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Effective Actions and Large-TV Limits
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Abstract. The saddlepoint action for a large-N theory is given as an effective
action for composite operators. This effective action is computed explicitly for
O(N) models and as a series in large-iV invariants for matrix models. In the
latter case, the use of the first term of the series is found to give good numerical
agreement with the exact solutions of the solvable models.

Introduction

A very appealing approach to the solution of quantum field theories is the —

expansion [0]. One assumes that the number of fields is a power of a parameter N
and that the coupling constants scale appropriately to give a large-JV limit for
correctly normalized expectations. It is then possible to expand the expectations as

series in —. This nonperturbative approach to field theories gives rich physical

information in the solvable examples. An interesting feature of the ΛΓ-> oo limit is
that it is given by extremizing a saddle point functional.

When the number of fields scales as N1, this functional can be found by
path integral methods. In the case of most physical interest, in which the number
scales as N2 (as in QCD), the iV->oo limit is unknown. We wish to explore this
functional in both, cases.

As an example of the N1 case, consider the field space {φι: R ^ R * } and the
(Minkowski space) Lagrangian

We wish to find the normalized free energy

Z=-i~
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As in [1], we introduce a bilinear composite field χ (X, Y). Then

Z= -iIjexp(i#(Λ) (Πδ(Nχ(X, Y)-Φ\X) #{Y))a#9χ

= -i^SexpiU-j(d2δ)(X-Y)χ(Y,X)dnXd»Y-NSV(χ(X,X))dnX

• (φ\Y) - φi(X)-Nχ(Y, X))dnXdnγ\ ^φ'

= - i l j e x p i / ψ - \{d2δ){X- Y)χ(Y9 X)dnXdnY-j V(χ(X, X))dnX

- l-\λ(X, Y)χ(Y9 X)d»XdnY+ l- i In detλψχ2λ,

the determinant being taken of the operator λ with operator kernel λ(X, Y). For
large JV, Z is given by stationarizing

ί -{(d2δ) (X- Y)χ(Y, X)dnXdnY-\ V(χ(X, X))dnX

, Y)χ(ZX)dnXdnY+$ίlndetλ

with respect to χ{Y, X) and λ(X, Y). The λ variation gives λ(X, Y) = (iχ~x) (X, 7),
and so the saddle point functional is

-Y) χ{χX)dnXdnY-\ V{χiX,X))dnX-\iΎxl-^i\n detχ.

The standard gap equation can now be obtained by stationarizing with respect to
χ. The salient point is that S(χ) is exactly the sum of the original Lagrangian,

written in terms of a composite field χ(Y, X) = —φ\Y) Φ\X), and a universal

term — jiΎτl— ^ΐ In detχ. The field χ is itself a large-JV invariant.
For matrix models, with the number of fields scaling as ΛΓ2, these path integral

methods do not work, although attempts have been made to find an approximate
solution by the judicious use of auxiliary fields [3]. We wish to show that again the
saddle point functional is given by the sum of the original Lagrangian, written in
terms of large-iV invariants, and a universal term. In fact, this can be done for any
quantum field theory, whether large-JV or not, by using an effective action for
composite fields. The universal term is shown in the large-iV cases to be given by
the relative fiber volume of a fibration of field space by the global symmetry group.
This volume factor is computed explicitly for 0 (N) models (with JV1 fields) and as a
series in large-iV invariants for matrix models (with N2 fields). Using the first term
of this series we compute approximate effective actions for large-iV matrix models
and find good numerical agreement with the solvable models in 0 and 1
dimensions. The outstanding problem is to find an explicit form of the universal
term in the N2 case.
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I. Effective Action

An effective action Γ(φ, G) for both the fields of a quantum field theory and their
bilinear composites was introduced in [1] as a tool to study dynamical symmetry
breaking. Γ(φ, G) is the sum of 2-particle irreducible diagrams and the standard
effective action is obtained by Γ(φ) = min Γ(φ,G). This has the technical

; G

advantage that a finite diagrammatic expansion of Γ(φ, G) corresponds to an
infinite number of diagrams in the expansion of Γ(φ). The diagrammatic expansion
of an effective action including up to quartic composite operators was given in [2].
We wish to give the expansion when all composite operators are variables. It is
found that such an action is simply the sum of the Lagrangian and an entropy-type
term.

On a measure space {X,dφ), let ρ(φ)el}(dφ) satisfy ρ^O, $ρdφ=l and
lnρeL^ρd^). (Sufficient for the latter is that ρeΠ(dφ), p< 1). Take a Lagrangian
££ (φ) e L°(dφ) with e~* e I}(dφ). To define the standard effective action one adds
to if a linear term in φ. In analogy, we add an arbitrary function on the field space
X. For Jel}{ρdφ\ define W(J)= -lnj"<Γ ( L + J )^andΓ(ρ) = sup<W<7)-j\/ρ#).

j

By Jensen's inequality, F(ρ)^ί(jS?ρ + ρlnρ)d^. Taking J=— if-lnρ gives
Γ(ρ)=J"(jS?ρ + ρlnρ)d^. This is the composite action. As is used in mean field
theory, the inf of Γ(ρ) is at QQ^e'^/je'^dφ, and ρ0 generates the Green's
functions in the tautological sense that for fe Π°(dφ), </> = \fρodφ. However, we
wish to think of the entropy term as a functional of the Green's functions.

It is well-known that the standard effective action has the interpretation that if
φ is static then Γ(φ0) is the minimum of the energy expectation on the set of wave
functions with the constraint that the expectation of φ is φ0 [7]. There is also a
spacetime version of this interpretation.

For a function tF\I}(dφ)-+M mapping to some space M, define
f^r(m)= inf \(££ρ-\-ρ\nρ)dφ. To show that this includes the case of the

Hstandard effective action when X is a linear space, take M=X, and 3* (ρ) =
Then

Γ^(φo)= inf J(jS?ρ + ρ l n p ) # = sup infftifρ + ρlnρ
ρ su ch that $φρdφ = φo J e X* ρ

+ <J,φ-φo}ρ)dφ= sup -M$exp-(& + (J,φ-
JeX*

which is the standard effective action. We can also write this as

JeX*

JeX*

sup
JeX*

with <&(φ)=&(φ + φo)-£?(φ0)-<VSe|φo,φ\ which gives the background field
method for computing Γ(φ0). Equivalently,

Γ(φo)= inf f(&Q + Q]nQ)dφ; (1)
SΦdφ O
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Fίg.l

the Hartree-Fock approximation is given by minimizing over ρ's of the form
= det~1/2(2πG2)exp(—-|<^, G^φ}) with G2 a positive operator on X. To get the
composite action of [1], take M = Z®(Z®X) and #r(ρ) = (SφρdφJ(φ®φ)ρdφ).
Then

Γ(φo,G)= inf
ρsυch that $φgdφ = φo,

= sup

= sup — lnjexp—(if + < J l 5 ^ — φ 0

Jl,J2

To get the background field version, write this as

(ί) + ̂ 0) + <J1

Φo + Φo®φ — G})dφ

®φ — φo — G}ρ)dφ

Φo®Φo~ G))dφ.

with

The result of [1] is that the sup term is given by summing the 2PI diagrams
for 3. J " j 2

Finally, the term f ρlnρd^ can be expressed in terms of the connected Green's

functions {Gj}^ of ρ, defined by \n\eKσ^ρ{φ)dφ= Σ i'/τy<Gj,®
 /σ>.The first

few terms are given in Fig. 1. The circles denote connected vertex functions and the
lines denote propagators. Their numerical factors are most easily found by
computing Jρlnρd^ for a zero-dimensional quantum field theory. In this case
we obtain

ίρlnρ#=-i-iln(2πG2)+ £ (-) m + 1 - Σ Σ
m = 1 m {Pi)f= ί {nUj}?= !, f= !

« * 0

+«3,
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the combinatoric factor being given by

3«3,l+4«4, l +

<dz ) n e X P ( 2 o < i ? , < m 2 ^ ) ' ( 2 )

n

For the bare Lagrangian part of Γ{ρ\ if 3?(φ)= Σ hΦk> then
n fc= 1

\££ρdφ= Σ h(Φk} with <^k) being the standard expression for the Green's
fc=l

function in terms of the connected Green's functions {Gj}p=ί.

II. O(N) Models

We have shown that a quantum field theory can be solved by minimizing the sum
of the Lagrangian and an entropy-type term. This is similar to what happens in
large-iV models, in which one minimizes a saddle point action. We now show that
the saddle point action is exactly the previous expression, the distinguishing
feature of a large-iV theory being that it goes like a power of N.

N

Suppose that we have N fields {φi}?=ίeX= φ X 0 ? a n d that the Lagrangian

has the form £?(φ) = Nl[—ΣΦi®Φi) (This formalism applies to the standard

1
O(N) model on Rπ.) Taking ρ to have the form ρ(φ) = aexp( — Nrl —ΣΦi®Φi

we have

— lnj expl — Nrl —

JNV(ξ)r(ξ)exp(-Nr(ξ))dξ
ίV(ξ)exV(-Nr(ξ))dξ

-lnSV(ξ)exp(-Nr(ξ))dξ,

with ζεX0®X0 and

With the assumption that O(N) acts freely on almost all of X, V(ζ) is given as
follows: Let {7}}^"1)/2 be a basis of O(N) and let TjφeTφX denote the
infinitesimal action of Tf on φ. Then up to a constant, F(O = det1/2M, with, (O ,

oo 1 / _TM_ _ Λ

= - f - T φ N -e N)dT
o T \ J

= ~ Σ I τ^^( - —((TrM^ -N)dT. However, the leading term in AΓofTrMj is
; = o o Tj\ \ NJ
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Nj+ίΎτζj and so lndetM~JVlndetC + const. Thus

ίρlnρdφ Nϋr(ζ)cxp(-N(r(ζ)-±lndQtζ))dζ/$ exp(-iV(r(O-ilndetOC>]

with Co being the minimum of r(ζ)—^lndetζ. This could also be derived by
summing the bubble diagrams of (2).
For large N we wish to minimize

as a function of r. Note that this is the saddlepoint functional derived in the

introduction. The minimization gives ζo — \ζo=jl, which is the well-known gap

equation for the 0(N) model [4].

III. Matrix Models

Suppose we have N2 fields {φij}eX = H®X0, H being the NxN Hermitian

matrices, and that J£ = N2l\\N 2 T r ® ^ j J = 1 J , the trace being over the
(x) jH part. As before, —Jρ lnρd^ will be the log of the relative volume of an orbit of
the global U(N) SLctionφ-^UφU-\ With {T^l t a basis of U(N), for a field theory
on Rπ, we have

jk= Σ T]abTkJ(2φbcφda-φlδbc-φ2

bcδda)(x)d»x
abed

and

l n d e t M = - j ^ T r β N dT+const =-N2) ^-\ -J
0 I 0

•ΓΈ-I l\">/-rr N 1 j n -y . rp2, f f I

(3)

Although this series expresses the relative orbit volume in terms of large-JV
invariants, it will not be very useful unless it can be summed explicitly, and an
alternative is to use the planar diagram expansion of the n-dimensional version of
(2). We will now compute exactly using the first term of the planar expansion. To
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Table 1

λ

0.01
0.1
0.5
1

50
1000

0EXACT

0.9317
0.6676
0.4074
0.3125
5.389 x l O ' 2

1.209 x l O ' 2

Table 2

λ

0.01
0.1
0.5
1

50
1000

0H-F

0.9307
0.6559
0.3904
0.2965
4.877 x 10 " 2

1.112xl(Γ2

^•EXACT

0.505
0.542
0.651
0.740
2.217
5.915

(Λ-E)EXACT

0.01844
0.1217
0.3086
0.4197
1.241
1.979

^ H - F

0.505
0.543
0.653
0.743
2.236
5.968

(Λ£) H -F

0.01858
0.1248
0.3179
0.4320
1.273
2.002

N2

lowest order, J ρ In ρdφ= ——lndet£/(X, Y) with

Only varying ${J£ρ + ρ\nρ)dφ with respect to the first two connected Green's
functions amounts to the Hartree-Fock (H-F) approximation (1), and we can
compare this to exact solutions in 0 and 1 dimensions. For the zero-dimensional

Lagrangian i ? = - T r ^ 2 + — T r ^ 4 the H-F approximation gives the 2-point
N

1
function gHF = — (|/l + 32λ-1) and the free energy EHF(λ) - £HF(0) = N2 [_ig~i

], which is compared with the exact results of [5] in Table 1. For the

1-dimensional Lagrangian S£ = i T r ( 3 ^ ) 2 + ^ T r ^ 2 + — Tr^4

? H-F predicts a
2-point function

<Φab(T1)φcd(T2)}= —

with mz—m = 4λ, and a ground state energy of N2^ ί 3m H—), which is compared

with the exact results of [5] in Table 2. For the n-dimensional Lagrangian
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the H-F version of Γ(φ\ using (1), is

with

This can be renormalized as in [4]. In 4 dimensions the H-F approximation
predicts, in analogy to [6], that there is no nontrivial large-iV φ4 matrix theory.

The main problem in this approach is to find the large-JV volume factor exactly,
whether by summing the series (3), adding the planar diagrams of (2) or using some
other method. We only have the intriguing 0-dimensional result — fρlnρ
- JV2 f dμdλN ~ 4ρ((N1/2λI) In \λ - μ\ρ(N1!2μl) [5].
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