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Abstract. Let Hy be the 2N particle Hamiltonian

HN‘Z( Az)+ Z IX"XI 1+ Z |x1+N xJ+N

i<j=1 i<j=1
ul 1

— X Xl
i,j=1

where 4, s the Laplacian in the variable x; € R3, 1 <i<2N. The operator H  is
assumed to act on wave functions y(Xi,...,Xy; Xy41»..-»Xy) Which are
symmetric in the variables (x,,...,Xxy) and (Xy4q,...,X,y). Suppose y is
supported in a set A?Y, where A is a cube in R3. It is shown that if a normalized
wave function v can be written as a product of two wave functions

P15 e X5 Xy 1 s X2N) = P1(X 15 oo XW)P2 (X415 005 X2n)

and the density of particles in A is constant, then (y|Hy|w) = — CN7/? for some
universal constant C.

1. Introduction

In this paper we study the ground state energy of a Bose gas consisting of equal
numbers of positive and negative particles interacting via a Coulomb potential.
Thus, if the gas contains 2N particles with the N negative particles being located at
positions x;,...,xy€R3, and the positive particles at xy,q, ..., X,y €R3, its
Hamiltonian Hy is given by

N
Hy= Z( 4)+ Z X, — x|~ T+ Z X e n— x1+1v| Z Ixi“xj+1v|~1

i<j=1 i<j=1 i,j=1 (11)
Here 4; denotes the Laplacian in the variable x;, 1 <i<2N.
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We consider H  acting on wave functions y(x,, ..., X,y) in IZ(IR®") which are
in the domain of the unique self-adjoint operator corresponding to H . We assume
1 satisfies Bose statistics. Thus we take i to be invariant under all permutations of
the variables (x, ..., xy) and (xy, 1, -.., X,5)- Let o(x) be the one point function for
P, SO

2N
o(x)= ‘gl TP (X1 ees X4 15X X 15 -os o)A, (1.2)
We define a function f(x) as f(x) is the largest value 4, such that
e(dy=1. (1.3)
lx~yl<1/4

The function f(x) was introduced in [2]. It is an average value of the one third
power of the density at x.
We may now state our main result as follows:

Theorem 1.1. Let A be a cube in IR3, and suppose that w(x, ..., X,y) is supported in
A?N. Define the density g by 0 = N/vol A. Assume that there is a universal constant b
such that f(x)<bo'® for all xe A. Then if v factors into a product of two wave
functions,

P15 oo Xon) =P 1(X 15 oees XY (X4 15005 X2n) 5 (1.4)
there is a constant C(b) depending only on b such that
Cp, Hyyp)Z — C(O)NT. (1.5)

At the end of Sect. 4 we estimate the value of the constant C(b) in the
asymptotic sense N »o00. We obtain the value C(b)=6.5.

Theorem 1.1 was motivated by the work of Dyson and Lenard [3,4]. In
particular Dyson and Lenard [4] obtained the result:

Theorem 1.2. There is a universal constant C such that for all p in the domain of H
(p, Hypyz —CN3P. (1.6)
Dyson [3] proved the following:

Theorem 1.3. There is a universal constant C and wave functions ypy such that
Cpy, Hypyy < —CNP2. (1.7)

Dyson used Bogoliubov’s method [1, 10] to construct the wave functions yp of
Theorem 1.3. Bogoliubov’s method will also be the key ingredient in our proof of
Theorem 1.1. Theorem 1.1 is a converse result to Theorem 1.3 but with two
restrictions. These are (a) the assumption that there is no correlation between
positive and negative particles, (b) that the density of the gas is constant.

Consider a wave function p(x,,...,xy) and let Ky be the kinetic energy
operator on y. Thus

N
Ky= 2 (~4), (1.8)
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where 4, is the Laplacian in the x; variable. The one and two point functions g(x),
o(x, y) for p are given by

Q(X)‘— Z .“Wi (x1>~-- Xi—15X, x1+19"'axN)d)ei> (19)

ox,y)= Z “‘Plz(xu s X 15X Xjp 15 s Xj— 15 Vs Xjg 15 ..,’xN)d)ei,j' (1.10)
We define the exchange energy &(|y|?) by

1oo(x,y) 1ere(x)e(y)
(P === dxdy— || =—"=="dxdy. 1.11
(=318 oy v 510 oy Xy (L.11)

Now observe that for a wave function y of the form (1.4) the attractive
Coulomb energy in {y, Hyyp) occurs as

jjgll(x)_@"?y)d dy (1.12)
where g,(x) and g,(y) are the one point functions for y, and 1y, respectively as
defined by (1.9). The expression (1.12) is evidently bounded below by

1c04(x)0:1(») 102(0)05(9)
R ey S T2 dxdy. (1.13)

It therefore follows that it is sufficient to prove Theorem 1.1 in the case p; =y,. If
P, =y, =p(x4, ..., Xy), then the left side of (1.5) is twice the expression

Cp, Kyp> +6(1pl?) - (1.14)

Observe that kinetic energy scales as length squared while Coulomb energy
scales as length. We state now a scale invariant theorem which is equivalent to
Theorem 1.1:

Theorem 1.4. Let A be a cube in R and suppose that y(x,, ..., xy) is a function
supported in A", symmetric in the variables (x,, ..., xy). Let o=N/VolA be the
density, and assume that there is a universal constant b such that {(x) <bo'’® for all
x € A. Then there is a constant C(b) depending only on b such that for any o, — 00 <o
<00,

N* ~
W@,Kwﬂf(lwlz)z—C(b)N”S !3. (1.15)

It is evident that Theorem 1.4 implies Theorem 1.1 since for any density ¢ we
may always choose « with ¢*/*=N® On the other hand for any «, Theorem 1.1
implies that (1.15) holds when ¢*/* = N*. It then follows by scaling that (1.15) holds
for all values of g. Thus Theorems 1.1 and 1.4 are equivalent.

It is interesting to compare (1.15) with Foldy’s ¢*/* law [6] for Bose gases with
Coulomb interaction. Foldy suggests that for a gas of constant density ¢ in a box 4

Cp, Kyp) +E(lpl*) = — CNo'*, (1.16)
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at high density, where the lower bound on the right is actually achieved by a
Bogoliubov wave function. For (1.15) and (1.16) to be consistent we take o'/ = N,
which implies

N75=Ng'/* = oU4+=N2/5 = g=4~. 1.17)

When « > 8/15, the effect of the Dirichlet boundary conditions on A are dominant
in the energy, and so the energy is nonnegative. For a < 8/15 we construct in Sect. 5
a wave function achieving the lower bound in (1.15). It is clear that this wave
function has no longer constant density in A. It is likely that it corresponds to a
constant density wave function supported on a subbox of A with density ¢’ given
by o/1/3 = N8/15—2y1/3,

Our aim here is first to discuss Bogoliubov’s method at a heuristic level and
then proceed from there to a rigorous proof of Theorem 1.4.

2. Bogoliubov’s Method

We consider N Bosons in a box Q with side of length L which interact via a
potential ¢(x) which is periodic on Q. Thus ¢(x) may be written as a Fourier series

Pp(x)= keZZZ v(k)e?mik - *IL @.1)

We shall assume from here on that ¢(x) is positive definite so v(k) >0 for all ke Z>.
The essence of Bogoliubov’s method is to write the Hamiltonian for the N

Bosons in second quantised form. Thus for each keZ® we introduce the

annihilation operator a,, which satisfies the commutation relations

L, a]=06,m, k,meZ?. (2.2)

If the kinetic energy operator K, of (1.8) acts on wave functions y(x, ..., Xy)
periodic on QV, then Ky may be written in the second quantised form as

_4n?

an 2 %
Ky= 2 k§3k ata,. 2.3)
The number operator » is defined by
=Y afa,. 2.4)
keZ3

Evidently v is an eigenfunction of » with eigenvalue N.

Next we turn to the potential energy. We wish to express the exchange energy
(1.11) corresponding to the potential ¢ in second quantised form. The first term is
given by

1§ 0Cx, y)d(x — y)dxdy =yl 2o VR, ) 2.5)
We may write the expression (2.5) more simply by defining the operator A, as
A= 3 afiiay. (2.6)
neZ3
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Then, on using the commutation relations (2.2), we have

I§ o(x, Y)p(x— y)dxdy = % v(k) [<ylAF Aily> —NT. @7
The second term in the exchange energy (1.11) may be written as
1§ 0(x)e(y)(x — y)dxdy = §V(k) [<wl Alp)P . 2.8)
Hence we have in all
f(lw{2)=%§V(k) [l A Al —I<pl Ay = NT. 2.9)
Now let us write
Jw) =l AF Alp) — [Kwl Ailp)I* =N . (2.10)
It is evident by the Schwarz inequality that
Jip)2 —N, (2.11)
and thus we obtain a lower bound on the exchange energy
E(lpl)z —%N§V(k)- (2.12)

The bound (2.12) has already been obtained by Lieb [9].

We observe here that the estimate (2.11) is not necessarily a good one. We can
casily see that the v(k) term in (2.5) is nonzero only if there are particles with
momentum m, where |m| > |k|/2. The same is true of the v(k) term in (2.8). Hence if
the estimate (2.11) is to be good there must exist particles with kinetic energy at
least |k|?/4. Bogoliubov’s method shows us how to construct wave functions 1 for
which (2.11) is a good estimate but at the least cost of kinetic energy.

In Bogoliubov’s method we assume that most particles are in the zero
momentum state. Thus we may approximate A; by

A, =N'"[af+a,], (2.13)
which in turn yields

)2 N[{ylafa+ gfa + aua+aiai v) — Kylak + g lp)lP]. (2.14)

Now it turns out that we are not justified in assuming most particles are in the zero

momentum state. However we may assume that most particles are in states a,, with
|m|<vy. Thus we approximate A, by

A= Y Anlagiitan—id, 2.15)

Iml<y
where /2 is the number of particles in the a,, state, |m|<y. Hence we take
> ii=N. (2.16)

fm| =y
Our first goal here is to find out, assuming the approximation (2.15), the least
cost in terms of kinetic energy of constructing a state y for which (2.11) is a good
estimate. Our situation is the following: We have two sets of Boson operators a;, b;,
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i=1,...,n, corresponding to the a,, , d,, —, With |m| <y in (2.15). Let 4,,...,4, bea
set of real parameters satisfying the equality

é‘l J2=N. 2.17)
We define operators S and T by
S— i_il La; T= é b, (2.18)
and J(p) by
J)=p|S*S+ T*T+ST+S*T* )y —|[<w|S*+ Tly)|*. (2.19)

We wish to find a lower bound to the expression

J)+Cwle 3 2latactbrbd v (220

for various values of the parameters 4; and ¢>0. The second term in (2.20) will
come in the rigorous theory from the kinetic energy.

It is possible to come up with a precise lower bound for (2.20) since we may
diagonalise it by using Bogoliubov transformations. Let a=(ay,...,a,) and b
=(by, ..., b,) be the n dimensional vectors made out of the g; and b;. For 2n x 2n
matrices M we define transformations

[ba*} -M [Cﬂ . 2.21)

Here w=(y,...,n,) and {=({,,...,{,) are vectors made out of operators. The
matrix M is a Bogoliubov transformation if M satisfies the identity

I o7 1 o
M [o _I]M—[O _J, (2.22)

where I is the identity n x n matrix. If the g; and b; satisfy canonical commutation
relations and M is a Bogoliubov transformation, then so also do the 7;, {;.

The first term in J(y) and the second term in (2.20) are the expected value of
operators quadratic in a;, b;. We write the sum of these two terms in matrix form.
Let C=(c;;) and D=(d;;) be n x n matrices defined by

Then the sum of these two terms is given by
a|*C+D C a N
— 3 A1 . 2.24
<wl[b*} [ ¢ ca D] [b] Wy = X (40 (2.24)

Observe that since ¢> 0, the matrix

C+D C
A
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is positive definite provided all the ; are nonzero. If one of the 4, is zero then we
may take a smaller value of n for our problem so there is no loss of generality in
assuming all the 4, nonzero. It follows then, on making this assumption, that there
is a matrix M which satisfies (2.22) and also diagonalises (2.25), so

O

C+D C o
* M= " . .
M |: c C—I—D] 8, (2.26)

The matrix term in (2.24) is therefore given by
<yl ,; anin+ -=21 BLilElw) =<yl _;1 oM
+ 3 B+ T B (2.27)

Next we wish to compute the eigenvalues o, f§; in terms of the 4; and . These are
given as the solutions p to the eigenvalue equation

C+D C \J v
[ C C+D:I[w} zﬂ[—w]’ (2.28)

where v= (v, ...,v,) and w=(wy, ..., w,) are n dimensional vectors. In order for
(2.22) to hold, the v and w must satisfy the normalisation condition

V2—w2=+1. (2.29)

Now let A=(44, ..., 4,) be the n dimensional vector corresponding to the A;. Then
Egs. (2.28) may be written as

V4w, A+ (D—pv=0,
V4w, MM D +pw=0.
It follows that there are constants x and y such that
(D—pwyv=xk; D+ww=yk. (2.31)
Thus, if we assume that (D + p) are invertible, it follows from (2.30) and (2.31) that
A1+ =)0, 2)]4+ )P+ ™ R A =0,
X{(D—w)" "KW+ y[1+{D+p)~ "%, 1>]=0.
For (2.32) to have a nonzero solution (x, y) we must have
(D= "MA+{D+w "1 +1=0. (2.33)
We may write (2.33) in terms of the 1, ¢ as
noo )2 noo)2

i;1 eAF—pu + i=z1 el +u

(2.30)

(2.32)

+1=0. (2.34)

Suppose the A? are all different with
0<Ai<ii<..<Ai. (2.35)
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Then it is clear that there are zeros 4, ..., 8, of (2.34) with
A< Bi<ed3<B,<eli<...<eli<p,. (2.36)

These are the §; which occur in (2.27). We may take the o; in (2.27) as a;=p,
i=1,...,n, and hence we have defined the «; and f; in terms of the 4, . In the case
where A? =42, |, then B, =¢l?.

We wish now to show that

<yl ; i+ ~=21 BLEGIp> Z Kl S* + Tlw)l? . (2.37)
It will follow then from (2.37) that (2.20) is bounded below by
-‘—\:1 Bi— _Zl M1 +e). (2.38)
To prove (2.37) we first observe from (2.21) that
S+ T*=[h 2] [ba*] (MMM [gi] : (2.39)

It is evident from (2.28) that the matrix M, which is made up of the 2n linearly
independent solution of (2.28), has the form

Vv w
= 2.4
M [W V] : (2.40)
where V and W are n x n matrices. Hence (2.39) yields
S+T*=MV+Wm+MV+W)E*. (2.41)

It follows then from the Schwarz inequality that

[KplS*+ Tl I* =<yl S+ T*|p)I*
S22yl (V+W)*C(V+ Wiy +2{l8*(V + W)*C(V+ W)k |w) . (2.42)

It is clear that in terms of quadratic forms we have the inequality

Cc C C+D C
<
o ol=l ol =
On applying the transformation M to the matrices in (2.43) this becomes
31
A A o
< " 4
[ 4 A] < 5| (2.44)
i

where A is the matrix

A=V+W)*C(V+W). (2.45)
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By applying (2.44) to vectors of the form [u, u] where uis n dimensional, and noting
that o;=f, i=1, ..., n, we conclude from (2.44) that

24< [“1 } (2.46)
an

The result (2.37) follows from (2.42) and (2.46).
We turn now to the expression (2.38). It is clear from (2.36) that we have
Jy)z—N, (2.47)

which corresponds to (2.11). We improve (2.47) by making better estimates on the
B; than in (2.36). We have the following:

Lemma 2.1. For fixed n, N, ¢, there is the inequality

S e 3 22(148)2 Nn~ (2 +2em) P —g/n—1], (2.48)
i=1 i=1
and equality is obtained if all the A? are equal.
Proof. We define g(u) by "2
g = i; T (2.49)

and it is evident that g’(u) >0, so g(u) is an increasing function. Equation (2.34) is
the same as

g +9(—w+1=0. (2.50)
For u>0 it is easy to see that g(— p) is bounded above by

g(—w= (2.51)

eN/n+p’

where equality holds if all the A7 are equal. Hence the sum of the positive roots of
(2.50) are bounded below by the sum of the positive roots of

g(w)+ +1=0. (2.52)

N
eN/n+u

Equation (2.52) has n positive roots which we write y, ..., y,, and one negative
root which we denote by — 0. By examining the coefficients of (2.52) we have the
identity

y;—0=eN—¢eN/n. (2.53)

vy

It

i=1

Next we change 4 to —u so that § becomes the unique positive root of

eNn—1 +g(—w+1=0. (2.54)
Using (2.51) again we conclude that ¢ is bounded below by the positive root of
N N

N o t10 (2.55)
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It is easy to calculate the roots of (2.55), and so we obtain
8= Nn~1(e*+2en)t/?. (2.56)
Thus from (2.53) we have

> Bi— X A(1+e= X 9~ N(l+eg=0—eN/n—N
i=1 i=1 i=1

= N[n (2 +2en)*?—¢/n—17, (2.57)

which is the inequality we wished to prove.

In the case when all the A? are equal, n— 1 of the positive roots of (2.50) are given
by eN/n, while the n'® root is the positive root of (2.55). Thus we get equality in
(248). Q.E.D.

From (2.20) and (2.48) we have the inequality
JW)= —e Y AEN;+N[n ' (e +2en)'*—¢/n—1], (2.58)
i=1

where N; is the number of particles in the momentum states g;, b;, so
N;=<ylafa;+bib;ly) . (2.59)
Let us suppose that ¢ is large, so we may expand the square root in (2.58) as
n
2¢

Further let us suppose all the N; are identical, N;=x, i=1, ..., n, and all the A} are
the same. Thus from (2.58) and (2.60) we have for large ¢,

n-1(82+2sn)1/2=1+§— Fo (2.60)

J(p)= —eNk—Nn/2¢. (2.61)
We can minimize the right side of (2.61) with respect to ¢&. The minimum occurs for
% =n/2k, which yields

J(p)= —)/2N ()2 (2.62)

Hence it seems from (2.62) that we need « of the order of 1/n to achieve the lower
bound in (2.47).

We wish next to state our conclusions from the previous calculations as a kind
of principle and apply this principle to the Coulomb gas.

Bogoliubov’s Principle. Let N and n be fixed. Then, to construct a wave functionyp at
least cost of kinetic energy with J(y) of order — N, one should take all the .} equal
and all the N, of order 1/n.

We consider a Coulombic gas in the cube Q. Thus we may take v(k) to be
v(k)=1/L|k|*. (2.63)

We put most of the Bosons in the states a,, with [m| <y, with an equal number 7 in
each state. Thus we have

N~y3y. (2.64)
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For y<|k|< T, we put 1/y® Bosons in each state a,. Hence for such k we have,
according to our principle,

J(p)~—N. (2.65)

Next we compute the energy for such a wave function. The kinetic energy is
about

v/ + T332 (2.66)

For potential energy note that with |k| < T we have the approximation (2.65), while
for |k|> T we may take J, (y)~0. Hence potential energy is about

1 T
o = 2.67
Thus we have Ik|Z<T Lik? L (2.67)

gmw, Kyp)+E(p) > {N*[N'Py? + T3 [p>N?P1—= TN} o' 3. (2.68)

If for fixed T we minimize the right side of (2.68) with respect to y we obtain

{CN*~11ST2 _TN3} 13 (2.69)
where C is a universal constant. On minimizing (2.69) for T>0 we get
— CN757 %13 (2.70)

for some constant C>0.

In the next two sections we shall be concerned with making the above
heuristics rigorous and so prove Theorem 1.4. There are two things to be done.
First we must approximate the Coulomb potential by a potential which is periodic
on Q. Second we need to deal with the quartic nature of J,(y). In Bogoliubov’s
method J, () was reduced to an expression quadratic in the operators g,. In the
rigorous theory we shall make the kinetic energy quartic by using the fact that y is
an eigenfunction of the number operator.

3. Approximating the Coulomb Potential by a Periodic Potential

Our first purpose here is to show that we may restrict the range of « to the region
2/5<a<2/3. To show this we need two lemmas, the first of which is well known.

Lemma 3.1. Let y, Ky, A be as in Theorem 1.4. Then there is a universal constant C
such that
(p, Kyp) = CN'Pp?3 (3.1

Proof. On using the inequality of Hoffman-Ostenhoff [7] and the uncertainty
principle [11] we have

K2 [V aPdrz ] 5 ax

X

= C(volA)™ 23 | o(x)dx = CN*3p213 (3.2)
A
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Lemma 3.1 gives a lower bound on the kinetic energy. Our next lemma gives a
lower bound on the exchange energy.

Lemma 3.2. Let ¢, A, b, be as in Theorem 1.4. Then there is a constant C(b)
depending only on b such that

Sz — COI[Ne' ™+ [/ o= ')/ e(x)dx]. (3.3)

Proof. Let &, denote the exchange energy corresponding to the potential ¢(x).
Then it is known [2] that

E4(lpl) 2 —IN§(0), (3.4)
provided ¢(x) is a positive definite function. We write the Coulomb potential 1/r as
lr= | e "du, (3.5)
0
and take ¢(x) as
01/3
$x)= | e “du, (3.6)
0

whence we have from (3.4) that
Ey(lp*)Z —3No' . (3.7
It follows then that the Coulomb exchange energy &(|y|?) satisfies the inequality
1 1eo(X)e) _ispx-
2> _ N3 _ L o 3x—y]
EpP)z — 5 No' =[5 me dxdy. (3.8)

We need to bound the second term on the right in (3.8) appropriately. First
observe that

2(x)e(y) dxdygc[bNQm—l- 511/5(—4)1/2\/50‘)‘“]’ (3.9)

Ix—yl<1/ei |X—)l|

for some universal constant C. This follows from the fact that f(x) <bg'/* for x e A
and the Fefferman-Phong technique [5]. The argument is presented in full in [2].
Next we have

o(x)o(y) -
lx—y>1/bg1/3 X — Y|

o(x)o(y)dxdy . (3.10)

P Adxdy < io‘, bo'3r~te~ "
r=1

‘ |x =yl <(r+1)/bet/3
Again using the fact that f(x) <bg'/3, we see that
e(dysCr?, (.11

|x—y|<(r+1)/bg'/3

for some universal constant C.
The result (3.3) follows now from (3.8), (3.9), (3.10), and (3.11). Q.E.D.
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Theorem 3.3. Theorem 1.4 holds if «<2/5 or a>2/3.
Proof. We observe that

N* N®
507 P K> 25w [ (= D) e()dx 2 Co) [}/ o(= )%/ alx)dx
—C(b)?27 N1 %3, (3.12)
Thus from (3.3) and (3.1) we have that

% (p, Ky +E(pl) 2 C NP 7% P — Co(b)Ne'* — C3(b)N' ~%'* . (3.13)

Itisevident that for « <2/5 the above is bounded below by the right side of (1.15). If
o>2/3 then for large N it is positive, in which case it is also bounded below by the
right side of (1.15). We have proved the theorem. Q.E.D.

Theorem 3.3 shows us that we need only prove Theorem 1.4 for a in the region
2/5 20 <2/3+ 15 for some > 0. From now on we shall restrict ourselves to such a.
There is a particular value of « in this region, namely a=38/15, which has
significance for us. The reason is that this value of « solves the equation

N1/3+a:N7/5—a' (314)

Since the kinetic energy term in (1.15) is bounded below by a positive constant
times N1/3+%91/3 we should for o > 8/15 bound the potential energy terms in (1.15)
by a negative constant times N> *%!/3 while for & < 8/15 by a negative constant
times N7/5~%g1/3,

Equation (3.5) represents the Coulomb potential as an integral. Next we
subtract off parts of this integral and bound the corresponding exchange energies
in a similar spirit to that used in Theorem 3.3.

Lemma 3.4. For 2/5<a<8/15, let ¢,(x) be the potential defined by

ol/3N2/5-« ©
b)= | e du+ | e Mgy, (3.15)
0 Ql/3N%/2-1/5
Then there is a constant C(b) depending only on b such that
N _
W@, Kyp)+ 6,4 (Ip1*)Z — C())N*~%'/3. (3.16)
Proof. The potential ¢,(x) has been written as a sum of two terms,
Po(x) =P (x) + Px(x) , (3.17)
with @,(x) given by QAN
o, (x)= | e dy, (3.18)
0
From (3.4) we see that
Eo,(w|)Z —FNTP %!, (3.19)

We therefore have only to deal with @,.
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It will be sufficient for us to show that

Na
215 (p, Ky — 3l 0(x)e(n)@o(x — y)dxdy= — C())NT* %' (3.20)

We proceed similarly to (3.9) and (3.10). Putting y = N*/?2 /> we see as in (3.9) that
there is a constant C(b) such that

o(x)a(y) dxdy

Ix—y1<1/7e13 |x— Yl

sCO[e' I eedxdy+ ()/e(=2)/ etix]. 321

-y
where ¢ > 1 is a universal constant. Arguing then as in (3.10) and Theorem 3.3, it is
clear that we need only prove that for any r>1 and constant C,(b) there is a
constant C,(b) such that

Na
ST [V T

—Cilbpe!Pp N1 e(e®)dxdyz —Co (N (3.22)
x rive

The inequality (3.22) is evident if r> /b, since we know f(x) <bg'’? all xe A. For
r<y/b the result follows from the next lemma, and we are done. Q.E.D.

Lemma 3.5. Let Q be a cube in R3, and for some integer m> 0 suppose Q is divided
into 2°™=n dyadic subcubes Q, ..., Q,. Let y(x) be a function defined for x € Q, and
define 0;, i=1,...,n, by

g;= g P2(x)dx . (3.23)

Then, if Lis the length of a side of Q, for any e> 0 there is a constant C(g) >0 such
that

e [ y?()dx [ (V) (dx— 3. 622 C—@[I v 029
Q Q i=1 n o

Proof. We first obtain a lower bound on the gradient term in terms of the g,
i=1,...,n. Todo thislet (x, y, z) be coordinates in R and suppose that Q, and Q,
are adjacent with a common face in the (y, z) plane. Then we have

loy—as

L/n1/3 Lint/3 L/n1/3

= g i Ef)[u’z(x"?'L/"m,y,Z)—wz(x,y,Z)lilxdde

ST w(x+L/n'R, y, 2)—w(x, y, 2)| lp(x 4+ L/n'3, y, 2) + p(x, y, 2)|dxdydz
S[J lw(x+L/n'2, y, 2)—p(x, y, 2)Pdxdydz] ">
I lw(x+L/n'2, y, 2)+w(x, y, z)|*dxdydz] "> . (3.25)
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The second integral in the last expression is evidently bounded above by 2(a; + a,).
The first integral is equal to

x+L/n1/3 2 L * nl/3 a
[ifdydzax| 1 2Py, 2de | < 1§ dyazax LT[ 22 it
x Ot nt? 5 o
I?
= 7 I (Vy)?(x)dx. (3.26)
Q1VQ>
We conclude therefore that
(04 02)
I?n'’3 V)2 (x)dx = n—=—
ode, T OEN Y
From (3.27) and (3.24) we see that it is sufficient for us to prove that
2 "(0;—0,44)° o 2 Cle)| & 2
; R Iz — . 3.28
o [i§1 O-l:| i§1 2(0;4+0,44) i=zl gi= n i§1 % (3.28)

To do this note that for t<r we have

(3.27)

"l oi—0i4

é Z ]1/2 [2(0i+0i+1)]1/2

r—1
0,—0,|= T
o=l i=t i=1[2(0;+0,41)

S R i e R
2| Ses] L&e]” o

i—0it1)

Since t and r are arbitrary it follows from (3.29) that the left side of (3.28) is bounded
below by

™

en/4(maxo;—ming,)> — 3 o7. (3.30)

It

i=1

It is now clear that (3.30) is bounded below by the right side of (3.28) Q.E.D.
Next we deal with the case where o> 8/15. We have the following lemma:

Lemma 3.6. For a>8/15, let ¢,(x) be the potential defined by
col/3N=~2/3

b )= | e *Mdut Ojo e “dy, (3.31)
0

C(b)gl/3N1/34a/2
where c is a universal constant and c(b) is a constant depending only on b. The
constants ¢ and c¢(b) may be chosen to be positive numbers such that for all v and o,

a

N
29_1/3<"” Kyp)+84,(wl*) 20. (3.32)

Proof. We argue similarly to Lemma 3.4. The potential ¢,(x) has been written as a
sum

$(x) = D1 (x)+ P5(x), (3.33)
with @,(x) given by

col/3N®-2/3

D,(x)= f e “ldy . (3.34)
0
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From (3.4) we have that
Eo(lpl?)Z — 5N Tl (3.35)

From Lemma 3.1 it is clear we may choose the constant ¢ in (3.35) such that

a

N
4—Ql—/s<w>KNw>+é"q>l(lwI2)zO. (3.36)

To deal with @, we argue exactly as in Lemma 3.4, proving inequalities similar
to(3.21),(3.22) and making use of Lemma 3.5. We conclude that for ¢(b) sufficiently
large, depending only on b, we have

o

N
49—1,3<w, Kyp)+84,(19|*)Z0. (3.37)

This completes the proof. Q.E.D.

Remark. Note that Lemmas 3.4 and 3.6 are very easy if the one point function g(x)
is identically constant in A. The condition f(x) <bg'”® in A means that o(x) is on
average constant in A. The purpose of Lemma 3.5 is to show that because of the
kinetic energy the estimates for g(x) constant continue to hold when ¢(x) is allowed
to vary slightly.

We have shown so far that if we replace the Coulomb potential by the potential
¢,(x) then the conclusion of Theorem 1.4 holds. This leaves us to deal with the
potential 1/|x|—¢,(x). We claim that this potential may be well approximated by a
periodic potential. One can see easily why this should be so. For . <8/15 it is an
integral in e " with u=¢'/3N?57% We may assume without loss of generality
that A is a box with center at the origin. As x varies in A, |x| varies from 0 to
(VolA)3=N13g =13 Thus for u=o3N?5"% y|x| varies from 0 to something
larger than N “/ 15=2 which goes to oo with N. Hence we expect to be able to
approximate e " *I*! by something periodic. A similar argument applies in the case
when o >8/15.

To implement this scheme let Q , be a cube concentric with A but with side which
has 4 times the length of a side of A. It is clear that if x, ye A then x —y € Q ,. Since
the wave function yin Theorem 1.4is supported in A", the potential entersin (1.15)
with argument x—y where x, ye A. Hence we may expand 1/|x|—¢,(x) in a
Fourier series on Q , and this will give a good representation for the potential in the
situation of Theorem 1.4. The problem is that this new periodic potential is no
longer positive definite. However, because of the considerations of the previous
paragraph, the Fourier coefficients v(k) can only be negative for very large values
of k depending on N.

In the following lemma we shall make use of the fact that for 1>0,

[ e e egy
|x| <4

_ 8n —dmie™? [sinMél
CA+1EPD? a+EP) Lo

e T e -

+cosi[§[}
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Let us define I,(¢) by

L(&)= [ e Mle ™¢x. (3.39)
|x]<4
From (3.38) it is easy to see that we may find universal constants C, and C, such
0SLOS —om i [ESC,eH,
(L4119 (3.40)
8n Cre 2 ’

ILOI= feR?.

A+1ER? T 1+Er

Lemma 3.7. Let Q , have side of length L. Then for x € Q , with |x| < L/2 the potential
1/|x|— ¢,(x) may be expanded in a Fourier series

V=)= 2 vy (k)e*m Ik, (3.41)

There is a universal constant C such that for |k| satisfying
k| < Cexp[N'*], (3.42)
then the v (k) obey the inequalities
C/Na— 1/15Q1/3
(kz + 1) (k2+Na+4/15)
C/(b)Nl —a01/3
(k*+ 1) (k* 4+ C(b)N** %)’

if «a>38/15, where C is a universal constant and C(b), C'(b) depend only on b.
If k does not satisfy (3.42) then there are constants C” and C"(b) such that

(R SC"exp[—N'Jo"*/Ikf?, if a<8/15, (3.45)
v ()| < C"(b)exp[ — NS0 3|2, if a>8/15. (3.46)

Proof. We shall deal only with the case a <8/15, since > 8/15 is similar. Then it is
evident from (3.15) that we may take v (k) to be

0<v, (k)< if 0<8/15, (3.43)

0=v, ()= (3:44)

Ql/SNAz/2~1/5 1 27‘Ek
Va(k) = j’ W ILM/Z <—> du . (3.47)

Ql/3N2/5-x Lu
Now it is clear that there is a universal constant C such that if
k| < Cexp[N'/°], (3.48)
then we have for all u>p!/3N2/5~2

2nk

Lu
Thus for k satisfying (3.48) we have from (3.40) the inequality

el/3Nw/2 -1/ 167udu
01/3N2/5-a E[uz‘f‘(znk/L)Z]z .

<C et (3.49)

0=v, (k)= (3.50)
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It is evident that (3.50) implies there is a universal constant C’ such that for k
satisfying (3.48) we have
C/Na~1/15Q1/3

< <
O:Va(k):: (k2+ 1) (k2+Na+4/15) ‘

(3.51)
Next we consider k which do not satisfy (3.48). If we use the second inequality in
(3.40) it is easy to see that for such k there is a universal constant C” such that
(k)< C"exp[— N1 /Ik|* . (3.52)

Since (3.51) is the same as (3.43) and (3.52) as (3.45) we are finished. Q.E.D.

Lemma 3.7 divides the v, (k) into two kinds depending on the value of k. We
define potentials V,(x) and U,(x) by

V= ¥ v ke, (3.53)
Ik < CexpIN/6]
U ()= 1/[x| = do(x) = V(%) . (3.54)

Observe that all the Fourier coefficients of V,(x) are non-negative. The potential
U ,(x) is a remainder term which we shall now bound.

Lemma 3.8. Let v be supported in AN. Then for all N sufficiently large,

Nd
4Q—1/3<w, Kyp)+6y (wl*)z0. (3.55)

Proof. For x, ye A, x—y satisfies the inequality |x—y|<L/2. Hence in our
situation U, is well represented by the Fourier series,

U (x)= > v (k)e*mk It (3.56)

k| >Cexp[N1/6]
Also since 4 C Q 4, we may take y to be periodic on Q ,. We are therefore justified in
writing the expression (3.55) in second quantised form as was already done in
Sect. 2.
The expression in (3.55) is given in second quantised form as

N ¥ s Ratady+E T vonw (3.57)
4Q1/3 v L2 kez3 ‘k k¥ 2|k|>Cexp[N1/6] * ) ’
with J, () defined in (2.10). Now we have
Kl A WIS T oLk s ehod 2 Cplakalipd 2, (3.58)

by the Schwarz inequality. On the other hand from (2.5) we have
)+ I<pl Aelwd = Kyl T afs waf ana, )
é Z <wla:‘+ka;k~kar—kan +klw>1/2 ’ <wlarafaran W’>1/2

S X ylass ity i wd'? - Cplagaa,py'2, (3.59)
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where » is the number operator (2.4). If we commute » with the operators g, , , and
a, in the above inequality and use the fact that y is an eigenfunction of » with
eigenvalue N, we see that the last expression is bounded above by

LN =1 Cplafs iy o) plata,lw) . (3.60)

If we put N,,={y|aXa,|p) for me Z3, then from (3.58) and (3.60) we have
V@) S2N X N, NG2 (3.61)

Next we turn to the kinetic energy. We write

1 1
Zksz= NT Z kz]\/vk]\]m= NT 2 (m+k)2Nm+kNm
k Nim Nk,m
1
= — k*N, . .N
T 4N tmlézlkl/Z e
1
_2_ S_Z\f ksz-FkNm’ (362)

{m:|m| < |kl/2 or |m +k| < [k|/2}
k

the last inequality being obtained by adding the k and —k terms.
Next, if we use the elementary inequality

x2—2ax= —a?, (3.63)
we have from (3.62), (3.52), for any ¢>0,

N WKy — 2N
80 N i < - 2ot < k11 -2
Ik > Cexp[N1/6]

(RN N2 2 — ' PCe) exp[—3eN 1T, (3.64)

where C(¢) is a constant depending only on e.
Next let us define N(u) by
Nuw= > N,, u>0. (3.65)

Imlzu
Then we have

1
SN > OINZN
fm:m|>[k|' = ¢/2, jm + k| > k| ~=/2}
l| > Cexp[N1/€]

1 _ _ ]

SEN X RINGRT2)
[k|>Cexp[N!/€]

Sde'® ¥ |KITAN(KT/2)

[k]>Cexp[N1/6]

<Bo'® | N@'"*2)du, (3.66)

Cexp[N1/6]

where A and B are constants.
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We may bound kinetic energy below by an integral in N(u) as follows:

o

N
W <y, Kyy)

0

ZAQPY PNz AP Y 3 N,
k =0

JElk|<j+1

— Q'R 3 PING)— NG+ 1)]

j=0

— g | £ NG+ 1PNG+ DR+ S GHONG+D |

i=0
=A"0"* ¥ Q2+ DNG+ 1)z 40" [ uN(u)du, (3.67)
i=0 2
where A’ is a constant times a power of N.

The inequality (3.55) follows from (3.61), (3.64), (3.66), (3.67) and
Lemma 3.1. Q.E.D.

Itis clear now that it is sufficient for us to prove Theorem 1.4 with the Coulomb
potential replaced by the periodic potential V,(x). In the next section we shall
achieve this by making use of Bogoliubov’s method.

4. Rigorous Version of Bogoliubov’s Method

We shall first assume that « <8/15. At the end of Sect. 2, in the discussion of the
Coulomb gas, it was stated that one should put most Bosons in states m e Z* with
|m|<v. Here we wish to fix an appropriate value for .
To do this we define operators S, ,, and T, , for [m|<y by
Sk,m___arﬂ:tam+ka Imlé))9 (41)
T;c,mza:flam~ka 0<|m|§')’,

— % *
Tio=ada_,+ 2 Ay + Oy -
{n:n|>y,|n+k|>y}

It is evident then from (2.6) that

Ay = | |Z< LSEm+ Thm] - (4.2)
m|<y
From (2.10) we see on using the commutation relations that J,(y) is given by the
formula
Jw)=WISES+ TF T+ S T+ SETF [y — [KwI S+ Tilw)|?
+ <yl | ‘Z (@t — o+ 1 41 P> — N, (4.3)
m| =<y
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where S, and T, are given by

Sk= Sk,ma (44)
Im| <y

77{=HZ Tiom - (4.5)
m| <y

Notice that (4.3) looks the same as (2.19) except for the last two terms. It is easy to
bound these terms, and we have if |k| =2y, then

Iml<y

where N(u) is defined as in (3.65).
We choose y such that

N(y)k223 v (k) S CN7I3 %13, 4.7
N |kl22 V() SCN"P %3, (4.8)
=2y

for some constant C. From (4.6) and (4.7) it follow that we may drop the last 2 terms
in (4.3) from our future consideration. From (4.8) and (2.11) we may restrict
ourselves to values of k with |k|>2y.

From (3.43) we see that

;Va(k)§CN"‘/2_”SQ”3, 4.9)
N MZZ v (k) SCyN?3g! 3, (4.10)
=2y

where C is a universal constant. Now we may assume that the wave function o
satisfies

Na
F(w, Kyp>+&(lpl*) <0. (4.11)

Otherwise there is nothing to prove in Theorem 1.4. From (3.3) and (4.11) it follows
that for some constant 4 we have

Na
WW,KNW—ANQ”EO- (4.12)
It is now easy to see from the representation (2.3) for K that N(y) satisfies an
inequality
N() S A'N3P7%y=2, (4.13)

for some universal constant 4’. From (4.9), (4.10), and (4.13) it is evident that for «
satisfying o < 14/25 we may choose y such that (4.7) and (4.8) hold. In fact we may
take y to be given by

p=N#/4+1/30 (4.14)
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Our next aim is to write the kinetic energy in such a way that it is in a form
suitable for applying Bogoliubov transformations. To do this we observe that

4n? 24 472 2
plKylp) = 7<‘P|%k afaly)y = W(wlﬂzk agalyy

4n? 1
<— - * k)*a}
= NL2 |k|§2y2<wl |m%§yama'"(m+ ) am+kam+k
+ X ara,(n—k)’ak 8, p>
0<|n|<y
n? 5
> k * *
= 2NLZ |k|§2y <1P‘ lmlzéyamamam+kam+k
+ Z a;kana:(— kan~k|w>
0<|n|<y
2
k? S¥ Sk, m—
2NL2 lHZZ < Ilm; [ k,m am+kam+k]

+ Z [Tlvc nTl‘c n kan—k] |1P>

o<|n|=y
2

2
B 2, KV T SEaSin

Im|<y

b3 - S ik @15

0<|n|=y
for some universal constant C. From (4.14) we see that if « <8/15, then 7> < N for
large N, and so we conclude that if N is large then

2

i
> 2
<w,KNw>=4NLZ k§2 k <1P‘ Z S Sk,m

Iml<y

+ X TELToalwy. (4.16)

0<|n|=y
Now for ¢>0 let us put

Ik(g) 28<1P| Z S Sk m+ Z TIL nY;c nlw>

Im|<y 0<|n|=y
+WISES+ T LA+ S T+ SETF W) — KwISE+ Tilpd?. (4.17)
Thus I,(¢) is just like the expression (2.20).

Lemma 4.1. Suppose |k| > 2y and N, < N, for all k with |k|<y. Let B,,, |[m| <7y be the
absolute values of the negative roots of the polynomial equation

—+ +
= o<im=yeNu—p  eNo+p
Ny,

+ — = 4+1=0. 4.18
0<|%|§Y8N0+8Nm+ﬂ .18
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Then I,(¢) satisfies the inequality
L)z | ‘lzj Bn—(1+€)No— . [Z( [(A+eN,+eNo]=N@).  (419)
m| <y <|m[=y

Proof. Let A, |m| <7, be positive numbers such that 1, <4,, if m+0. We define
Ay.ms By m for Im| <y by

Ak,mzirgl’]—l‘c,m’ Bk,mZ)“r;lSk,m' (420)
It is easy to see that

L(ezey| Y AAF A, +A3BE 0By o
0<i|n|<y

+ Z (}'(Z)+/13)Bl>ck,an,n'w>

0<|n|=y

+CQISES,+ T T+ Si T+ SETF W) — Kl S+ Tlwdl* . (4.21)

Now let C be the matrix A*A, where A is the vector A=(4,,...), and D be the
diagonal matrix with 0 in the first entry and eA? with 0<|n|<y in the other
positions. From (4.21) and the commutation relations we see that

AJ*[C+D C Ay
>
Ik(8)=<1"|[B;f:| [ C C+D—|—s/1(%IJ [B,’:‘]‘W

= KplSE + TlwdI* = {wl(1+¢) [agao —afa T lw)
=l > [(A+e)+eig/ia][aian—ahadndlvw),  (422)

0<|m|=y

where A, and B, are the vectors, Ay =(4;.0,-..), By=By.05--.)-
Next we choose a Bogoliubov matrix M such that

C+D C oo
* =
M [ C C+D+8/1(%I:| M [ ﬁo] ’ (423)

It is certainly possible to do this since the matrix diagonalised in (4.23) is positive

definite. The columns of M are made up of vectors (v, w), where
C(v+w)+Dv=ypv,

v+w) o (4.24)

Cv+w)+(D+elg)w= —puw.

Evidently if (v, w) is a solution of (4.24) with eigenvalue y then (w, v) is also a solu-
tion with eigenvalue — u—eA2. Thus on taking B,,=a,,+ €43, |m| <7, we see that
the matrix M has the block form
Vv w
[W V} . (4.25)

From (2.22) it follows that ¥ and W satisfy the relations
V¥V-W*W=1:V*W=W*V. (4.26)
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It is then easy to see that

J. Conlon
_ v —w*
M 1=[_W* - :| 4.27)
We define a change of variables as in (2.21) by
A | T

MR 429
where 0, =0, .-.) and §=({; 0, ...).
inequality

). In view of (4.23) we have from (4.22) the
Ik(g)%@’ll ‘Z: o‘mn;ck,mnk,m"_ Z .Bmeka ml >

—IKwl S +’I;c|w>|2+<1/"l Z Bl Ceyms CEmd 10D

Im| <y
—<ypl(1+e) [agao—afa ] ly)
— <yl Z [ +e) +eA/A2] Ak — G o imid ) . (429)
< m _'y
We shall show that
<wl Z Lt ¥, m + ‘ IZ Bl i m0> = IKWISE+ Tilyp)? 20, (4.30)
Im|<y m| =y
To do this note that
S¥+T=h-(V+Wn+r-(V+W)E=v - +v-(F, (4.31)
where v=(V+ W)*L. Thus

KWl SE + Tl )P =[<plv - melw) + Cwlv - G fwdl?
S+l mlw) 2+ (1 +1/8) [Kylv - GElpdI?, (4.32)
for any 6 >0. Let A4 be the matrix defined by 4 =v*v. Then it is clear that (4.30)
holds provided there is a § >0 such that
(1+0)84E= | |Z< O

(4.33)

(+1/OEAES S B,
for all real vectors E=(&,, ...). i<y
Observe next that (4.33) holds provided

p2 2 V2
(1+5)[ 2 ] Z I,
[m| <y Oy &

1<y

2P )2 (4.34)
141/6 l: ] <y -2,
( /) m|2<)’ﬁm lmlé)’ﬁm

where v=(v,,...). A necessary and sufficient condition for there to exist a ¢
satisfying (4.34) is

v2 2

"+ P2 el

ImlzéyoC m =y Bm

(4.35)
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We prove (4.35) in a similar fashion to how we proceeded in Sect. 2. Applying the
transformation M to the inequality

Cc C C+D C
<
I:C C]=[ C C+D+ai§l}’ (4.36)
we have
A A o
<1, | 4.
A S
Now apply the matrices in (4.37) to the vector ( t/:o >, where ¢ is a real
0

parameter. Then we obtain

l: v2 2 ) 272 2 VZ
ol ezl e iz ]
|m{<y %y, Zé ﬁ 2 & Imlz;é)’ﬂm
v2 y2
< g2 m 4.38
[m%;y(x |mEYBm ( )
Hence we have
VZ V2 2 V2 V2
Lol s
{IMIévﬂm i<y B |m| <y O Imlzévﬁm
+ Zv_'zrl_lizﬁ]zx) 4.39
M=y, LimZyBml (4.39)

for all real values of ¢. The inequality (4.35) now easily follows on completing the
square in (4.39).

Next we wish to compute the commutators [{, ., {F,.] in (4.29). In view of
(4.27), (4.28) we have

G = — W*A,+ V*B} . (4.40)
Hence
[Ck m> C;{k m]
| Iz<y[ W* A nt Vn;lk,an,na - WnT,jAk,j+ V"thltj]
=»
= Z {Wr:annTn[Ak ns Ak,n]+ Vnthnﬁn[Bk,m B;ck,n]}

=
"

= Z { m,antnln 2[af—kan~k‘a:an]

0<|nj=vy
* * 72 4% *
+Vm,an,nln [anan_an+kan+k]}
-2
+ W"T’()W,::O}.,O [aika_k_ag‘ao_,_
(n:n|>y,|n+k[>}

Aaka,— ¥ 1, 31+ Vi Vik oho *Tagao—aia] . (4.41)
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Now let us define J,(¢) by
Jk(g) <1P1 Z ﬁm Z [V*n m,n W* W*n]

Ay Za*a ltp>—<wl(1 +e)agaoly)
—<wl Z [(1+8)+8/1 [2mlaganlw) . (4.42)

and H,(¢) by
H(e)= | IZ ﬁm<w|0 IZ[ Y WA AR
m|<y <|n[=vy
- VnthnﬁnarT-!-kan%-k] + W:ﬁOWnT,O/’{(;Z

* * &
1Ayt Z {anan—an+kan+k}:|
{n:]n]>y,|n+k| >y}

— Vi oV odo “aia ) + <l (1 +e)afaclp)
+<w| Z [(1+8)+8Ao//1 Ja ks> - (4.43)

It is clear from (4.29) and (4.41) that

Li(&) 2, (e) + Hy(e) . (4.44)
We may simplify the expression for H,(¢) a little by noting that
laga,—af i apild = 2 (a7 inrr— a5 1y (4.45)
n:nl >y, In+kl>v) Inj<vy

Thus we have

Hy(e)= Z, <w|aiikan~klw>'[]mliﬁyﬁm{iiz(Wn,m)z~162(Wo,m)2}}

+ Y plaFi i, ilw) [1+e+eA3/A7

o<|nl=y

+ Imléyﬁm{io‘ 2Wo,m)® =4 *(Vem)*}]
+ (plaiday ) [1 +e+ 'mléyﬁm{i& 2(Wo,m)* — 4o Z(VO,m)Z}] . (4406)
We shall bound H,(¢) from below. To do this first note that, in view of the
formula (4.27) for M ™', we have from the identity MM ~' =1 the equalities
VV*—WW*=I1;, VW*=WV*. (4.47)
From (4.47) we see that
> Vo’ =W m*]=1. (4.48)

Iml<y
It follows therefore that
l+e+ Z( Budo H{(Wo, m)* = (Vo,m)?}

ey S (o eA2)s H{(Wo ) — Vo))

|m| <y

=y

>1-05% Y an(Von)?. (4.49)

Im|<y
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If we multiply (4.23) on the left and the right by (M*)~*, M ~! respectively and use
the formula (4.27), we obtain the identity

V[O(O“:lV*+W[B°-']W*:C+D. (4.50)
On evaluating the first entry in the matrix (4.50) we easily obtain the inequality
> t(Vom)?=45- (4.51)
|mj<y

It follows then from (4.49) that the coefficient of (y|afa;|y) in (4.46) is non-
negative.

By an exactly similar argument we see that for 0<|n|<y the coefficient of
{ylaf,a, o lp) in (4.46) is bounded below by

&g/ + | lZ eA3{A0 *Wo,m)> =2 2V )}
m|<y
z ¥ el *Wom) =2 *(W, )7} (4.52)

Iml<y

Observe next that W, ,, and W, , with 0<|n|<y satisfy according to (4.24) the
equations

leloz “ﬁm%,m’ vm}'nz _(ﬁm+8’{3)vvn,m (453)

Hence the last expression in (4.52) is non-negative. Thus the coefficient of
{ylak, a, . Jp) in (4.46) is non-negative for 0 <|n|<+y.
The coefficient of {y|a¥_,a,_.p) in (4.46) is bounded below by
2

~15% % BuWon)’2— X 21, (4.54)
ml =y <y P
from (4.35). We conclude therefore that H,(¢) satisfies the inequality
Hi(e)=2 —N(). (4.55)

To conclude the lemma we let 12— {y|a*a,|yp) for [n|<y. In view of the fact
that

Z [(Vn,m)z_(‘/Vn,m)z:l=1 ) (456)

Inj=v

we see that J,(¢) is bounded below by the expression on the right-hand side of
(4.19). QED.

Next we wish to estimate from below the quantity on the right of (4.19). To do
this we prove a lemma similar to Lemma 2.1.

Lemma 4.2. Let 4,, n=0, 1, 2, ... be real numbers and p be a positive number with
p<1. Suppose c, are non-negative numbers such that

MnP<c,<Mn®, n=0,1,2,..., (4.57)
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for some positive constants M, and M ,. Define N, K, ny by
N= 3 12, K=Y ci2, (4.58)
n=0 n=0

no=[(K/N)"""]+1. (4.59)

Thus nq is an integer and no= 1.

Suppose now that only a finite number of the A, are non-zero and that A,, is the
smallest of these in absolute value. Let a,,, n=0, 1,2, ..., be the non-negative zeros of
the equation

Az A2 Yk A2
- 2 = — s +1= 4.60
and I(¢) be defined for ¢>0 by
&)= 3 a,—A2— X (1+e)i2. (4.61)
n=0 n¥m

Then I(¢) satisfies the inequalities
I(e)= —N, (4.62)
I(e)= —CN(ny/e)? if e>ng, (4.63)

where C is a constant depending only on p, M,, M,.

Proof. The inequality (4.62) follows since we can find zeros o, with a,>&l? for
n¥+m.
We turn to (4.63). Let ! be the non-negative zeros of the equation
A A A Aa
iz +8i,2,,+#+n§msif+,u

— U n¥m Bl,? —Uu
Arguing just as in Sect. 2 we see that

+1=0. (4.64)

22 5 a wss
n=0 n=0
If we let —pBY, n=0,1, ..., be the negative roots of (4.64) then we have
T - ¥ pY= a2, (4.66)
and hence that n=0 n=0
I(e)= i pY— X (1+e)ir. (4.67)
n=0 n=0

Now the B! are the positive zeros of the equation

© 22 © /12 /12 }vz
K z =" 1=0. 4.68
ngosxlﬁ—u+n§oalf+y+l:u aﬂvf,,—\-p:l—*— (4.68)

The expression in square brackets in (4.68) is

eAd Iu(eAl+ ) . (4.69)
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In view of our definition of 4,,, it follows that all the positive zeros u of (4.68) satisfy
u=ei2. Furthermore, if u2>¢A2, then the expression (4.69) is bounded above by
1/2¢. Thus if we let «{* be the positive zeros of the equation

© 2 = 2 1
" 1+ —=0, 470
ngosif—u+n§oaif+,u+ MY (4.70)
then we have
Ie)= 3 oP— ¥ (14¢)i2. (4.71)
n=0 n=0

Next we define for k=0,1,2,...,

(2k+1—1)no—1

N,= > A2 4.72)
(2k=1)ng
It is clear from (4.57) and (4.58) that we may find a constant C such that
N, <CN/2*, k=0. (4.73)
Let o> be the positive zeros of the equation
© 2 ® N, 1
et ] =0. 474
nzos/lz—u +kzost/2"n0+u o (474)
Then we have
oz ¥ ol (4.75)
n=0 n=0

Letting — B> be the negative zeros of (4.74) we see that
P
n=0 k=0
—[(1+1/26) " +¢] ﬁo pr ki [(1+1/26) " +¢/2*10IN,.  (476)
From (4.71) it then follows thatn_ —
(5= f; O i [(141/26) ' +5/2n,]N, — N2 . @.77)

Arguing as before we see that if «{*) are the positive zeros of the equation

® N, © N, 1
+ +1+—=0, 4.78
k‘:“o eN/2"ng—u k‘j‘o eN,/2%ny+ 2¢ (4.78)
then I(¢) satisfies the inequality
I(e)= 3 P — X [(14+1/2¢) ' +¢/2%ne]N,— N/2¢. 4.79)
k=0 k=0

It is easy to argue further that the right side of (4.79) is minimized when the N,
take on their maximum values as given by (4.73). Hence we are in the following
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situation: Let , = C/2*?, k= 0, where C is the constant in (4.73) and 6 =¢/n,,. Then
I(¢) satisfies the inequality

I
02 3 - 5 I+ 12 42T 11, (450)
where the y, are the positive zeros of the equation
< Mk - Nk 1
+ 1+ —=0. 4.81
Zoon2 =t Zoomen T 2 @0

Let 7, be the unique zero of (4.81) such that 6y, _ /2~ >y, > on,/2*. We bound
the zeros y, below as follows: If § <2* bound y, below by

7> 0n, /2% (4.82)
If 6>2* we proceed differently. In that case we have
< Nm
—m ) 4.83
mZ—‘:O 57’]m/2m+'}’k mz<:k + mZ_Z_:k ( )
Since we have om ok
=Y <= (4.84)

m<k m<k 5 (5
< M Cymy < C,2

—1 — M
m=k  mzkVk Vi 0

(4.85)

for some constant C,; depending on C and p, it follows that there is constant C,

such that © o ok

<C 4.86
Zosm i = (486)

We may also see that
k
M M < Gs2

< — < , 4.87
w2 S oo = 5 D
for some constant C,. Hence there is a constant C, such that
Mk—1 Mk 2
- + +C,—+1=20, (4.88)
oM 1/25 =y om/28 =, * 5

in view of the fact that ny=1. Then y,=y;, where y; is the unique zero of the

equation p

k-1 "k 2

Sy /2 —p o/ 2= T )
which has &n; _ /21 > > 6n,/2% It is not difficult to see from (4.89) that there is a
constant Cs with

2k -1

We bound 7y, below by the right side of (4.90) in the case when &> 2%,
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We are now in a position to estimate the right side of (4.80). We write it as

élo[vk—(l+1/2a)—1nk—5nk/2k]—1/28 6$22k+ Zk—l/Zg, (4.91)

6>2

I

From (4.82) we have

2 z-(+127" ¥ mz—Co/d", (4.92)
o< <2k
for some constant Cg if we assume ¢ > n,, and hence ¢> 1. From (4.90) we see that
> =—Cy/or, (4.93)
8> 2k

in a similar fashion. Hence since 6 =¢/n, we have from (4.80) that

d ("’) > — C(ngfe)’, (4.94)

provided ¢>n,. We are finished. Q.E.D

We wish now to apply the previous two lemmas to our problem. Let N, [k| <y
be the same as in Lemma 4.1 and put

N= > N,; K=Y ksz. (4.95)
lkl=y

[kl<y

If we define n, as in (4.59) with N replaced by N’ and K by K’ we see from
Lemmas 4.1 and 4.2 that I,(¢) satisfies the inequalities

Ii(e)2 —N'—N(y), (4.96)
I(e)= —CN'(no/e)**—N(y), e>ny, 4.97

where C is a universal constant.
To finish our proof we need to prove (1.15) with the Coulomb potential
replaced by the periodic potential V,(x). From the estimates (4.7) and (4.8) we have

Na
é—l/—3<w,KNw>+sza<|w|2)> 1,3f(V1/ )2dx+C,N*~2PK’p!/3

N~ 1/391/3
-G 2

I T TR — GNP, (498)
Y

where C,, C,, and C; are universal constants. We can estimate the sum in (4.98) by
using (4.96) and (4.97). Thus we have

N—1/3Q1/3
C, > —5—— LN Pk S C,N'N~4njl*pl . (4.99)
ki>2, k*+1
Observe next that provided n, =2, we have

C N* 2B3K'g3 = CsN'N*~2B3p231/3 (4.100)
It is easy to see that

CsN*~ 2323 _ C N~ 4pli* > C N5~ (4.101)
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for some universal constant Cg. In view of the fact that N'< N we are done in the
case ny=2. If ny=1 we use Lemma 3.1. Hence we have

N{Z
50 [ (V)/0)?dx = C,N** 11313 > C,N'N*~23p23g1/3 . (4.102)
Therefore we can apply (4.101) again. Hence we have proved Theorem 1.4 in the

case when o <8/15.
For «>8/15 we choose y such that

N(v)kzzava(k)§CN”““e”3, (4.103)
N uqzz Vv (k) SCN'3*%ll3, (4.104)
=2y

where C is a suitably small universal constant. From (3.44) we have that

S v (k) S C N33 (4.105)
k
N ka;zﬂ“(k)é C{ NPy, (4.106)

for some constant C, independent of N. Arguing as before we may assume that
N(y) satisfies the inequality (4.13). Hence we need y such that y=N" with

5 Sa
R — X 4.107
¢ 2 <r<a—1/3 (4.107)

Such a choice for y is clearly possible when « = 8/15. The rest of the argument in the
proof of Theorem 1.4 then follows in exactly the same way as in the case « <8/15.
Hence the proof of Theorem 1.4 is complete.

Remark. Observe that there is no loss of generality in the restriction N, < N, for all
k with |k|<y in Lemma 4.1. It is simply related to the fact that we defined T, ,
differently to the T, ,, with m=0.

We complete this section by estimating an asymptotic value for the constant
C(b) of Theorem 1.1 as N—o0. In Lemma 4.2 we take p=2/3 and the c, as the k?
from (4.95). We obtain the value C =75 in the inequality (4.63). Using this value of
C we may estimate the constant C, in (4.101) as C, =8.8. The constant Csin (4.101)
turns out to be Cs=2.47. When we minimize (4.101) with respect to n, we obtain
C¢= —6.5. Since the correction terms estimated in Sect. 3 are of lower order in N
than N7/° we may take C(b) to be 6.5 asymptotically in N.

5. Achieving the Lower Bound

In this section we show that the lower bound obtained in Theorem 1.4 is sharp
provided a<8/15. It is also sharp when a=8/15 provided one replaces the
coefficient N*/g'/3 of the kinetic energy in (1.15) by a suitably small constant times
N?/g*/*. Dyson’s construction [3] corresponds to the case a=8/15.
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Theorem 5.1. Let 6>0 and a<8/15—0. Suppose Ay are a sequence of cubes
N=1,2,... suchthat N/volAy=g is fixed as N —00. Then there exist constants Cg,
bs and wave functions p, x(x, ..., Xy) such that the following hold:
(@) v, y is supported in (Ay)N and takes on the value zero on the boundary.
(b) w,, n satisfies the inequality

N® Y
pee W, N Ko, v+ E ([0, n) £ — C;N TP 751 (5.1)

To prove Theorem 5.1 we rigorise the heuristics discussed in Sect. 2. First we
need to construct the wave function yp mentioned in Bogoliubov’s principle which
minimizes J(1) at least cost of kinetic energy. In (2.20) we take A} = N/n and e = Bn.
Thus we can construct a wave function i such that

J)+NB ¥ CWlatatbiblv) =NIE+20 7 =1-fl,  (52)

and this |p) is just the vacuum state for the Boson operators #,, {;, 1<i<n. We
wish to evaluate {y|aFa;lp>, (p|b¥b;|w) and to express |y) in terms of the vacuum
|0> for the a;, b;, 1Zi<n.

In order to accomplish this we need to calculate the matrix M defined in (2.21).
Let us suppose in Eq. (2.34) that A?=A%i=1, 2, ..., n. Then (2.34) has n— 1 positive
zeros u=¢4? and an n™ zero larger than ¢1%. When pu=eA? the corresponding
solutions v, w of (2.30) havew=0and v=[1, 1, ..., 1]. We may take the n— 1 vectors
[v;,w;], 1<j<n—1, corresponding to the n—1 fold zero u=¢A* as

w=0;  v=(P+) L1, 1 —)0,.,0]. (53)

The entries in the vector v; are 1 in the first j positions, —j in the (j+ 1)* position
and 0 otherwise. It is easy to see that the v;1 < j<n—1, form an orthonormal set of
vectors at right angles to [1,1,...,1].

Let p, be the n™ positive solution of (2.34) with corresponding vectors v,, w,. It
is evident that v, and w, must be parallel to the vector [1,1, ..., 1]. Hence we may
write

w,=—n Y2sinh0[1,1,..,1]; v,=n" Y2cosh0[1,1,..,1],  (5.4)

where 6 depends on ¢ = fn. Thus [v,, w, ] satisfy the normalization condition (2.29).
From (2.30) one can see that 6 is given in terms of § by the equation

tanh20=1/(1+f). (5.5)

Since we may now construct the matrix M we can see that

sinh?6

Cplafalp) = (wlbfbilp) = (5.6)

Thus for fixed § the number of particles in the a; and b; states is proportional to 1/n.
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Next we construct |ip) in terms of the vacuum [0 for the q;, b;. To do this
observe that the #;, {;, I<j<n—1 are given by

Jj
’7j=(/.2+].)~1/2 l:;l ai_jaj+1} s

; (5.7)
(=) [z b jb,-ﬂ].
Furthermore, if we define operators a and b by
a=n‘”2i§n_‘,1 a;, bzrf”zii‘,1 b;, (5.8)
then one can see that a, b are related to 5,, {, by the equations
a=coshfn,—sinh6C¥, (59)

b* = —sinh 0y, +cosh6(¥,

Equations (5.9) represent a one dimensional Bogoliubov transformation and it is
well known [10] that a vacuum state for #,, {, is given by |p) where

> =exp[(ab— a*b*)0] (0> . (5.10)

Now one can easily see from (5.7), (5.8) that 5}, {;, | £ j<n—1, commute with a, b,
a*, b*. Hence |p) as defined in (5.10) is also a vacuum for 5, {;, 1= j<n—1. Thus
lp> is the state we are looking for.

We wish to construct the wave functions for Theorem 5.1 out of the states |y
of (5.10). There are however two problems to be solved. The first is that if we take
the a;, b; to be operators a,, a_, with ke Z> then [p) in (5.10) satisfies periodic
boundary conditions on Ay instead of Dirichlet. This problem may be rectified by
taking the a;, b; to be annihilation operators corresponding to products of sine
functions. The second problem is that |p» does not have a fixed particle number.
We solve this by employing a trick which goes back to [8].

We turn to the first problem. Let d be a Boson operator so [d,d*]=1 and
consider the quadratic expression

2(1+ p)d*d +d2 +d*>. (5.11)

We can calculate the ground state energy of (5.11) by making a Bogoliubov
transformation

d=coshOn—sinhOn*. (5.12)
The expression (5.11) is given in terms of 7 by
[2(1+ B) cosh26 —2 sinh207n*n 4 [cosh 20 — (1 + B) sinh 267 [#* +n**]
+2(1+ ) sinh?6 —sinh20. (5.13)

If we take 6 to be given by (5.5) then it is evident that the ground state of (5.11)is a
vacuum of # and the value of (5.11) on the ground state is (> +2B)/*—1—B.
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We calculate the vacuum of # in terms of the vacuum |0) of d by following the
well known method. We write # in (5.12) as a function of 0, n =7(6), and look for a
unitary operator U(6) such that

n(@)=U(0)dU(0)*, (5.14)
in which case it follows that the vacuum [y for y#(6) is given by
lp>=U(0)[0>. (5.15)
It is clear from (5.12) that the U(f) form a group and hence
U@@)=exp[LH], (5.16)

for some anti-symmetric operator L. On differentiating (5.14) with respect to § and
using (5.12), (5.16) we find that L and d are related by

d*=[L,d], (5.17)

and so we may take L=1[d>—a*2]. (5.18)
It follows then that

lp) =exp[3(d*>—d**)0](0), (5.19)

with 6 given by (5.5).
For k=(k,,k,,k;) in Z* let |k|| and sgnk be defined by

3
Ikl = ksl Vel esl)s - sgnk= 1T sgnk;. (5.20)

We shall denote by k>0 if each k;>0, i=1,2,3. If ke Z* with k>0, let g, be the
annihilation operator corresponding to the wave function

(2/L)*?*sin(2nk,x,/L) sin(2nk,x,/L) sin(2mkx5/L)
on the box A, with side of length L. We shall construct the wave function for
Theorem 5.1 out of the operators g,.
Let B, bethesetof ke Z* with k>0and [k| <. Fory = ‘/3, B, is nonempty with
say n(y) elements. We define 4, by
ho= ( > gk>/n(v)“2~ (3.21)
B

keB,

Let 6,=[4y]+ 1, where [ ] denotes integer part, and L, be the lattice of vectors in
73 of the form ((2m, +1)d,, 2m,+1)3,, (2m;+1)3,), where the m;, i=1,2,3 are
integers. For ke L, with k>0 we define &, to be
b= < 2 (Sgnm)gm+k)/2 2n(y)*'?, (5.22)
meW,,
where W, is the set of me Z> with |m| € B,.
Let u=(hoh¥)~'?h,. It is evident that uu*=1 but u*u=1 only on wave
functions which have zero projection on the 0 eigenspace of hih,. For ke L, we put

c,=u*h, and it is clear that the ¢, almost satisfy canonical commutation relations
when there are a large number of h, particles.
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Let d,, ke L,, be a set of Boson operators satisfying canonical commutation
relations. For T=4, let L, 1 be the set of k=(k,, k,, k;) e L, with k>0and |k|< T,
i=1,2,3.If |0) is the vacuum of the d,, ke L,, we write |¥¥') as

IT>=CXP[ )Y %(d;f—difz)@] 0> (5.23)
keLy, T
Now (5.23) may be rewritten as
|¥> = lim P(0; dif,keL, 1)|0>, (5.24)
Jj= o

where the P; is a polynomial of degree j in the djf, ke L, 1, corresponding to the
projection of ¥ onto the space

2 did=j. (5.25)

keL,, T

We can clearly write ¥ =¥, + ¥,, where
|¥>=Py_50;dif,keL, )I0), (5.26)
and ¥, is orthogonal to ¥,.
We may now define the wave functions for Theorem 5.1. Let p, 1 5 be the
normalized state parallel to

* N
[z(vv])l =105, (5.27)

where |0 is the vacuum of the operators g,, k€ Z3, k>0. Observe that (5.27) is an
N particle state. The key fact which we shall use to estimate the kinetic and
potential energy of (5.27) is the following: let g(c, ¢if; k € L, ) be a polynomial in
¢, cf of degree less than 5. Then

<1‘py,T,ﬁ|q|wy,T,ﬂ> =<(¥,lq(d,,d}; ke L, P[P (5.28)

Lemma 5.2. Let K, be given by (1.8). Suppose 0 < <1, y> ]/§ andy, T, B, N satisfy
the inequality

PN—S(H;cl?akeL T)

T3 <ey*B'?N, (5.29)

for sufficiently small universal constant ¢>0. Then there is a universal constant C
such that

Ny? T
<wy,T,ﬁ|Kley,T,,;>§c[ 7+ 3L2ﬁ1,2] (5.30)
Proof. First observe that
<1Py,T,/3|KNW)y T, ﬂ>
4” 2 4 g 2 *
-5 Z k <wlgkgklw>+ 2 MR wlgmiGmadyy . (531
N :

msWy,keLy,T
Since y =1, r 4 is an eigenfunction of the number operator

%= hoho + Z hk hk (532)

keL, T



Ground State Energy of Bose Gas with Coulomb Interaction 391

with eigenvalue N, it follows that
{ylh§holyp> <N, (5.33)

from whence we have

wlgFglw> <N/n(y), kep,. (5.34)

Thus the first sum on the right in (5.31) is bounded above by the first term on the
right in (5.30).

To estimate the second sum on the right in (5.31) we use (5.28). It is clear that
this sum is bounded above by

C 2
T L lealw), (5.39)
and we have from (5.28) the identity
<wleielp) =< |didi| P /KPP 1) (5.36)
It is a simple calculation to see that
AT?
P X BV s =577, (5.37)
keL, T B
for some constant 4, and hence by the Chebyshev inequality we conclude
(VL) S AT pPBHA(N —5). (5.38)
This if ¢ in (5.29) is sufficiently small we have (¥, |¥,)> = 1/2. Furthermore
<Py LZ dfd|¥ > (5.39)

is bounded above by the left side of (5.37). Hence, on using this inequality we have
that the second sum on the right in (5.31) is bounded above by the second sum in
(5.30) for suitable universal constant C.

Next we turn to estimating the potential energy.

Lemma 5.3. Let S, be the set of kin Z* such that there existsne Z* withn,n+ke W,
Suppose Ay is defined by (2.6) and y=v, 1 ;. Then the expression {p|Alyp) is
nonzeroin 3 cases: (a)If ke S,; (b) If k=k, +k, withk, €S, and k, € L,; (c) If k=k,
+k, with k,; €8, and k,+(9,, 6,, 6,)€ L,.

In (a) {y|Aglw) is given by

Yl Ailp) = =2 (sgnm) sgn(m+ k) , (5.40)

8()

where the sum with respect to m is over all me Z* with m, m+ke W,
In (b) {y|Alw) is given by

sgnk
oA = 35,5 YRSy oy 1)

2 (sgnm) sgnlfm+kll - |lkz |1, (5.41)
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where the sum with respect to m is over all me Z> with m, m+k, € W,.
In (c) <yl Acly) is given by

{plAgly) = Z lm<1Plh||m+k2||h||mn lw>, (5.42)

where the 1, are real numbers satisfying |A,,| < 1/8.
Proof If (wla,,+ka lw>+0, we need to have n—te W, n+k—t'e W,, where ¢, t' lie
in the union of 0 and L,. If t =’ we are in case (a). Otherwise t' =t +k, with k, +0. If
either t or ¢’ is zero then k, must be in L,. This is case (b). Finally, if both ¢, t" are in
L, then we must have k,+(d,,d,, d,) € L,. This is case (c).

To get the expressions (5.40), (5.41), (5.42) observe that if me W, then

i ho
amlp) = Fﬁ(sgnm)W lw) . (5.43)
If m is such that met+ W,, where t€ L,, then

anly> = 23/2 a7 (sgnm) [sgn(m] — )] 5575 ”(‘”)1,2 ) (5:44)

Now suppose ke S,and n=n;, j=1, ..., p, are the elements n withn, n+k e W,.
Then if {p|a¥, a,lw>+0, nis of the formn n;+mwithme L,. In view of the fact
that for me L,,

sgnl|ln;+m| —m|]sgn[ln;+k+ml —|m|]]=(sgnny(sgnn;+k), (5.45)

we have

1 P
ylAly) = ) w0 hihylw) 'j; (sgnn)) (sgnn;+k), (5.46)

me{0}uL, T

which gives (5.40).

Next we take case (b). Let n=n;, j=1, ..., p be the set of elements n such that n,
n+k, € W,. Then {y|a}, a,lp> +0 only 1fn n;or n+k= —n; Summing up these
terms ylelds (5.41).

For the final case (c) let n=n;, j=1, ..., p, be again the set of elements n with n,
n+k, € W,. Then for {y|a},,a, |1p>=|=0 we need n=n;+m with me L,. The result
(5.42) follows from (5.43), (5.44) and the fact that p< 8n(y). Q.E. D

Lemma 5.4. Let J, () be defined by (2.10). Then for =1, 1 , we have in case (a)

2
T() + <yl Ay lw)l? = (N2 — N)[mZ(Sgnm)Sgn(erk)] (5.47)

In case (b) there is

Jiw) + 1<l Al = [l (Mg Ry, + hohfi, ) lw)
— <l h§ho + B By, w0 ]

1 2
: [mg(sgnnﬂ sgn[m+kf— “k2|(]:| - (548
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In case (c) we have
Tw)+ K Alpd P =l BEBlw) — X plCECrmlp), (549

meL, T
where N
Bk= Z Amh]|m+k2||h|]m|| > (5~50)

lfmll, lIm+kall €Ly, T
Ck,m= | %= }‘nh[|n+kz|| . mEL.},,T. (551)
lIn+kalleLy, T
Proof. Similar to Lemma 5.3.
Lemma 5.5. Suppose v, T, B, N satisfy the conditions of Lemma 5.2. Then for
p= UJ)', T,B>
Sylhgholy)2N/2, (5.52)
for sufficiently large N, and for sufficiently large N depending only on f there is a
universal constant C such that

Yl (Mg 4 hohi)* [y < CB2N, (5.53)
forkeL, r.

Proof. The proof of (5.52) follows by an argument similar to that given in Lemma
5.2. We have

plhgholw) =N—=<y| 3 hhlp)=N—<C¥,| ¥ did]¥)/<V1I¥1).(5.54)

keL,, T keL, T

If we choose ¢ in (5.29) sufficiently small, then (5.52) follows from (5.37).
We turn to the proof of (5.53). It is easy to see that

PN A PY S B2, (5.55)
and hence
(Pl +dF)? P> +2Re W | (d+di)* P ) S B2 (5.56)
It is clear that
P+ 1P ,> =W ldi +di? |W,) =2Re W, |df P, . (5.57)
Now we have
(AT 2V ESC AL AL FPREC ML PP
QR SRS AL PP
<P, P PICRY, (5.58)

where Cis a universal constant. Hence if we choose ¢1in (5.29) to be a small constant
times % then we may conclude that

P de+di) 1P =262, (5.59)
and hence from (5.28) that
ylex+ i) ly) <4pY2. (5.60)
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It follows therefore that
(pluleet ) lp) SANB'2, (5.61)
and hence that
Cl(hgho +hiEhy) (e +cf)* [p> SANBH2. (5.62)

We wish to compare the expression on the left in (5.62) with the expression on
the left in (5.53). First observe that the left of (5.62) may be written as

Cwlhghohyhié + hohEhi > + 2wl (b ) [y
+ pl(hEhy) (e + ) ) + Pl (B ho) (c + D) ) - (5.63)

We estimate the difference between the last term in (5.63) and {y|h¥%h}?
+h3h2 ). Suppose we have

N-5
Rlv>= 3 aiN=)), (5.64)

where |N —j) denotes a normalized eigenvector of hih, with eigenvalue N —j.
Thus

N—-5

2 of =<plhEEhE ) = Cwlecllpy =P dE i | /KPP > =c/B,  (5.65)
i=

for some universal constant C. It is easy to see that

N-s (N+2-j)'
[hs2hE —(hsho)cilw) = ¥ “f{l" (N+1-pi7

j=0

} hE* N —j> . (5.66)
Hence we have
[Cplhghi — (hho)ci lw)

< [j:i: (N+2_j)2a} {1 — W}Z]M§C/ﬂuz from (5.65). (5.67)

The inequality (5.53) follows from (5.62), (5.63), and (5.67) Q.E.D.

Lemma 5.6. For k in case (c) let B, be defined by (5.50). Suppose T=N5y. Then
there is a universal constant C such that

(| BEBlw) S CN*P/p*2. (5.68)
Proof. 1t is clear that (yp|BiB,|yp) is a sum of terms of the form
{wlemencegpd (5.69)
with m, n, p, g€ L, 7, which is the same as
C¥yldnd,dyd |V /<P Py ) (5.70)

Now suppose that all the m, n, p, g are different. Then one can see that

(P|dxd,d*d, 1Py =0, (5.71)
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from which it follows that
(W |did, dyd, |V > = —<W)ldid,dyd, |V . (5.72)

Hence we have

Wil

mzn j'mj'n<1plhﬁn+k2||h]|nf|hﬁm"‘kzﬂhllmll |1P>'

mznimin<q/2|dﬁn+k2|Id||n]|d’|l]¢m+k2||d|]m|] |YI2>

2 Lot i+ ¥ 2l i ¥ 2

neLy, T neLy, T

é(%l[ Py dfdn]lez>§<Wl[ z d;“dn]3|5”>/(N—-5), (5.73)

where the sum with respect to m, nis over m, n with |n+k, |, ||nl, |m+k, |, |m]| all
distinct. The last expression in (5.73) is bounded by a constant times
(T3/y3B*)3/N, which in turn is bounded by the right side of (5.68).

The terms in BjB,, where |n+k,|, ||n|, |m+k,]|, |m| are not all distinct are
still bounded by the last expression in (5.73), and hence we are finished. Q.E.D.

Next we obtain a Fourier representation for |[x—y|™! as x, y vary in 4.

Lemma 5.7. For x, ye A;, |x—y|~ ! has the representation

x—y| t= 3 v(k)e*™k L (5.74)
4keZz?
and v(k) is given by the formula
1
v(k)= CanLkP [1—cos|4nkl]. (5.75)

Proof. The maximum value of |x — y| as x, y vary in A, is ]/§L. Now let f(x) be the
cut off Coulomb potential

fe)=Ix|"", |x|<2L, f(x)=0, |x|>2L. (5.76)

The function f(x) can be represented in a cube with side of length 4L by a Fourier
series

f)= 3 v(kye** >t (5.77)
4keZ3
where v(k) is given by
@Lvik)= | |x|7te ki, (5.78)
|x]<2L

If we evaluate the integral in (5.78), we obtain (5.75) and so (5.74) Q.E.D.

Let Ji(y) be the potential energy of y=1v, r , corresponding to exp[2mik
-(x—y)/L]. If kis in Z3, then J,() is defined just as in (2.10). We shall show that.

Lemma 5.8. Suppose k= (ky,k,, ks) is such that k;¢ Z, i=1,2,3, but 4ke Z>. Let
p=1, 1 with T=N'%y. The B can be chosen sufficiently small independent of k
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and N sufficiently large depending only on [ such that J(v)<—C.N for some
C,.>0.

Proof. J, () can be written in the form
Jw) =<l A*Alp) = KplAlw)*—a®N— 3 ag<wlh§ho+ ki, ly)

neL, T
-Xp % I nComl) (5.79)
where
A=ant S a(hth,+hoh®)+ 3 B,B,, (5.80)
nel, r n

and B,, C, ,, are defined as in (5.50), (5.51). This follows by expanding exp[2mik
-x/L] as a Fourier series in exp[2nim - x/L] with me Z3. If we let B= A —ax, it is
clear that

Jw)=<y|B*Bly)y—a’N — LZ oz (plh§holw) . (5.81)

The result follows from the previous lemmas by observing that the «, are about the
same size as the §,. Q.E.D.

The potential energy of y =1,  ; is given by
> v(k)(w). (5.82)

4keZ3
It is easy to see from the previous lemmas that by choosing T=N5/y and B
sufficiently small we have

RO ER (589
73

4ke

for some constant C > 0. Theorem 5.1 now follows by using (5.83), Lemma 5.2, and
arguing as at the end of Sect. 2.
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