9)

Denoting the complements of the events GF

L(ί) and Gf (ί) by BF

L(ί) and Bf(i)9 we
have

mζOM^m U/U)

^ lim [Σ ^sioΊ'1 Σ Xvξ,({>[s(β,L)χGF({>χGA(ί)-χBF(ί)-χBΛ({)']
^

O (6.10)

a.s. by the Birkhoff ergodic theorem.
Finally, using the Harris-FKG inequality [38, 37], we find that a.s.

. (6.11)

The lower bound is positive when L is large enough [i.e., L= 0(£(p))], if /I is a small
number [which is permitted when ε<ε0(p) — 0(ξ ~2(p))], and finally, when jβ is
large enough. D

6 Note that this is the analogue of the a.s. expression (2.11) for the total spontaneous
magnetization
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Corollary. If p>pc and ε<ε0(p)^0(ξ~2(pj), the Edwards-Anderson order para-
meter is a.s. positive for β large enough.

Proof. In [2], the Edwards-Anderson order parameter qEA was shown to be given
by the a.s. expression

9EA(0) = lim m3LX\Λ\-lΣ<σi>β,A + ( r)
Λ/12 α ieΛ.

Theorem 6.3 shows that

«EA08) ̂  Pao(p)s2(β, L) Prob(GD Prob(Gf ) , (6.12)

which may be made positive. D

(ii) The Spontaneous Magnetization. As stressed earlier, the existence of two or
more Gibbs states does not imply positivity of the spontaneous magnetization. The
most trivial example is that of a pure antiferromagnet below the Neel temperature
for which m(β) = 0. Nevertheless, it is reasonable to expect that for infinitesimal
amounts of antiferromagnetism, the spontaneous magnetization should be
positive, at least as the temperature tends to zero. This is established in
Theorem 6.5.

By the above reasoning, it initially seems that the behavior of the spontaneous
magnetization in a system with some antiferromagnetic couplings is of purely
academic interest. Indeed, the Edwards-Anderson order parameter is certainly
more appropriate for determining whether there is some type of magnetic long-
range order. However, given that gEA(/0>0, the value of the spontaneous
magnetization can be used to distinguished various types of magnetic order. In
deterministic systems, there are three cases of relevance. First, if m(β) assumes its
nominal value, the order is purely ferromagnetic. At the other extreme is the case of
pure antiferromagnetic order for which m(β) = 0, as noted above. The generic case
for mixed systems is that of ferrimagnetic order for which m(β) is positive but
smaller than its nominal value.

The spontaneous magnetization of a deterministic ferrite is calculated by
examining the relative moments of the constituents of the Wigner-Seitz unit cell. In
contrast, the spontaneous magnetization of random ferrites should be determined
by effects on the scale of the percolation correlation length. This is the content of
Theorem 6.6, in which we calculate the first order decrease in the nominal
spontaneous magnetization of the plus state at zero temperature. If the plus state
magnetization coincides with the true magnetization (which should be the case for
ε sufficiently small), this establishes the existence of ferrimagnetic order.

We begin with the following observation :

Lemma 6.4. For almost every configuration J,

m(β) = m(β, J) ̂  Px(p)m^x(β, J) - (

where m^ ^(β, J) is the magnetization of the ferromagnetic infinite cluster in the plus
state, as defined by Eq. (6.7).

Proof. Let Λ C 2LΈ2 and denote by ΉΛ(i) the event that IE A is in the connected
component of the boundary dΛ. Clearly <σί> j8>yl = 0 if Jφ^Λ(ί). Similarly, let



426 J. T. Chayes, L. Chayes, and J. Frόhlich

^(0 and ^ooCO denote the events that i is in the ferromagnetic and total infinite
clusters, respectively. Evidently,

m(β,J)= lim
α

1 Σ
ieΛ

μ4Γ 1 Σ
yί/Z 2 ieΛ

' [(^(oW-Jte..^ (6.13)

Let us examine the three terms separately. The first represents those sites which
are in the connected component of the boundary, but are not connected to infinity.
This is just a surface effect and vanishes in the limit A /*Z2.7 The second term, if
multiplied and divided by Σ X<e&(i)(J)> converges a.s. to P^(p)rάf^(β,J\ where

°°ieΛ

nip ^(β, J) is the plus state magnetization of the ferromagnetic infinite cluster, the
subject of Theorem 6.3. Ignoring the coefficient <σί) j8)Λ-1 (which we bound below
by —1), the third sum obviously converges a.s. to P^p + ε) — P^p). For future
reference, note that the individual terms [/^^(J) — ##F(ί)(J)] have the interesting
property that they are nonzero only if the site ί is connected to infinity exclusively
through paths containing antiferromagnetic bonds. D

We are now prepared to bound the (zero-temperature) magnetization by
quantities familiar in percolation theory. In order that the final expression has a
manageable form, we stipulate JA < JF (cf. Remark following proof of Theorem
6.5).

Theorem 6.5. Suppose p>pc and JA < JF. Then

dp

Note that this immediately implies :

Corollary. If p >pc and JA < JF, the zero-temperature spontaneous magnetization is
positive for ε sufficiently small

Proof of Theorem 6.5. In d = 2, for p Φ pc9 P^(p) is known to have derivatives of all
orders [29]. Thus we may replace P^(p + ε) — Poo(p) by εP'M(p) -f 0(ε2) in the lower
bound of the previous lemma. It suffices to show that lim nip 00(/?, J) = 1 + o(ε).

β^oo

Recall that the difference between m^ and 1 - in the limit /?-> oo - involves the
probabilities of bad ferromagnetic and antiferromagnetic configurations [cf. Eq.
(6.11)]. The former is independent of ε and depends only, albeit exponentially, on
the ratio L/ξ(p) of the coarse-graining scale to the correlation length. The latter

7 In d = 2, the probability that a given site is in a finite cluster of n bonds is known to be
bounded above [31] and below [41] by estimates of the form e ~c"1/2 for all p > pc. It is worth noting
that for d>2, the expected behavior for p > pc is e~cn(d~1)/d. However, while a lower bound of this
form has been established [41], an upper bound - which is what we would need here - has only
been proved for p near 1 [42]. For all d, the probability that a given site is in a cluster exceeding n
bonds is known [32] to decay exponentially (i.e., e~cn) whenever p<πc, with πc the point at
which the expected cluster size diverges
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depends on ε via Λ~εL2. Clearly, we must rescale L to drive the first quantity,
Prob(£f), to zero. Due to the exponential dependence on L, it suffices to take
L(ε)~ε~δ for some δ>0. Unfortunately, this sends Prob(£f(ε))~/lΛ(ε)~(εL2(ε))κ

to zero sublinearly in ε, destroying the desired bound on the magnetization.
Evidently, a little more care is required.

To this end, we modify our definition of weakly antiferromagnetic configur-
ations. This is done by distinguishing two classes of contours: those that only visit
boxes in the immediate vicinity of the origin, and those which are forced to break
many ferromagnetic seals. The latter are handled by the usual criterion. In
particular, we say that J e Gp1 if all arrangements of N^Ni >9 boxes contain
fewer than RN antiferromagnetic bonds. We choose N^ such that

1—Prob(G^'1)^ Σ e°2N(λe)RN = o(ε). (6.14)

(The existence of such an Nί is guaranteed provided that we take δ< 1/2.) Note
that N1 depends on δ and R, but is independent of ε.

The contours in the vicinity of the origin have always been handled by
conditioning (as we are doing here) on the event that the origin is part of the infinite
ferromagnetic cluster. However, in this case, we have the additional requirement
JA<JF. To exploit this, let us choose N2 to be the smallest integer such that all
arrangements of fewer than JVΊ boxes are contained in a block of N2 boxes
surrounding the origin. Then our energy estimate (6.8) for N^N2 remains
legitimate in those configurations J e Gf'2 with no more than one antiferromagne-
tic bond in the block of N? boxes. We have

Prob (Gi'2) ̂  1 - (const)(εJV2L
2)2 - 1 - o(ε), (6.15)

provided that ε2L4(ε) = o(ε). Again, this may be guaranteed by taking δ small
enough (e.g., δ = 1/5).

Thus, if we redefine weakly antiferromagnetic configurations by
G^G^nGf'2, it is possible to drive both Prob(££) and Prob(I^) to zero like

), while still retaining the original Peierls-Griffiths estimate. D

Remark. The condition JA < JF is necessary for the above theorem. In the opposite
case, JA^Jp, there is another effect of order ε. This occurs when there is an
antiferromagnetic bond lodged in the infinite cluster in the vicinity of the origin
(see Fig. 7a). Under such circumstances, a sufficient condition for <σ0>(J)>0 is
that the origin be multiply connected.

antiferromagnetic bond

• ferromagnetic bond

Fig. 7. a Antiferromagnetism lodged in infinite cluster, b Origin multiply connected
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In other words, in addition to the antiferromagnetic connection, there must
be a number (depending on JA/JF) of disjoint purely ferromagnetic paths
emanating from the origin (see Fig. 7b). It is possible (but nontrivial) to compute
explicit bounds on m(β) in, say, the case JF^JA< 2JF. However, it is clear that (1)
the modifications in our previous expression are of order ε, and (2) these
modifications are not related to any well-known quantities in percolation.

Next, we address the problem of showing that the antiferromagnetic dust
actually lowers the zero-temperature nominal magnetization, and determining by
how much. This requires an upper bound to complement the lower bound of
Theorem 6.5. Since as ε-»0, we expect that the magnetization is achieved by
applying + boundary conditions8, we address the question only for the plus state.

In order to calculate the zero-temperature decrease, it is instructive to consider
which percolation configurations contribute to the decrease. As noted earlier, the
term P^ + ε) — P^d?) represents the contribution of those sites which rely
crucially on antiferromagnetic bonds to achieve a connection to infinity. Let us see
how this situation can arise in terms of the two-stage process outlined in
Subsect. A. To first order in ε, this occurs at the site i only if (1) in the purely
ferromagnetic configuration, the site i is in a finite cluster which would be
connected to the infinite cluster if we were to insert a single bond in a crucial
location, and (2) an antiferromagnetic bond is inserted in that location. The
"crucial bond" referred to above is precisely an articulation (or pivotal) bond, a
notion introduced by Russo [43, 44] to describe a bond upon whose occupation a
particular event depends. If the situation described in (1) occurs at the bond i>, we
say that b is an articulation bond for the event ̂ (i) in configuration J. The set of
configurations in which b is an articulation bond for ^(i) will be denoted by
δ[ΉF

00(ί)']b. The full event described above is therefore

OLn{fr is occupied by an antiferromagnetic bond}. (6.16)

Clearly, the two events comprising (S[̂ (z)]* are independent, so that

Let us calculate the probability that the site i is connected to infinity exclusively
through paths containing antiferromagnetic bonds. First, there is the probability
that each of the paths contains only a single antiferromagnetic articulation bond.
Alternating bounds on this are given by inclusion-exclusion:

Prob
" J

- Σ Prob(5[<(0]?n5[<(OL* )+ - (6.17)
b*b'

By the ergodic theorem and the Russo formula [43], the first term above is exactly

ε — Prob (β^) = ε — -̂  . The exclusion terms are of order ε2 (and, indeed, finite due
dp dp

to the bounds on the finite cluster distribution [31] described earlier). To calculate

8 A proof of this natural conjecture seems to require uniform expansions in the presence of an
external field, which should be possible under the conditions of the present work (i.e., p>ρc, ε
sufficiently small and β sufficiently large)
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the complete effect, we must also compute the probability that each of the paths
contains two or more antlferromagnetic bonds (i.e., double and higher order
articulation events). This is clearly of order ε2. Moreover, when combined with the
various "exclusion pieces" previously discarded, this generates term by term the
higher order derivatives of P^Cp). Indeed, a detailed knowledge of the expansion of
PooCp) seems to be necessary for the analysis of nonperturbative effects of
antlferromagnetic impurities (see Subsect. C).

Given the foregoing discussion, we can now establish our final result:

Theorem 6.6. Suppose p>pc and JA<JF. Then for a.e. configuration J,

M)^ lim m+(β, J)^oo , 00
Up β~>ao /?-+oo Up

where m+(β,J) and m+(β,J) are the upper lower limits of the plus state
magnetization, i.e.,

m+OU^limsupμr
Λ?Z2 ieA

m+(β,J)= liminfμr1 Σ <σ<W GO-

<σt>β.Λ+V),

A

Proof. The lower bound is an immediate consequence of Theorem 6.5.
In order to prove the upper bound, we focus on those sites which are connected

exclusively through a single antlferromagnetic articulation bond. These sites will
provide the first order correction to the nominal zero-temperature magnetization
POO(P). To demonstrate that the correction is indeed — cP/

00(p) + o(ε), we shall
gauge transform up to the articulation bond, and determine the magnetization of
the transformed system using the "good-bad" estimates of Theorem 6.5.

By the previous discussion, the probability that a given site i is connected to
infinity exclusively through a single antlferromagnetic articulation bond is
£P/oo(p) + ̂ (ε2) [cf Eq. (6.17)]. If we further require that the articulation bond
occurs within the first nine boxes surrounding the site z, this probability is
modified by an additive factor of e~0(^\ according to the finite cluster size
distribution bounds [31, 41]. Let us denote by AL(ί) the above described event. We
have dp

Prob (AL(ί)) = ε — ̂  + 0(ε2) (6. 1 8)
dp

provided that L(ε) ~ ε ~ δ, <5 > 0.
In order to do the "good-bad" estimates of Theorem 6.5, let us restrict attention

to good configurations JeG£(z)nGf(z). Denoting the event of interest by

(6.19)

subadditivity gives us

Prob(^L, ,(0) ̂  Prob (AL(ίj) - Prob [(G£(ί)n G^(/))c] - (6.20)

By Theorem 6.5 and Eq. (6.18), this implies

(6.21)

provided that we choose δ properly (e.g., δ = 1/5).
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Consider a configuration J e sέL^ λ(i), restricted to a large regular box A C 2LZ2.
We claim that

(-σ.^^l-e-W), (6.22)

uniformly in \Λ\, for β sufficiently large. To see this, gauge transform all spins in the
connected cluster of σt up to the articulation bond. Then (6.22) is precisely the
Peierls-Griffiths estimate of Theorem 6.5, performed on the gauge transformed
system.

To prove the desired inequality, we now write m+ as the sum of several terms,
reminiscent of Eq. (6.13):

Λ ΊL2 ίeΛ

(6 23)

As before, the first term vanishes as Λ f Ί L 2 , and (bounding <(7f>^ 1) the second
converges a.s. to P^G?). By the discussion preceding the theorem, the fourth term is
of order 0(ε2). Our principal concern is the third term. For this, we bound <σί>j8>^1 +
above according to the estimate (6.22). By ergodicity, the remaining sum converges
a.s. to Prob(j3/LsA(0), which we bound by Eq. (6.21). D

Remark. As noted earlier, the principal distinction between d = 2 and d > 2 is that
in the former case 1 — π* = pc, i.e. whenever the infinite cluster is present, the dual
clusters are of finite expected size. It should be clear that the analysis presented
here extends to d>2 whenever p> I — π* .

C. Nonperturbatίve Effects of Antiferromagnetism:
Open Problems and Speculations

(i) The Random Antίferrίmagnetίc Phase. The previous subsection characterizes
the behavior of two-dimensional systems above the ferromagnetic threshold in
the presence of small amounts of antiferromagnetism. It is amusing to speculate
about the effects of large amounts of antiferromagnetism. It is probable that once
sξ2(p)JA/JF is of order unity, frustration becomes important. Eventually, effects
of this sort may disrupt the ferromagnetic order of the infinite cluster. (Whether
or not ordering of some type persists is not clear.) Systems with substantial
frustration - that is, spin glasses - are purported to exhibit dramatic dynamic
behavior.

Here we suggest a different mechanism by which ferrimagnetic systems can
exhibit path-dependent dynamics. In order to distinguish this effect from that of
frustration, it is convenient to assume that J ' A <ζ JFξ ~2(p). This allows us to neglect
the influence of antiferromagnetic bonds lodged within the infinite cluster. We
emphasize, however, that while such an assumption simplifies the analysis, the
effects discussed may occur even if the assumption is violated.

We have already seen (Theorem 6.6) that the first order effect of antiferromag-
netism is to decrease the plus state magnetization due to antiferromagnetic
connections of finite clusters to the (ferromagnetic) infinite cluster. This raises the
intriguing possibility that under certain conditions there is bulk antimagnetization,
i.e. the infinite cluster is magnetized, but the overall magnetization is in the
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m(6)

m+(£)

Fig. 8. Hypothetical behavior of random ferrites

opposite sense. That such a situation is possible follows from the observation that
for p>pc, the density of ferromagnetic bonds in the infinite cluster is P^(p)^ I,9

while the density of those in finite clusters is p — Pao(p)~p = 0(l). Thus, if the
predominant effect of antiferromagnetism is to connect finite clusters to the infinite
cluster through an odd number of antiferromagnetic bonds, it is possible to have
more spins aligned against the infinite cluster than aligned with it. Whether the
proviso of the previous sentence is satisfied (i.e., whether more spins are connected
through an odd number of antiferromagnetic bonds) represents a challenging
nonperturbative question in percolation theory. Indeed, it requires an analysis of
articulation events of all orders, as discussed in Subsect. B.

The existence of antimagnetized states is entirely consistent with thermody-
namic considerations. Indeed, later in this section, we shall present a model of a
random system which exhibits antimagnetization. First, however, let us examine,
on a heuristic level, the thermodynamic and dynamic behavior of antimagnetized
systems.

For simplicity, we restrict attention to only two Gibbs states: those generated
by plus and minus boundary conditions. The distinguished theίmodynamic
property of an antimagnetized system is that the state obtained in the limit of
infinitesimal positive external fields (i.e., /z->0+) disagrees with that generated by
plus boundary conditions. This means that the spontaneous magnetization is not
computed from plus boundary conditions, despite the presence of long-range
ferromagnetic order. This is illustrated in Fig. 8, in which we give a schematic
graph of the actual and plus state magnetizations, m and ra+, of an idealized system
as functions of the antiferromagnetic density ε. In this hypothetical system, there is
a random ferrimagnetic phase in which m and m+ agree, a random antiferrimagnetic
phase of antimagnetized states and, finally, a completely frustrated phase with no
ferromagnetic long-range order.

A purely thermodynamic consequence of antimagnetization should be the
existence of a realignment transition at a critical value of the external field. To see
this, let us start with (say) the state obtained from minus boundary conditions. This

9 Recall that Px(p) is known to be continuous in d = 2 [43], so that 1 for p near pc
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state should be "stable" to a small, positive magnetic field since the disagreement
between the infinite ferromagnetic cluster and the external field is more than
compensated by the agreement between the field and the finite anticonnected
clusters. However, for sufficiently large external field, the infinite cluster must align
with the field. This implies that there is a critical field, hr, which causes realignment.
Moreover, since an infinite connected object must realign, we expect that the
system has large scale inhomogeneities whenever h is near hr.

The above considerations suggest that antimagnetized systems exhibit interes-
ting dynamics. Indeed, consider the dynamics as a strong, positive external field is
taken to zero. If the field is removed adiabatically, the system presumably settles
down into the state in which the majority of spins are plus, and hence the infinite
cluster is minus. On the other hand, if the field is shut off instantaneously, one is
compelled to argue that the system settles into the state in which the infinite cluster
is plus magnetized. Indeed, while there is an infinite energy barrier against flipping
the ferromagnetic cluster, the anticonnected finite clusters may easily flip, one at a
time. The above, simple-minded example suggests that mechanisms other than
frustration may be responsible for some of the observed path-dependent behavior
of random magnetic systems.

It should be emphasized that as strange as the effects described above may
seem, these effects are a natural (albeit nonrigorous) consequence of the existence
of an antimagnetized state, which in turn depends exclusively on the nature of
typical coupling configurations of the measure dR(J). In other words, the question
of whether there is a random antiferrimagnetic phase in the systems discussed here
- and hence, of whether these effects can occur - is an issue in percolation theory,
not statistical mechanics. For the Z2 Bernoulli system, the question is complicated
by the fact that if the antiferrimagnetic phase occurs, it is likely to be an
intermediate phase, and thus is difficult to study by perturbative techniques.

Below we consider percolation on a lattice consisting of two types of sites, with
a structure typical of that which occurs in real ferrites. For this system,
antiferrimagnetism occurs in an extreme (i.e., not intermediate) phase. We are thus
able to use the perturbative techniques developed earlier to prove that the phase
persists in the presence of random impurities.

The crystal, consisting of sites of type α and b, is shown in Fig. 9. Each of the
three types of nearest neighbor couplings (αα, bb, and ab) is taken to be an i.i.d.
random variable which can assume only three values, as in Eq. (6.1). Here,
however, the values and densities are different for the different types of bonds, and

Q-Q

Fig. 9. A ferrite crystal
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will be distinguished by superscripts. When paa = pbb=pab = l^ the system is
completely ferromagnetic with zero-temperature magnetization/cell = + 5. When
paa = pbb = sab=l^ the system is antiferrimagnetic with zero-temperature mag-
netization/cell = +3. (Note that the plus state zero-temperature magnetization/cell
= - 3.) It follows that there is a realignment transition as we vary the ab parameter.
Moreover, the obvious (but tedious) extension of the techniques of Subsect. B
shows that the behavior of the system in either of the above two limits is stable to
random impurities.

(ii) Relationship to the Random Field Ising Model It has been argued [27,45-48]
that random magnetic systems provide experimental realizations of the random
field Ising model (RFIM), in the sense that a random system in a uniform field may
be mapped into a purely ferromagnetic system in a random field. For example
[46], if the random magnetic system has i.i.d. site disorder:

j f = _ J X τ^jσ^j-hΣσ^ (6.24)
<ij> i

the mapping is accomplished via a straightforward gauge transformation:

#=-3 Σ Wlτ^-ΛΣj^U. (6.25)
<U> i l τ i l

In the special case in which the τi have mean exactly zero, and a perfectly
symmetric distribution about the mean, the transformed system is indeed an
RFIM. However, this result is of questionable physical interest since it seems to
depend on the above two conditions, neither of which are experimentally
realizable.

A more interesting set of examples was proposed by Fishman and Aharony [27],
who argued that any random system which exhibits antiferromagnetic ordering
can be mapped into an RFIM. However, the transformation is not exact it induces
short range correlations between the "random" fields and effective couplings
which are argued to be irrelevant near the critical point.

Given that the mapping of Fishman and Aharony is not exact, and that the
correlations may tend to order the transformed systems relative to the RFIM, it is
of some interest to study the untransformed systems. Indeed, among the
untransformed systems considered in [27] are those for which the coupling
distribution satisfies Jtj < — JA < 0. These will clearly order at zero temperature in
a small uniform field in d = 2, whereas such ordering is not expected ind = 2 for the
RFIM [45]. Having dispensed with this rather obvious set of (zero-temperature)
counterexamples, the interesting question is to determine which other coupling
distributions satisfy the Fishman and Aharony criterion (i.e., which distributions
produce antiferromagnetic order in the absence of an external field). This can be
ascertained by transforming the results of the previous sections. In particular,
assuming pc = p™, the necessary and sufficient condition for systems with only
dilution impurities is that the antiferromagnetic density exceed the percolation
threshold. For two-dimensional systems with some ferromagnetic impurities, it is
sufficient that the antiferromagnetic bonds percolate and that the ferromagnetic
density be less than ε0(p)
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We have no results on whether a field alters the lower critical dimension of the
systems discussed above. However, in order to illustrate the purported relation-
ship of the systems considered in this paper (and their gauge transforms) to the
RFIM, below we provide a heuristic mapping of an antiferromagnetic system with
dilution impurities. We caution the reader that this mapping does not produce a
"true" RFIM.

Consider a system with i.i.d. nearest neighbor coupling distribution

1— J± with probability p,

— J2 with probability ε, (6.26)

0 with probability 1 — p — ε,

with p < pc and ε <ξ 1, but p + ε > p™. Assume further that | J1 \ > | J2|. The structure of
the configurations is most easily visualized in terms of the two-step process
outlined earlier. First, bonds of strength —J1 are distributed with density p. Since
p<pc, these bonds form large, but finite clusters. Next, antiferromagnetism of
strength — J2 is distributed with density ε/(l — p) among the unoccupied bonds.
The effect is to connect an infinite subcollection of the — J1 clusters, ̂ 1?..., ̂ fc,...,
to form an infinite cluster. By Theorem 4.3, in the absence of a field the system
exhibits antiferromagnetic ordering with (at least) two ordered states. For
definiteness, let us consider the state in which the sublattice containing the origin is
up. Denoting this sublattice by 1L1 and the other by IL2, we may define lattice
indicators

and the cluster spin variables

S * = τ ^ ϊ Σ t o (6-28)

If IJΊ/JI > 1 while \βJ2\ = 0(1), then with overwhelming probability, the clusters will
be frozen and the spin degree of freedom will be accurately described by the {SJ.
For this range of parameters, we may integrate out all other degrees of freedom to
obtain an effective Hamiltonian in the {Sk} variables with ferromagnetic
interactions. (Furthermore, for ε sufficiently small, the vast majority of the
interactions are pairwise.) The effect of a uniform magnetic field on the original
variables is two-fold. First, it alters the nature of the effective interaction between
cluster variables in an essentially uncontrolled fashion - indeed, it is this effect
which could invalidate the mapping into an RFIM. The second effect, however, is
quite clear. The cluster variables {Sk} couple linearly to a random field given by

Hk = hΣlt, (6.29)
ieVk

where h is the strength of the uniform field applied to the original system. Note that
the Hk are i.i.d. random variables with mean zero (and, of equal importance, with
distribution symmetric about zero). Thus, the fluctuating degrees of freedom are
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described by an effective Hamiltonian of the form

^eff = < 0̂ + Σ HkSk >
k (6.30)

Jt?0= - Σ JvfStSj + higher body terms .
<i,j>

Again, we emphasize that the J*jf are not simply the ferromagnetic couplings one
obtains in the absence of an external field.

The previous example suggests another class of random magnetic systems, not
considered by Fishman and Aharony, which are candidates for realizations of the
RFIM. Consider systems similar to those just analyzed in which the predominant
antiferromagnetic coupling has been replaced by a ferromagnetic coupling JF.
(These are just the case 2 systems of Subsect. A.) Here, the ferromagnetic bonds
form large clusters of finite expected size. The addition of antiferromagnetic bonds
has two effects. First, these bonds may lodge within the ferromagnetic clusters, an
effect which should be controllable provided that \JA/JF\ is sufficiently small on the
scale of p — pc. Second, the antiferromagnetic bonds will connect an infinite
collection of these ferromagnetic clusters to form the (p -f ε)-infinite cluster.

For β such that βJF^>l while βJA = 0(\), the ferromagnetic clusters may be
accurately described by "block" variables. This raises the interesting possibility
that the block variables exhibit long-range order for some regime of parameters.
Were this to occur, we would not classify it as spin glass order. Indeed, such order
should only occur if it is possible to find a gauge transformation {μt = ± l\ί e ΊLd]
such that the effective Hamiltonian is of the form

^eff=- Σ </••%$; + higher body terms,
<u>
! (6.31)

S k = T Σ μfli,

with the Jfj{ predominantly ferromagnetic. By definition, this means that the
original system is minimally frustrated. Note that this would imply that the block
variables are ferromagnetically ordered, although the original variables are only
ordered in the sense of #EA > 0.

It is not clear to the authors whether such effects actually occur for some range
of parameters. An affirmative answer would not only be of interest in its own right;
it would also provide another potential realization of the RFIM. As before, an
external field of uniform strength h applied to the original system transforms into a
random field

Hk = h Σ μt (6-32)
ieVk

in the block system. Again, however, the additional effect of local correlations
between the cluster couplings makes it unclear whether the purely ferromagnetic
RFIM is a "good approximation."
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