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Abstract. Certain nonlinear sigma models with fermions are ill-defined due to
an anomaly which exhibits characteristics of both the nonabelian gauge theory
anomaly and the SU(2) anomaly. The simplest way to diagnose the anomaly
involves consideration of the global topology of the theory. We review the
mathematical methods needed for this analysis and apply them to several
supersymmetric sigma models. Some of these are found to be anomalous.

1. Introduction

Quantum field theories of fermions interacting with nonabelian gauge fields
sometimes exhibit an anomaly in the gauge current [1,2]. This anomaly has
recently attracted much attention [3-20], since it has become clear that it is usually
a manifestation of a global obstruction to defining the theory properly (i.e. gauge
invariantly).

A slight rephrasing of this result clarifies the main issue. Instead of formulating
gauge theories in terms of the space .s/(4) of connections on a principal bundle over
Euclidean spacetime X, we can instead formulate them in terms of the space
#(4) = j / ( 4 ) / ^ ( 4 ) of gauge orbits in J / ( 4 ) [21,22].1 Now there is no question of
gauge-dependence of the effective action. Instead the anomaly shows up as a
topological obstruction to defining the dynamics of the fermion fields throughout
^ in a smooth, consistent way.

Unlike perturbation theory, which simply gives the gauge variation of the
fermion effective action i}[A], ̂ e topological approach gives a direct geometrical
interpretation of this variation. The situation is analogous to what we would have
in general relativity were we to treat a tensor quantity, like energy density, as a
scalar. Things might look acceptable as long as we worked in one coordinate
frame. But if our manipulations required us to integrate this density over
spacetime, we would be disappointed to find that the resulting number had no

1 We will henceforth drop the superscript '4' when no confusion can arise
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coordinate-invariant meaning. Similarly, in gauge theory Go[^4] = e~Γf[A] does not
reduce to any "scalar" function GQ\Ά~\ on <#, and so the functional integral makes
no sense. Like energy density, however, Go does have a perfectly good geometrical
meaning. It is a section of a bundle over %>. The anomaly is the statement that this
bundle is twisted, so that J Go has no invariant meaning. If we stubbornly insist on

viewing Go as an ordinary function on ^, for instance by choosing specific
coordinates on #, we find, as in general relativity, that this function generally
becomes singular when the coordinate system does. This is not the sort of
singularity familiar in quantum field theory, since it persists even when we
regularize the theory.2 Furthermore, its location is ambiguous, depending on the
choice made. It is, in short, an unacceptable, unphysical pathology of the gauge
theory.

The key fact allowing the obstruction we have described is the topological
nontriviality of the configuration space c€. Since the above reformulation of the
anomaly question does not involve gauge symmetry one can ask whether there are
other theories with nontrivial configuration spaces (perhaps with no internal
symmetries at all) which are anomalous in this generalized sense. We have already
answered this question in the affirmative for certain nonlinear sigma models [23].
Models of this sort are of interest because they arise as low-energy approximations
to strongly-interacting theories (such as preon models). In the present paper we
will explain our results in detail, strengthen them slightly, and apply them to some
sigma models which have been proposed as the low energy descriptions of
supersymmetric preon physics. The anomaly is relevant to a nonrenormalizable
theory such as a sigma model for the same reason that it is relevant in gravity: it
can be interpreted as a low-energy phenomenon [18].

We begin with a geometric formulation of the action for nonlinear sigma
models. A nonlinear sigma model is a field theory in which the (bosonic) dynamical
variables φ take their values in a Riemannian manifold M. We call M the target
space. The dynamics of φ are determined by the action functional

Sb = f {dφ, dφ} = f gab(9(x))d^ad,9

bd(vol). (1)
X X

Here X is d-dimensional spacetime, gab(φ) is the metric on M and the second
integral gives the form of the Lagrangian in local coordinates (which must be
specified patchwise).

How shall we couple matter fields, say left-handed fermions, to φ while
maintaining an intrinsic geometrical meaning? One possible approach is moti-
vated by supersymmetry [24], If the fermion field ψ is to be a superpartner of φ,
there must be a transformation law of the form δφ — εψ, where ε is a spinor on
spacetime. For this to make invariant sense, ψ(x) must live both in the space of
spinors at x e X, S+\x, and the space of tangent vectors to M at φ(x), TM\φ(x). As x
varies the S+\x fit together into a bundle over X, the (positive chirality) spinor
bundle S+, and the TM\φ(x) fit together into a bundle over X called the "pullback"
φ*(TM) by φ of TM [25]. Thus, a complete classical field configuration is

2 See Sect. 2
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specified by φ e <g and xp9 ψ e ffl ± , where3

X->M} (2)

and

Λ ^ Ξ Ξ {sections of S±®φ*(TM)} . (3)

We will call £ * = S±®φ*(TM) and denote the vector space of sections either by
Γ(E±) oi by JT*.

This suggests a generalization. If supersymmetry is not important we can
replace TM and its Riemannian metric by an arbitrary vector bundle B over M
with an arbitrary fixed fiber metric <,). Since the results of Sects. 2,3, and 4 are not
dependent on supersymmetry, we will state our anomaly criterion at this level of
generality and only later specialize to B = TM. Similarly, we need not impose the
requirement that M be Kahler, or even complex, until we apply our results to
supersymmetry. For technical reasons we must, however, require that B be a
complex vector bundle, as is the case in four-dimensional supersymmetry [26],

The above geometrical setting motivates a natural choice of an invariant
Lagrangian for ψ. Given a fixed connection Θ on B (e.g. the canonical Hermitian
connection [27]) define a connection ω® 1 + l(x)φ*<9 on £*, where ω is the usual
spin connection on X. The Dirac operator Jpφ = yμDμφ, which maps Γ(£*) to
Γ(£~), allows one to write down the invariant action

Sf = J hφ)ψ*{δί$ + ΘUφ)dφa)ψk = J <ψ, pφψ} . (4)

For brevity we have dropped the spin connection and will continue to do so. '/*' is
the pulled back fiber metric of B and ij are fiber coordinates.4

Thus there is no difficulty in defining a classical nonlinear sigma model with
fermions in an invariant geometrical way. Quantization, however, requires a
specific choice of frames for the Hubert spaces $? *. In favorable circumstances all
dependence on these choices drops out in the end and we are left with an invariant
theory. Just as in gauge theory, though, the condition for this to happen is
nontrivial and does eliminate some models.

The rest of this paper is organized as follows. Section 2 contains the heart of our
argument. It is very short. In it we reexamine the well-known problem of defining
the functional integral for chiral fermions in the context of the nonlinear sigma
model. We give a heuristic treatment, characterizing the anomaly as an obstruc-
tion to a continuous definition of the functional integral on V [3,7]. The condition
we arrive at is that an integer v [Eq. (17)] should vanish.5

In Sect. 3 we give a physical interpretation to this obstruction. We show that
for vφO it is impossible to find well-behaved local counterterms which render

3 Recall that in Euclidean space ψ and ψ are independent
4 In some cases, (e.g. in supersymmetry) one also adds quartic fermion interaction terms to Sf.
These terms can be rewritten as quadratic terms by the introduction of scalar auxiliary fields. They
do not change the index, and hence do not remove the anomaly. We will ignore such terms for
simplicity
5 Atiyah and Singer [7] obtain this condition by more rigorous methods



86 G. Moore and P. Nelson

different perturbative expansions of the same Green function physically
equivalent.

In Sect. 4 we compute v, arriving at our final anomaly criterion. (In Appendix A
we review the corresponding derivation in gauge theory.) To state the result briefly
we recall from Eq. (4) that given φ the connection Θ on B can be pulled back to
φ*(Θ) on φ*(B). As φ varies on ̂ , the various bundles {φ*(β)} can be regarded as
constituting a single large bundle φ*(B) over # x X.6 The large bundle has a
pulled-back connection φ*(Θ), which is like (4) but differentiates φ along <g as well
as along X. The curvature, or "field strength" 2F of φ*((9) is a 2-form o n ^ x l .
Our criterion Eq. (62) essentially says that (J* )3 should be an exact 6-form on
^ x l . The derivation of (62) requires mathematical tools which are perhaps
unfamiliar to many physicists, and so we describe some of the foundations of the
subject in some detail, since we know of no accessible discussion as yet in the
physics literature.7 Thus we briefly describe K-theory and the family index
theorem. Further technical definitions appear in Appendix B.

We apply our results to models with Grassmannian target spaces in Sect. 5,
showing that a large class of such models are anomalous. Grassmannian spaces, or
spaces closely related to them, arise frequently in the literature as coset manifolds
in theories of spontaneously broken symmetries. Fortunately such spaces also
make our criterion especially easy to apply, since mathematically they are
"universal" in a sense we will explain.

Sections 6 and 7 are perhaps the most accessible parts of the paper. In Sect. 6
we investigate further the anomaly for Grassmannian spaces and find that the
analogy to the nonabelian gauge anomaly can be strengthened since there is an
analog of the space si of gauge theory. In Sect. 7 we analyze some models which
have arisen in the context of preon physics. One model, recently considered by
Bϋchmuller et al. [28], involves the symmetry breakdown U(6)->SU(2) x U(4).
Since a closely related model with U(6)-»U(2) x U(4) is anomalous, one might
suspect that the other is too. In fact it is not, as we demonstrate.

In Appendix C we give some explicit examples of families of configurations
which exhibit the obstruction we will describe. Aside from being amusing, they are
necessary to the arguments of Sect. 6. Finally, a technical lemma on the homotopy
type of homogeneous spaces, which we need in Sect. 7, is relegated to Appendix D.

Note added. In this paper we consider only global obstructions to the existence of
any sort of consistent fermion quantization. In general the vanishing of this
obstruction is all one can require of a sigma model with arbitrary target space M.
For the case of sigma models which actually arise as low-energy reductions of
linear theories, we can demand more. In this case M is a homogeneous space G/H
and we ask of a quantization scheme that it reproduce the (possibly anomalous)
behavior of the underlying theory under the isometries of M. This leads to a local
criterion for theories [29] which is simply the't Hooft anomaly matching criterion:
a linear model with fermions in the representation ρG of a global symmetry group

6 The notation is suggested by the "evaluation" function φ: <β x X-*M which maps (φ,x) to
φ(x)eM
7 See, however, Alvarez, Singer, and Zumino, in preparation
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G can reduce to a G/H sigma model with fermions in the representation ρH of H if
and only if the usual fί-anomalies of ρH match those of ρGjH. In light of this result,
the theories studied in Sect. 7 should be viewed only as illustrations of the global
obstruction, since they can now be more conveniently treated by the local
criterion. We thank L. Alvarez-Gaume, P. Ginsparg, A. Manohar, and E. Witten
for discussions on this point.

After this work was completed we also received some papers on related topics
[30,31].

2. The Chiral Functional Integral

Chiral anomalies for gauge symmetries are already well known. We can analyze
them algebraically by considering all possible gauge-noninvariant terms in the
theory's effective action, finding essentially one possibility up to local redefinitions
of the bare action. This is the approach taken in [4,5,16], for example. This
approach would be inconvenient for us, however, since a priori we have no gauge
symmetries in sigma models8. Moreover, it does not tell us whether the anomalous
terms do in fact arise in a given theory. To determine that we must have recourse
either to perturbation theory or to the topology of the Dirac operator $ for the
theory in question. We will take the latter approach in most of this paper. In the
next section we will sketch the former as well.

The relation between chiral anomalies and the topological, or index, properties
of p was first discussed in [32-34]. These papers analyzed the axial U(l)
anomaly and showed that it is given by the index density for #. The relation
between anomalies in gauged nonabelian currents and index theory was given by
Singer [3]. (See also [7-10,20].) It is this derivation which we will generalize to
sigma models. (In Appendix A we also reproduce the gauge derivation from this
point of view.)

Let us try to quantize the theory given in Sect. 1 using the path integral
formalism. We need only consider the fermionic path integrals for various fixed
boson configurations φ:

Gplφ xl9 xl9..., xp, xp] = J dxpdψe'^'^hβ^yψixi) ψ(*P)ψ(Xp) (5)

It turns out that the main issue is the definition of the fermionic effective action

Golφ]=aφ(-Γfίφ]). (6)

We will focus on this Green function and return to the others later.
GQ\_φ] is the functional Grassmann integral of an action quadratic in the Fermi

fields. Thus we expect

(7)

Our goal is to find a reasonable interpretation of Eq. (7). Our answer is Eq. (9). We
will relate it to more familiar expressions for the path integral in the next section.

8 See, however, Sect. 6
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The expression dQtpφ suffers from two problems. First, it must be regularized.
Second, pφ maps spinors of positive chirality to spinors of negative chirality; that
is, it is an operator between different Hubert spaces. It follows that the eigenvalue
problem, and hence the determinant, is not well-defined [18]. Failure to appreciate
either of these difficulties would lead one to conclude that there is no anomaly.
Furthermore, the lack of an intrinsic definition of the determinant indicates that
choices must inevitably be made in giving meaning to G0[<p]. This should alert us
to the possibility of a global obstruction to a consistent set of choices.

One might try to rectify the chirality-flip of $φ by considering instead
Dφ = $~ xpφ, where $ is the free Dirac operator, and so should contribute a factor
independent of φ to GQ\_φ] [18]. ButdetD, or more generally det p^pφ9 makes no
more sense than det$>φ itself since p : ̂  -*2tf~, while ί^1: tf~0 ->JV+0. We must
therefore choose isomorphisms T{-\φ, φ0): Jί?*0-+j%* and take9

G0[φ] ΞDet[Γ<+>(φ, φo)p~φ^-\φo, φ)$>J . (8)

We can now regularize this expression by choosing a smooth function/such that
/(0)= 1 and/(oo) = 0. We can finally define the regularized determinant by

oίφ; M] ΞexpTr {/ {^^j Log[Γ<+>(φ, φQ)P^Ί<'\φ

= exp Trf {Log[Γ(+)(φ, φo)p-Q

1T^\φo, φ)pφ]}

/ ^ J (9)
The regularization cuts off the contributions of the "high frequency" modes. The
choice of the function / should not affect physical quantities10 [34,35].

Unfortunately the definition (9) ignores an important fact. The Hubert spaces
Jf* for different φ are not naturally isomorphic.11 This means that appropriate
T (Wo* ψ)can o n ty b e defined in a neighborhood of φ0. That is, we must cover ^
by patches {^J, choose a reference configuration φa e SP^ in each patch, and define
the effective action patchwise: G%[φ]. If φe^an^β we have

^ (10)

where

θiβlφ] =Det/[^α

1Γi->(φα, φ)ψ\φ, φβ)pψβψ\φβ9 φ)T^Kφ, φj] . (11)

We are thus forced to conclude that (7) does make geometrical sense, but only if we
give up thinking of it as a function. Instead we must think of it as a section of the
complex line bundle L over configuration space ̂  whose transition functions gaβ we
have just written down.12 Only if L is trivial can we regard Go as an ordinary
function. We must therefore determine the twist of L.

9 We assume, for the moment, that we can always choose φ0 so that ]/>φo is invertible
10 The nontrivial field dependence of the regulator modifies the Schwinger-Dyson equations.
We do not know if any modifications survive the removal of the cutoff
11 While all Hubert bundles are trivial under the structure group GL(^f ± ) , a cutoff amounts to
passing to a smaller group with the help of the operator j/> [36,37]. The next paragraphs explain
this at our somewhat heuristic level
12 It follows from (10) that the gaβ satisfy the "cocycle conditions" Q^Q^Q^ on 0>Λn0*βnέ?y

necessary for a consistent definition of a bundle [22,25,38]
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First we note that complex line bundles over ^ are characterized completely by
their restrictions to nontrivial two-cells in # [25], so we lose no generality if we
restrict attention to L\γ, where YQ % is a noncontractible two-sphere parametrized
byyeS 2 . 1 3

Next, let us recall some concepts of magnetic monopole theory. Bundles over
S2 can always be trivialized by choosing as patches the northern and southern
hemispheres 0>NS and a transition function gNS on the equator δ = 0>Nc\0*s.

Thus a section σ of a line bundle L over S2 is given by two complex functions
σN's: &N,S-*C related by σN(y) = gfjvsOÔ CyX where we can choose \gNS\ = ̂ ' The
twist, or "monopole number", of the line bundle is then given by the integer
winding number of gNS:

v = ^ - f ΘNS1 d(gNS) = ~ ί d(\oggNS). (12)

In s In g

Continuing the analogy to monopoles (although Y has nothing to do with
ordinary space), we can introduce 1-forms aN's on 0>NtS which differ by the "gauge
transformation" gNS on & and reexpress v in terms of the "field strength" F = daNiS

by

v=ff(α»-αs)=ffF. (13)
In g In Y

Thus v depends only on the cohomology class of F in H2(Y). This class is called
chx{L), the first Chern character of L [25,39].14 That is, ch±{ ) sends bundles over
7to classes in H2(Y). From its definition as a winding number chx is topologically
invariant; from its definition in terms of F will come its important algebraic
properties.

Note that the connection aNfS defines parallel transport on L and hence sets up
families of isomorphisms tN(y; yN) and ts(y; ys) between the fibers at yNfS which are
copies of C, and the one at y e 0>Nt s (another copy of C). Conversely, choices of tNt s

determine a connection by aNfS = d(tNfS)(tNS)~1.
We can also extend the definition of cht( ) to bundles V of many dimensions,

over complicated spaces. Since these can have more interesting structure than line
bundles on S2, we get a whole sequence of classes chp(V) e H2p(Y). We will discuss
p>l in Sect. 3. To generalize c/i^ ) in a useful way we will demand that
dιγ(yγ + F2) = c/ι1(F1) + c/i1(F2), where on the left we have the direct sum of two
vector bundles. Thus chx( ) is a homomorphism under direct sum. If Vis a direct
sum of many line (i.e. one-dimensional) bundles, its curvature FNS can be taken
diagonal in its internal indices. Then

^teF> (14)

i In In

The Chern character is then defined so that this is true even for arbitrary V.

13 For the rest of this paper we consider the bundles L and ffl± restrict to Y
14 We will always speak of the Chern characters chp(L) instead of the Chern classes cp(L). The
two contain the same information [39], and indeed c1—chli but ch will be more useful in Sect. 3
due to its ring property
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f '

1

Fig. 2.1. A convenient choice of regulator. λt refer to the
_ ^ eigenvalues of p\Jf>y

Just as in the one-dimensional case we can trivialize V over patches with
transition functions in the unitary group of the fiber and introduce connection
forms which (like F) take values in the algebra of that group. On Y= S2 the winding
number is thus

v = $ch1(V)= — J tτF== — J trgΰidgNS, (15)
Y 2πγ 2ns

where F = daN's + (aN's)Λ(aN>s). tNfS again satisfy aN's = d(tNtS)(tN)S)~1.
Returning to Go, we can now compute the twist of L using Eqs. (11) and (12):

v = ~- ί d{Ύτf Log [φ-J- T^~ \yN, y) Γs

(" \y, ys)Pys 7s+fys, y) Tk+ Ky> 3Άr)] }

Note the similarity of Eqs. (16) and (15). In fact we can invoke the irrelevance of the
choice of regulator / t o give Eq. (16) an important interpretation as follows. Since
Y is compact, we can find an integer N so large that for any n^.N, the nih

eigenmode of $}j0y hardly feels the presence of the background boson field for any
y G Y, and in particular, never vanishes. We can then replace the eigenvalue cutoff
fΦlPylM2) by a mode cutoff approximating 1 — Θ(N — ή) as in Fig. 2.1. Removing
the cutoff means taking JV to infinity.

With this choice of cutoff the trace in Eq. (16) becomes a finite-dimensional
trace, and the forms dTj^siT^s)'1 become the connections for the finite-
dimensional subbundles ^f^ of Jf ± spanned by the first JV eigenfunctions of $fJ^
and H)$\15

Thus we can write

v = f[cΛ1(jCr)-cft1(jr1^)] (17)
Y

or simply ch^L) = cft1(^o

l

w) — ch^J^^). The homomorphism property of ch1 now
suggests that we express the anomaly in terms of the "defect" bundle

15 Note that this choice of regulator justifies our not differentiating / in deriving Eq. (16)
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But what is the difference of two bundles? We leave this question for Sect. 4. For
now we simply remark that already in (17) we can see that ch^L) is cutoff-
independent. For, if we increase N then J^*w acquire additional summands Δ^w.
But $y sets up an isomorphism between these, since given a normalized eigenmode
ume Jf + we can let

$um, (18)

which is also normalized, has the same eigenvalue, and lives in jf". [See Eq. (19).]
Hence raising N cannot change chx{L). Moreover, given a homotopy between Y
and some other Yf we can again choose N so large that our procedure is
everywhere continuously well-defined on the compact parameter space S2 x [0,1].
Since v is a priori an integer, it cannot change under such a deformation.

All this abstract nonsense must leave the reader feeling uneasy. How can (17) be
nonzero? M?± involve E± =S± ® φ*(J3); S± have no parameter dependence, while
φ*{B) is common to both terms. How then can J f± have a relative twist? This
objection is very similar to one we could raise concerning the axial anomaly, where
the object in question is in a sense the difference k between the number of
eigenmodes of p and its adjoint [32-34]. How can these differ? The answer is
that both have infinitely many eigenmodes, so that k = oo — oo is not defined
without some cutoff. When we regulate we find a mode imbalance at λ = 0.
Roughly speaking, this happens because relative to the free $ the modes of one
handedness have been shifted one step; this gives an imbalance at λ = 0 countered
by one "at λ — oo" which we throw away by pairing all modes with λ Φ 0. Thus we
must define fc = dimkerJί) —dimker^1*. This integer is called the index of the
gauged Dirac operator in one given background field; it is a topological invariant
of the field configuration. Since it depends only on the low-eigenvalue (long-
distance) behavior of the theory, it is the same for any value of the cutoff M.

The same thing happens in our case. We argued that the obstruction is the
difference of invariants of Jf ±, but we still needed to regularize by passing to Jf^
defined by a cutoff. This again makes sense by the isomorphism argument for large
eigenvalues, and shows that the obstruction involves the relative twists of only the
low eigenspaces of $J# y and $$]. These need not vanish. They are measured by a
generalization of the index, the so-called "index of the family of Dirac operators
]j)φ" [40]. Again this index and the obstruction it measures are present even for
finite M, as mentioned in Sect. 1.

To get a feel for the family index, let us study the framing of Jίf± defined by
diagonalizing the operators JS>lJj>y and Φy$l, yeY. Thus we choose the ortho-
normal eigenmodes

H>Mvn(y) = λn{y)υn{y).

Note that $y differentiates with respect to the (suppressed) spacetime coordinates
x, while y e Y is a parameter. We have already mentioned that the nonzero λn are
the same in each of the above equations.
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Fig. 2.2. Eigenvalue behavior which can lead to v Φ 0

If the ordinary index of $y vanishes for all y, then there is no imbalance in the
number of zero-modes and generically φy will only have a zero-mode for isolated
points on Y Let us suppose that all eigenfunctions but the lowest, λo(y), are
nonvanishing on Y Then we may take Jf^ as one-dimensional. In general ^ ^
will be a nontrivial line bundle, and we must choose separate bases UQ>s(y) on 0>NtS

related by a transition function g^s on S. If λo(y) is always nonzero on Y, we can
define bases for J flow using Eq. (18). Then 34?^ and 3tf[~w have the same transition
function and there is no relative twist: v of Eq. (17) is zero.

On the other hand, suppose the spectrum {λn(y)} looks like Fig. 2.2. We can
take y0 as the north pole. Then Eq. (18) can be used to define v%(y) on @>s, but no
longer on 0>N. In fact, defining some smooth basis vector vζ(y) on 0>N we might find

that the phase Ψ=(v%(y), /Λ ^Φyu%(y)), has a nontrivial winding number

around £. (This is possible since Ψ is only defined on the punctured hemisphere
0>N — {y0}.) The winding number is the discrepancy between the winding numbers
of the transition functions g^s of 34?^ and is thus the family index twist v.

As another example we suppose that fyy has nonzero ordinary index k. In this
case, if ty] has no zero-modes for all y, then 3tf£w will be the fc-dimensional bundle
of zero-modes of py and J^'^ will be empty. Thus the family index measures the
twist of ^ o

+

w alone.16

To summarize, we have seen that while the fermion effective action G0[φ]
makes no invariant sense as it stands for sigma models (or gauge theories) with
chiral fermions, it can be interpreted as a section of a bundle L over ^. We have
written an expression (16) for the winding number v of L over a compact subspace
Y of #, and while we have as yet no idea how to compute it, we know it is a well-
defined topological invariant of the theory. If v vanishes, we can choose a
representation of Go as a complex function on V and proceed to integrate it,
obtaining a full quantum theory. This does not work if v + 0 since there is no
invariant way to integrate a twisted section. Any attempt to interpret Go as a
function will then require that we make choices, leading to the unphysical
singularities mentioned in Sect. 1.

16 In general when /cΦO other eigenvalues λn(y) will vanish at isolated points. In this case the
"bundle of zero-modes" need not be well-defined, although Jflow is
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We should also mention the other Green functions. For this it is convenient to
make the eigenmode expansions

ψ(x) = £ an(φ)un(φ x),

(φ;x).

These diagonalize Sf[ip, ψ; φ]9 allowing us to write (in the zero-instanton sector)

GoM = /ίφ] ί Π (dandbn) exp ( - Σ a A<X, H>φun>). (21)

n \ n J
Here / is the Jacobian of the change of variables from \p,\p to an, bn. Symbolically
we have

/ [ φ ] = [det un(φ x) detι?J (φ x)] " 1 , (22)

where the "rows" of the determinants are labeled by n and the "columns" by x, spin,
and internal indices. This expression is meaningless for the same reasons that (7) is.
We can only define it patchwise, as

m(φ)>Det/<t;ft(φ)? Γα<">(φ, φα)t;m(φα)>} " ' ,
(23)

where we have chosen fixed frames at one point φa in each ^α. The determinants
are now over m, n and are regularized as before.

One perfectly good choice for T^9 however, is simply17

7 T >(φ, φa) = Σ K(Ψ)> <un{φΆ)\ (24)
n

and similarly for Tα

(~}. With this choice each J* = 1. Other choices will still give J
as an ordinary untwisted function. Thus since

X (25)
n

we see that the twist of Go equals that of Jo. Similarly we define Ip by

£ £ (26)
where

Λ ... A (ΣBmv*m). (27)
\ )

Note that by Fermi statistics, for each φ, /p[φ] is a vector in the antisymmetric
subspace Λ ppf/)® AP(J^~) of (^/)< 8 > p®(^~)®p. To see whether it has any
extra, anomalous twist we compare across patch boundaries.

If the transition functions for Jf± are

, etc., (28)

17 We made this choice in [23]
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then the integrands in the expression (27) for Γp and Iβ

p can be made identical by the
change of variables

Taking into account the Jacobian for this transformation, together with Fermi
statistics, we have

Fp = (ΌQtg;βy\Ό^g:β)I^ (29)

We regularize the determinant with a mode cutoff as usual. But the twist of the
factor in (29) is just that of 34?^ minus that of ^ ^ i.e. it is the twist of L. Hence all
Green functions Gp, not just Go, are twisted: they are sections of
Λ P{^φ)® Λ P(JF~)®L.

We can even extend this result to the instanton sectors, fc>0. If the ordinary
index of Jj)φ is /c, there will always be k unpaired zero modes uou ..., wOfe, so that
nonzero Green functions have more ψ's than φ's. We call these G£+ f e > p[φ;...]. The
same reasoning that led to (29) applies here, so that the Green functions furnish
sections of Ap+fc(J^+)(x) ΛP(J^~)(X)L, where again L has the family index twist.

In other words, none of the Green functions have the appropriate geometrical
meaning in a chiral theory with a twisted family index. This is the sigma-model
analog of the fact that in anomalous gauge theories the higher point functions are
not gauge covarient, just as Go[,4] is not gauge invariant. In particular we must
search every connected component of <β for anomalies, even though Go = 0
whenever fcΦO and hence is no problem.

Since all Green functions have the same twist, one might ask whether the phase
singularity on Y can be removed by a simple phase redefinition of the twisted
Fermi measure. Such a redefinition must correspond to modifying the bosonic
action by a counterterm. According to the philosophy adopted in this paper such a
counterterm must have an intrinsic geometrical significance as a well defined
function on <£, since counterterms simply redefine the bare action Sb + Sf, which is
a function on (6. Removing the twist of L in some kind of singular way might define
some kind of theory, but it will not be the original sigma model we set out to define.
We will return to the counterterm issue at the end of the next section.

3. Symptoms of Sigma Model Anomalies

A natural question one might ask is whether the twist of the line bundle L
introduced in the previous section has a conventional field-theoretic interpre-
tation. Indeed there is such an interpretation, which we now describe.

We begin by relating the definition (9) of the Fermi effective action to the more
familiar diagrammatic definition. Perturbation theory involves local expansions
and ordinary functions (as opposed to sections), so to define it we must trivialize
the JV-dimensional bundle B-+M by choosing a cover of M by contractible sets

together with homeomorphisms
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The connection must be specified patchwise by Lie-algebra-valued differential
forms ΘQ. Transition functions gρσ(p) for p e %v% are defined by

where v is a vector in CN and gρσ(p) is a matrix in U(N). On the overlap %n% the
connections are related by a gauge transformation by the transition function:

Let φo(x) = Po e M be a constant field configuration. We will refer to φ0 as a
vacuum field configuration and will set up a perturbation expansion about it. (If M
is a homogeneous space each φ0 corresponds to one of the equivalent vacua in a
theory of spontaneous symmetry breaking.) We expect that when φ:X-+M lies
near φ0 in # there will be a perturbative definition of/}. We will say that φ is "near"
φ0 if there is some patch °llQ containing p0 such that φ maps all of spacetime into <%Q.
Thus the patches {°llQ} determine corresponding patches in cβ\

&Q = &l<Po> %~\ s {φ: Φ(X) C *,}. (32)

(These need not cover all of #.) Note that if ^ ρ is contractible then so is 9V

To set up the perturbative expansion we will for simplicity take spacetime to be
a d-dimensional torus, Td, of finite volume K1 8 Then φ%B is trivial so the
eigenmodes of (19) are simply the ordinary functions

v?\x)^υn{φ0;x)=~σ.1inχe-ik» \

where kn is a 4-vector restricted by (anti-)periodic boundary conditions and χ
carries spinor and internal indices, i.e., it is a vector in

We take σμ = (i,σk), while σμ = ( — i,σk). Furthermore, λn(φ0) = kl and
Jtf^ =Γ±(S±®φ%B) is an ordinary function space.

If φ e 0>Q then B\φ{x) is trivialized by hQ. Since all the fibers of a trivial bundle are
naturally isomorphic, hQ induces a choice of the isomorphism T{±)(φ, φ0) of the
previous section which we can use in (8). More precisely, if we ignore spin indices,
then for each x e l , a section ue Jf^ defines a vector u(x) in B\φo{x) = B\po. Then
h~ 1(u(x)) = (p0, v) for some vector v e CN. We define T by

, φo)iι] (x) = hQ(φ(x), υ) e BUx,, (33)

that is, T(±)(φ, φo)u e jtf^. This choice of Γis very different from the eigenfunction
frame that was convenient in Sect. two.

18 This choice is convenient since the torus has trivial spinor bundles, while the finite volume
eliminates irrelevant infrared divergences
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Using these isomorphisms T(±)(φ, φ0) we can now group the operators in (9) to
obtain coordinate expressions for the relevant matrix elements. Thus, using19

, φo)kO>> = ί ήσ Hjkm^
(dxφ'))χne-ik"x,

one can show that the infinite volume limit of (9) is the infinite volume limit of

which is just the usual perturbative definition of the effective action:

Γfiφ] =γ}-\dxί...dxntx {ίfΦl$xJM2)S(Xl, x2)-]σ • A(x2)... S(xn, x > • A(Xl)}
n n

(34)

(with a somewhat unconventional regulator). Here we have introduced the "gauge
field"

AUx) = (ΘtUφ(x))dμφ°(x), (35)

and, as usual the Euclidean propagator is

-v-i.-rz/ J - k2 ( 2 π ) d

The perturbation series (34) has an anomalous change under gauge transfor-
mations of the vector field A. However, the interpretation of A is different from
that of gauge theory and we must re-investigate the consequence of the anomaly in
the context of the nonlinear sigma model.

As we have emphasized, to arrive at the expansion (34) we had to make many
choices: we chose the cover {^J, the trivializations hρ and the vacuum φ0. Let us
now study the consequences of different choices for the trivialization and vacuum.

First, consider a unitary reparametrization of the fiber coordinates of B in one
patch Wρ. Thus we choose a set of local rotations λρ: °ilρ-*U(N) which induce a
change in trivialization by

The collections {%ρ,hρ} and {%ρ,h'ρ} are merely two different schemes for
coordinatizing the same bundle B20 Therefore, such a change should have no
physical effect.

It is useful to reformulate this condition, which is based on a passive
transformation, to one based on an active transformation. The change (36) induces
a change of bases for the Fermi fields which is equivalent to the replacement

19 We have locally set the fiber metric h{j= 1

20 In the terminology of Steenrod [38] they define isomorphic "coordinate bundles''
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Θρ-+Θρ

β, which in turn amounts to changing

i^i^. (37)

We thus might naively demand that Γf be invariant under (37). Due to the
nonabelian anomaly, however, the replacement (37) changes Γf by the integrated
anomaly [41, 6, 42, 43, 44, 45]

Jdlφ*Θρ, φ % ] = ί ds J ωj[a,(φ%(s)) (φ%(s)Γ 1 , (φ*6^<s))] . (38)
0 -Λ

Here λρ(s) is a one-parameter family of maps from <%ρ to U(N) such that Λρ(0) = 1
and λρ(ϊ) = λρ, while ω^ is the (appropriately normalized) differential form for the
nonabelian anomaly [6,4], and the expression J is independent of the choice of
path. We will refer to (38) as a Wess-Zumino or WZ term for bundle
reparametrizations. It measures the failure of naive bundle reparametrization
invariance.

The WZ term contains only a finite number of derivatives of φ. In this sense it is
a local functional of the scalar fields. Furthermore, adding the term (38) to a
bosonic action has nontrivial physical consequences [41,42]: it modifies the
S-matrix of the theory, just as the WZ term in pion dynamics modifies the low-
energy theorems for the reactions π°-+2γ and K+K~ ->π+π~π°. Thus we learn
that different trivializations of B lead to inequivalent perturbative expansions, but
that these expansions can be made equivalent by the addition of a compensating
local counterterm in φ defined on SPρ [44].

Quantum theories are defined by their classical Lagrangians only up to the
addition of such local counterterms. In this sense perturbation theory thus does
have the invariance under local reparametrizations of B which we expect from the
corresponding situation in classical sigma models.21

This is not the end of the story, however. While it might be that an anomalous
theory makes sense and is coordinate-invariant locally, the fact remains that the
full theory is defined not by one patch (%,hρ) but by many, all differing by
recoordinatizations similar to the ones considered above, and in general we must
perturb about many different vacua φa(x)=ρa, where pa lie in different patches %.
Our experience with bundle reparametrizations might lead us to expect that with
an appropriate choice of WZ terms in each %, all the Γf could be made physically
equivalent on all the overlaps, but this is by no means assured. Instead the various
discrepancies could fit together into an "obstruction cocycle" [38] which cannot
be removed.

Consider the sets ^ α ( ^ α ) £ ^ defined as above for the various φa and define
Γfίψ] o n e a c h according to (34). Focusing our attention on two patches &φ 0>σ,
note that if ̂ Qr\^σ is not empty then there exist φ such that φ(X) C %n%. We can
use (38) to find

<P*Θσ, φ*gρσ] . (39)

21 In fact we must work at this level of generality, since otherwise even free (chiral) fermions are
not reparametrization invariant
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Now, in contrast to the local reparametrizations which are defined on a single
patch, (39) holds only on £PQn8Pσ, and this overlap might be noncontractible.22

This raises the possibility that the phase expj^[φ*Θ, φ*gρσ] might wrap as φ
traverses a noncontractible loop in SPρc\2Pσ}

z

This is bad. It means that any WZ term we could add to Γβ, say, to fix the above
discrepancy must be singular somewhere inside 0>ρ, and hence not an acceptable
WZ term at all. Thus when we go beyond one-patch perturbation theory and try to
define our theory globally by fitting together perturbative expansions around
several different vacua, we find that the various prescriptions give physically
conflicting predictions which might not be reconcilable by the addition of bosonic
counterterms.

We can make this scenario more concrete by considering a family of maps
X-+M parametrized by a two-sphere Y Let yNtS be the north and south poles of Y
The family of maps defines a single map φ: Yx X-+M. For convenience let us take
each φ(y, ) to be homotopically trivial. (In particular this means that we consider
a family of maps which lies in the zero instanton-number sector.) Then the
restriction of B to the images φ[(Γ— {)>JV,S})

 x ^ Ί is trivial. Therefore we choose a
cover on M which includes the patches

Also we choose a trivialization of B using these patches, with transition function
gρσ. The corresponding 3Pρσ contain at least Y— {yNiS\, and if φ is homotopically
nontrivial then 0*Qtff cannot be extended to all of Y, so ^ρn^σ — S2 — {yN} — {ys}>
which deforms to a circle.24 The map

ρ ρ (40)

can then be homotopically nontrivial. If it is, then the map ̂ ρ n^ σ -» (7(1) given by

ff, φ*gρσ] (41)

is homotopically nontrivial.25

All this is not idle speculation. If M = S6 and B = B3 (the Bott bundle on S%
that is, the bundle with transition function the generator of π5[(7(i\Γ)] for iV^3,
then the family given by a degree one map φ:S 2 xS 4 -*S 6 is of the type just
discussed: perturbative expansions about the north and south poles on S6 lead to
inequivalent theories. In general, perturbative expansions around different points
on a topologically interesting target space M can lead to inequivalent theories

22 Strictly speaking we should use patches small enough that all their intersections are
contractible. The obstruction below would be unchanged, but its form would be more complicated
23 The anomaly J is always imaginary [18]
24 Actually, it is Yn^n^ which deforms to a circle. This distinction is not important to our
argument
25 In Sect. 6 we will need the stronger assertion that the winding number of (41) is the same as the
homotopy class of (40) for fermions in the fundamental representation. A proof of this statement
can be found in many places, including [6, 42-45]
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which cannot be made equivalent by the addition of a WZ term which is well-
defined on the domain of validity of either expansion.

The obstruction we have described here is identical to the one found in Sect. 2
using an eigenmode framing of J f ± . The inequivalence of ΓQ and Γσ means that
G0[φ] is a section of a twisted line bundle L whose twist equals the winding
number of the WZ term. Nevertheless, the characterization of the anomaly given in
this section is awkward. In the following section we therefore return to the
formulation (17) of the anomaly. We will be able to apply index theory to give a
characterization of the obstruction v which involves only the topology of the spaces
ί?, B, X, and M. The condition (62) which we derive is then tractable in many cases
of interest and facilitates the study of the epidemiology of sigma model anomalies.

We conclude this section with three remarks. First, we have seen that a choice
of trivialization {hρ} corresponds to a choice of frames for J f ± . A bundle
reparametrization corresponds to a particular change of such special frames. We
have argued in this section that such changes cannot remove the anomaly. From
this point of view the result of Sect. 2 is far more powerful than perturbation theory
suggests, for the conclusions of Sect. 2 imply that there is no smooth set of local
frame choices for jf± which can remove the anomaly.

Second, we can see that there is no smooth counterterm which can cancel the
anomaly. Such a counterterm must have a perturbative formulation which is
therefore uniquely determined by (39). The anomaly is precisely the obstruction to
a smooth extension of this WZ term to 0>Qt<r.

Finally, note that the nonlinear sigma model anomaly has features similar to
both the nonabelian gauge anomaly and Witten's SU(2) anomaly [46]. The
necessity of cancelling the nonabelian gauge (and gravitational) anomalies can be
seen purely within the framework of perturbation theory [2,18]. On the other
hand, the SU(2) anomaly can only be detected by considering the global topology
of configuration space. In the case of the nonlinear sigma model, one can deduce
the possibility of the anomaly within the framework of perturbation theory, but it
is only the global topology of # which determines whether the anomaly is fatal to
the theory in question.

4. The Family Index

We must now define precisely the index of a family of Dirac operators, and in
particular its first Chern character. We can then evaluate the latter using the
Atiyah-Singer index theorem [40]. The only result of this section which will be
used in the sequel is the final answer (62). The reader willing to accept this result
can skip the present section.

To get started we must sketch a framework in which the "defect" bundle

2 = 3^-Mf^ (42)

mentioned in Sect. 2 makes sense. This framework is called K-theory.26

To describe topologically the possible complex bundles over a space Y, we can
think in terms of the space Vect(Γ) of isomorphism classes of bundles. This space

26 Readable introductions include [36,39]
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has naturally defined on it an addition operation, the direct sum: Vγ + F2 has for its
fiber over y the vector space sum Vt\yφ V2\y. Furthermore there is a multiplication
operation, the pointwise tensor product, which is distributive with respect to
addition. Finally, there is a map dim:Vect(7)-»Z with the homomorphism
property d i m ^ + F2) = dim Vx -f dim F2. dim extracts from a given bundle its most
obvious topological invariant, the (complex) dimension. In fact, if we regard the
integers Z as the zeroth cohomology group Z = H°(Y), we see that both ch0 = dim
and chx are homomorphisms from Vect(Y) to the cohomology of Y When Y is
more complicated than S2 there are indeed a series chp(V) of 2p-dimensional
cohomology classes associated to a given FeVect(Y). All are topologically
invariant and all can be written in terms of traces of various powers of a curvature
of V [39], just like ch1 and (trivially) ch0. Explicitly,

J (43)

Moreover we have the multiplication property ch(V1®V2) = ch(V1)Λch(V2).
Finally, if Fis trivial the c/ιp(F)=0 for all p>0.

While Vect(7) has an addition, we cannot give it any subtraction operation. As
a simple example, suppose for a moment that we repeat the above with real, not
complex, bundles, and consider the tangent bundle F= TS2. When we embed
S2QR3 we can define the one-dimensional line bundle N normal to TS2. N is
trivial, that is, isomorphic to the trivial bundle S2 x R1 over S2. Now TR%2

= TS2 + N. But while TR3 and N are trivial in Vect(7), we cannot cancel them to
conclude that TS2 is trivial too. It isn't.

We would like to assign to Y an abelian group K(Y) [much like the
cohomology i/*(Y)] which is like Vect(Y) but ignores the difference between TS2

and S2 x JR2. Such a group, it turns out, retains just the right amount of
information to be of use in index theory. To construct it, we mimic the construction
of the integers Z from the natural numbers N = {1,2,...} [47]. N, like Vect, has
only a semigroup structure. But if we consider pairs NxN/~, where we identify
(w, m) ~ (n + k, m + k) then we can construct the inverse operation — (n, m) = (m, ri)
and thus subtraction. For convenience we can then write n — m for (n,m), n for
(n + fe, fe), and — n for (fc, n + k).

In exactly the same way we can define K(7) = Vect(7)x Vect(Y)/~ where
(yi>V2)~(y1 + V^V2 + V?). We will refer to the elements of K(Y) as "virtual
bundles over 7," or more often simply as bundles. K(Y) can be defined in terms of
real or complex bundles. In the real case we do indeed have

TS2 = (TS2 + N, N) = (TR%2, N)

= (S2xR3,S2xR)

= S 2 x R 2 . (44)

Here we split TR3 into three trivial bundles. Therefore all that remains of TS2 in
real K-theory is its dimension, dim(ΓS2) = 2. [Real K-theory, which classifies real
vector bundles is quite different from complex X-theory, which classifies complex
vector bundles. Indeed, TS2 can be given a complex structure, and, in complex
K-theory (TS2,0) is not trivial. It is again true that in the complex case Vect(Y) is
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not a group; for that we must pass to K(Y) with the above construction.
Henceforth we consider only complex K-theory.]

In complex K-theory, the homomorphism properties of ch guarantee that the
Chern characters make sense on K(Y) if we define ch((Vl9 V2)) = ch(Vί) — ch(V2).
Finally, if we define the product of differences in the obvious way then K(Y)
becomes a ring, and ch: K(Y) ^H*(Y) becomes a ring homomorphism. With these
definitions, Eqs. (17) and (42) just say that the anomaly is measured by ch^iβ). Far
from being merely streamlined notation, however, X-theory will be crucial for the
steps which follow.

We can now define the family index27 Ind0 and show that it equals Q)
[40,50,51]. Following [8] we use capital"/" to distinguish the family index, which
is a (virtual) bundle, from the ordinary index, which is an integer. Consider the
ordinary index ind$ = dimker0 —dimker^. If 1j>y actually belongs to a param-
etrized family, then as y moves we get a family of kernels moving around inside
J"f ±. Thus we are tempted to drop the dim's above, which discard all information
about how the kernels move, and define instead

(45)

Then we recover ind ](> as cho(lndp).
This is not quite right. There will be, in general, points on Y where the

dimension of k e r ^ jumps. Thus ker$ does not define a bundle on Y Since the
index indpy is defined (and constant) on Y it is plausible that there is a way to
interpret the difference ker$> —kerJ^ as an element of K(Y). This can be done as
follows. Suppose we modify ^f + by the addition of a trivial bundle Yx CN, and let
^ = ( # , 0 ) : J^+ +(Yx CN)->Jf ~. Then ind$=(ind#) + JV. Suppose we could now
change ίβ smoothly to a new 0 with no cokernel, i.e. such that the image of ίfiφ is
3tf~ for all φ. Then the kernel could not jump either, since ind$ is constant, and
hence ker$ would be a bundle over Yas desired. Subtracting Yx CN to correct the
imbalance in dimension, we could thus define [40]

= ker$-(Yx CN) (46)

again ind$ = cho(J.nάp). In fact, in the degenerate case Y= {point} the two indices
coincide, so Ind is a natural generalization of ind.

It turns out that we can indeed kill k e r ^ simply by choosing βy = (Jt>y, σ(j )),
where σα, α= 1, ...,iV are a fixed set of sections which always at least span kerJ^f.
That is,

$>(u(y), ξ) = t>yu(y) + Σξ«σa(y), (47)

and the second term fills out all of J^y~ missed by the first. Ind$ does not depend on
which sections we choose [40]. Furthermore, it equals the bundle 3} = ̂ ^ — ̂ \ό^
which makes it interesting to us. To see this, note that

27 For introductions to index theory see [39,48,49]. The constructions used in this section are
actually applicable to a much wider class of differential operators than considered here
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and consider

on e ^ j o w + (7xCiV). Since § is onto, it furnishes, for each y9 an isomorphism
( k e r ^ L ) 1 ^ ^ ^ . So in K-theory

CNJ]

(49)

Thus a sigma model is anomalous iff Ind$ is twisted over some two-sphere Yin (€.
We must now compute this twist.

At first sight the evaluation of ch^Inάlp) for arbitrary Yseems a hopeless task:
We must solve an equation in arbitrary field configurations, search for zero
modes, and establish their twists as we move around 7, a program which at best
works only for very simple cases. The startling result of Atiyah and Singer is that
none of this is necessary! Just as for the ordinary index, the family index of $ is
completely determined by the topology of the spaces in question, and not at all by
the particular metrics, connections, etc. we have chosen. More precisely, we say
that the index of an elliptic operator depends only on its symbol, and all Dirac
operators have essentially the same symbol.

To define the symbol of an elliptic operator we first expand it in coordinates
and drop all but the leading derivative terms. For $ this yields yμdμ. Now replace
the derivatives by symbolic "momentum" variables pμ to get σ(β) = γμpμ. For each
point x in X and each value of momentum, σ($) is a map from S* to S~28. We can
state this concisely by defining the pullback π*(S+), where π is the projection from
the cotangent bundle Γ*X to X. Just like φ*( ) of Sect. 1, π* fits together many
vector spaces into a bundle over the total space of T*X as follows: over the point
(x,p) we place the vector space S*. Then the previous statement becomes simply

The index theorem relates Indlβ, which loosely speaking is the difference of two
bundles, Jif + — Jf ~, to a new bundle Σ{$) which loosely speaking is the difference
π*S+ — π*S~. Σ{$) is a bundle over the total space of T*X, and it depends only on
the symbol σ($). The details of the construction of Σ(D) for an arbitrary elliptic
operator D are given in Appendix B. For our purposes, though, all that matters is
that Σ{$) is known, and a formula for the family index can be computed from it.

We begin with the ordinary index theorem for a single Dirac operator p [not
necessarily of the form (4)] [52, Theorem 2.12], which states that in even spacetime
dimensions

ind#= j chΣ(H>)3T(T*X). (50)
τ*x

28 In fact for every nonzero momentum σ{$) is an isomorphism. An operator with this property is
called "elliptic." Index theory only works for elliptic operators, for reasons given in Appendix B
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Y x X
T * X

Fig. 4.1. Projections used in the text

Here 2Γ{T*X) is a cohomology class of T*X depending only on the topology of X.
Its definition will not be important for us. chlφ) is also in iί*(T*X), since Σ(p) is
a bundle onT*X.We can rewrite (50) in a way which is susceptible to generalization
as follows. If P is any bundle projection, it sets up a local product structure which
lets us define P^ the operation of integrating forms along the fibers of P [25]. For
example, if P-.R3-*^ with P(x) = x1 then

and Adx2 = g(xi)dxί,

where g(xί) = $dx2dx3f(x). By convention we also define P^(dx2)
— PJβx1 A dx2) = 0, etc. Defining projection maps as in Fig. 3.1 and taking, for the
moment, the case 7= {point}, the above integral can be written (pί ° π)#, since p ^ π
projects T*X all the way down to a point. Moreover we can perform integrals in
succession, to get

Here π* :#*(Γ*X)->#*(X) and

(51)

(point). Also we have that

(52)

for any class ω on the base and η on the total space, where π* is the pullback of
forms [25]. (We apologize for using the same symbol to denote both this and
bundle pullback - this is standard usage.) This just means that ω can be pulled
outside an integral if it doesn't depend on the integration variable. These simple
"covariance" (51) and "module" (52) properties of (•)„< are the key to our
computation. They enable us to get the desired index formula from (50).

Thus for the free Dirac operator (50) becomes

ind$ = (pJJπ+ichΣtf) A r(T*X)y] . (53)

The class in square brackets is called A(X). For X = S4 it is known to be 1 e H°(S4)
[39], and so the index vanishes.29

In the nonlinear sigma model we are interested in the Dirac operator Ij>φ

coupled to φ*(B). Then its symbol σφφ) is again yμpμ, or rather yμpμ® 1, where the
unit matrix acts on internal indices. The symbol still "knows" that it is coupled to

29 In fact, the free Dirac operator on S4 has no zero modes of either chirality, by Lichnerowicz's
theorem
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φ, but only via its domain and range π*E±

9 which contain φ*(B). Since Σ(]j)φ) is in
a sense the difference between the domain and range, we can factor out the
common φ*(B) to get (see Appendix B)

B)9 (54)

or more explicitly

0 ψ(B). (55)

[We need the pullback π* since φ*(B) is a bundle on X and must be trivially
extended along the fibers of T*X before we can take the indicated tensor
product.] This factorization simplifies our problem immensely, since at the level
of K-theory the index is essentially known from the properties of the free Dirac
operator. For, we now have that

indlDφ = (px o π)JicKΣφ) A iΓ(Γ*X)] . (56)

Using (55) and the remark following (43) we get

i n d ^ = (p± o π)*[_π*(chφ*(B)) A (chΣ{$)) A ̂ (Γ*X)] (57)

But by (51), (52) this is

=(PiU(chφ*(B))A πJchΣtf) A ^(Γ*X))]

(58)

and we have recovered the usual index theorem. When spacetime is S4, A = 1 and
the expression (58) is the familiar formula for the instanton number of the "gauge
field" φ*{θ).

The point of the above approach is that the family case is quite similar. A family
of Dirac operators py gives a symbol σφy) for each y. These combine to define a
single virtual bundle Σφ)eK(Yx T*X). But again σφ) is completely indepen-
dent of y, so all information about the family twist of Jj> is again encoded in the
domain and range bundles π*(Ef). The left-hand side of Eq. (56) should now be
thought of as c/ιolnd$, and for arbitrary Y we finally have the family index
theorem [40],

(T•*))] . (59)

Now (/?! o π) projects not to a point but to Y, so that both sides are differential forms
on Y.

In the case of the nonlinear sigma model we consider a family of maps
φy:X-+M which combine into a single map φ: Yx X-+M. We can use Eq. (59) to
find the index of the family φφy, which we will just call $. Since βΓ knows nothing
of the twisting bundle φ*(B\ it turns out that &{p\ (T*X)) is trivial along Y, i.e. it
is just pξlΓ(T*X). Since we can integrate along the fibers of T*X either before or
after applying pf, we again use Eq. (55) to get

^B)) A piA(X)l

= $chφ*(B)A(X). (60)
x
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Finally, the operation of taking the Chern character can be done either before or
after taking a pullback, since the curvature of φ*(B) is just the pullback of the
curvature form of B itself. Taking X = S4 the above expression becomes

lΦ*(chB), (61)
x

which is a differential form on Y
We can at last evaluate the anomaly (17) of an arbitrary sigma model. Given a

two-sphere Ye #, we can extract chί from all of ch Ind Jt> by simply integrating over
Y The result is then the anomaly ch^iβ), since we have already shown that
Indβ = ̂ . Thus

anomaly = v= J φ*(ch3B). (62)

Note that only ch3 appears in (62) because Y x X has six real dimensions. If we
consider two-dimensional spacetime, then the anomaly involves ch2. If v is
nonzero for any Y then the theory is inconsistent. This completes the derivation
promised in [23].

We will refer to a family φ such that v + 0 as an anomalous family, with family
index equal to v. For example, in the model introduced in the previous section with
M = S6, B = B3 the family φ is anomalous since ch3(B3) can be taken to be the solid
angle ω{6) on S6 and

anomaly = J φ*(ω(6)) = (degφ) f ω ( 6 ) = l . (63)
YxX s6

We will discuss more interesting models in the next few sections.
We cannot resist closing this section with a remark on the meaning of Eq. (62)

[51,23]. The reader has probably noticed a similarity between Eq. (62) and
Eq. (58): the twist of the family index equals the ordinary index of a six-dimensional
Dirac operator φγ x x on Y x X. This is no accident. We can measure the twist of a
bundle L on S2 by writing down a Dirac operator Jj>γ

L on S2 coupled to L, a fact
well known from magnetic monopole theory. The notation means that this
operator differentiates y and is coupled to L by some connection. Our above
observation then amounts to saying,

ind^d W=ίnd^ί. (64)

This formula is essentially the one proved in [9] using an adiabatic argument. In
fact it expresses a deep algebraic property of the family index.30

Consider the operation which takes a bundle β on Z x YxX to the family
index of 1j)x coupled to β. Call this map (px)^ where px is the projection from
Z x Yx X to Z x Y (In our case Z = {point}.) So

f (65)
with

(pt)t:K(ZxYxX)-+K(Zx Y). (66)

30 We thank R. Bott and D. Quillen for enlightening us on this point
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Consider also ρ:Zx Y^Z and ρ, which takes the index of $γ. Then Eq. (64)
simply says

Qιo(Pi)ι={Q°Pi)ι (67)

The analogy to Eq. (51) is evident. In fact, K-theory can itself be regarded as a form
of cohomology [36,53], in which ( )f plays the same algebraic role as ( )*. [We
also have the analogy of Eq. (52).] Thus the mysterious formal connection between
gauge (or sigma model) anomalies in d dimensions and chiral U(l) anomalies in
d + 2 dimensions simply reflects the composition properties of ( ),, i.e. that K, like
H is "covariant." The special role of 2 comes about since we are interested only in
chl9 a two-form on Y

5. Applications to Supersymmetry

In this section31 we will show that the four-dimensional supersymmetric Gpq

model exhibits the topological anomaly for p, q both ^ 3. We recall that this model
is of the form discussed in the introduction, with the specific choice of M = Gpφ

B = Tc(Gpq\ where Gpq is the Grassmannian manifold defined below, and Tc(Gpq) is
its holomorphic tangent space.32 We can also consider such chiral Gpq models in
two spacetime dimensions. These models are not supersymmetric, since in Id,
superpartner fermions are not Weyl but Dirac. Nevertheless, we shall include them
for completeness.

By our criterion (62) we need only find a map φ: S2 x Sd->Gpq such that

f [cft(φ*ΓcσM)]Φ0 (68)
S 2 χS d

The goal of this section is merely to establish the existence of such φ by using the
theory of classifying spaces [25,55]. Here is a brief exposition of the relevant facts.

The manifold

Gpq=U(p + q)/U(p)xU(q) (69)

can be defined as the space of all p-dimensional subspaces W of Cp+q. We will
alternate between viewing Was a point in Gpq and as a vector space, or "p-plane," in
Cp+q. For example, over Gpq there is a canonical p-plane bundle γp whose fiber over
We Gpq consists of the vectors contained in the space W. That is,

(70)

The vector bundle yp is associated via the fundamental representation to the
principal C/(p)-bundle VM-+GM. Here Vpq = U(p + q)/U(q) is called a Stiefel
manifold. It can be shown [38] that

π,(KM) = 0, (71)

for i^lq and thus Vpq is (2q + l)-universal, in the sense of Steenrod. The bundle
classification theorem [38] then states that any p-plane bundle over a compact

31 We thank V. Delia Pietra and T. Parker for helpful discussions on classifying spaces
32 A good introduction to Gpq is [54]
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manifold Q (more technically, a finite decomplex) of real dimension <^2q is
isomorphic to the pullback of yp under some m a p / : Q-^Gpq. Furthermore, it can
be shown that the map / is determined up to homotopy.

We will use this theorem by expressing T£GM) in terms of the canonical bundle
yp and then expressing bundles over S2 x Sd with nonvanishing Chern character
as pullbacks of yp. This will establish the existence of families φ satisfying (68).

Consider the tangent space to Gpq at a point given by a p-plane W. A
neighborhood of Wis given by the set of p-dimensional subspaces of Cp+q, Fsuch
that

F n ^ 1 = {0}. (72)

This neighborhood can be coordinatized as follows [56]. Choose an orthonormal
basis w!,..., wp+q for Cp+q such that w l5 ...,wp span W. The decomposition
Cp+q=W®W* defines a projection p:V-*W which, by condition (72), is an
isomorphism and defines a basis t\ for V by the equation p(t?f) = wt. Then

Σ ai}{V)wp^ (73)

defines apxq matrix atj which is the desired coordinate system. A path of vector
spaces Vt such that V0 = W therefore determines a tangent vector

WlHWW1). (74)

Here Homc(F1, V2) denotes the complex vector space of linear transformations
(homomorphisms) from V1 to V2. But Homc(W, W1) is the fiber over W of the
bundle

p ^ (75)

and so the tangent to Gpq is just

^ (76)

We are actually interested in relating the Chern classes of TcGpq to those of yp. This
can be done using the following trick. Note that

, Gpq x
pq

p + q

φ
Each summand is the dual to yp. Using the metric we then get

p + q

TcGpqφUom(yp, yp)S φ γp, (77)

where γp denotes the conjugate bundle. Now we apply ch to (77), use the
homomorphism properties discussed in Sect. 3, and apply the identity

γp)*γp®γp (78)
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to obtain the desired relation:33

chTcGpq = (p + q)chyp - chypchyp. (79)

For example, we can expand out (79) to obtain

ch3 TcGpq = (p + q)ch3yp - (choypch3fp + chyy^h2y;+ ch2ypch1y-p + ch3ypchoψp)

where we have used the fact that chp(V) = (— \)pchp(V). Therefore, the condition
(68) becomes

J ch(φ*TcGpq)=-(i> + q) J ch3φ*yp*0 (80)
s 2 χs 4 s 2 χs 4

in four spacetime dimensions. Similarly expanding (79) we find an anomaly in two
dimensions if there exists a family φ with

ί ch(φ*TcGpq) = J (q-p)ch^*yp + (ch^%)2 Φ0. (81)
S 2 x S 2 S 2 x S 2

The next step is to construct bundles over S2 x Sd with nontrivial Chern
characters using the "external product" construction which is described as follows.
Given two vector bundles Ei ^>XiJ= 1,2, define

£1(x]£2 = πf£1(x)πf£2, (82)

where π f : Xx x X2-+Xi is the projection. Thus, £ x IEi£2 i s a (dim£x dim£2)-plane
bundle over XxxX2 with Chern character

cfc(£1H£2) = πίcΛ£1 ΛπfcΛ£2. (83)

In particular, one can choose B X ^S 2 to be the line bundle associated to the
Hopf bundle, and B2->S4 to be the 2-plane bundle associated to the instanton
bundle. One can show that these bundles have Chern characters34

( 8 4 )

where ω(2), ω ( 4 ) denote the volume forms on the spheres S2, S4.
By the classification theorem quoted above with Q = S2 x S4 or S2 x S2, we

know that there exist maps

33 We will henceforth drop the wedge product symbol. The expression (74) chooses one of two
possible complex structures for TcGpq. We would have obtained the other had we used the
canonical g-plane bundle γq. Taking this into account one can show that Eq. (79) is actually
symmetric under the interchange p<->#, as expected from Eq. (69)

34 In general Bn-+S2nis the "Bott bundle" with transition function the generator of π2n- ι(U(N)),
where N is large, and chBn = n -f- ω ( 2 n )
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such that

f*?> = B^B» ( 8 6 )

We may then take φ =/for d = 4, p = 2, and φ = # for d = 2, p = 1 to obtain nonzero
integrals in (80) and (81). For larger values of p, one can add trivial bundles to the
above external products to obtain p-plane bundles. The classifying maps for these
bundles then furnish anomalous families. By the arguments of Sects. 2 and 4 we can
conclude that the only four-dimensional supersymmetric Grassmannian sigma
models which do not have a topological obstruction are those with target space
CPn or G2 2. Similarly, the only two-dimensional chiral Grassmannian sigma
model free of obstructions has target space CP1 = S2. These results are slightly
stronger than those of [23].

Using Eqs. (79) and (83)-{86) one can show that each member of the anomalous
families we have constructed is an instanton, i.e. the families lies in nontrivial
elements of πo(^). A simple modification of the above procedure allows us to
construct anomalous families of maps which are not instantons for a slightly
restricted class of models.35

For example, consider once more the Bott bundle B3 ->S6 with chB3 = 3 -f ω(6).
If P, q ̂  3, the classification theorem guarantees the existence of a map / : S6 -• Gpq

such that /*yp = J53©/p_3, where J p _ 3 is the trivial (p — 3)-plane bundle.
Composing/with a degree one map r:S2 xS4-+S6 gives an anomalous family of
the required type. Similarly, in two dimensions Gpq,p,q^2 admit anomalous
families of maps in the zero instanton sector.

In the following two sections we will continue to explore the nature of the
anomaly for Grassmannian target spaces.

6. An Analogy to Gauge Theory

In Sects. 2 and 4 we gave a global characterization of the anomaly which is
mathematically similar to the global formulation of the anomaly of gauge theory.
(See Appendix A.) A peculiarity of the topological interpretation of non-abelian
anomalies is that it is not entirely equivalent to the perturbative characterization
of the anomaly. Indeed, in the case of a chiral U(l) gauge theory the global
obstruction vanishes, although the theory is anomalous, and hence nonsensical.
We will show in this section that supersymmetric Grassmannian sigma models
have a formulation which displays an anomaly similar to the perturbative gauge
anomaly. Just as for gauge theory, we will find that in some models there is a
perturbative anomaly although the global obstruction we have discussed thus far
vanishes.

The perturbative gauge anomaly shows up when the theory is formulated in
terms of the afϊine space «s/(4) of connections on a principal bundle. The anomaly is
then the nontrivial variation of Γf\_A] along the gauge group fibers of the bundle

35 These will be useful in Sect. 7 and Appendix C
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We will see how a very similar situation occurs in the case of
Grassmannian sigma models.

We begin with the four-dimensional supersymmetric Grassmannian sigma
models considered in the previous section. Following Ong [57] we formulate the
theory in terms of the linear space of scalar and spinor px(p + q) matrix fields A
and χ, and the nondynamical scalar, vector, and spinor p x p matrix fields D, Vμ,
and λ. Using the covariant derivative

Dμ = dμ+-Vμ9 (87)
2

we form the Lagrangian

(88)

Classically, the equations of motion serve to eliminate D, Vμ9 and λ, thereby
inducing constraints on the fields A and χ appropriate to the Gpq supersymmetric
sigma ήiodel. For example, the equation of motion for D imposes A A* = lp, which
forces the scalar fields to lie on the Stiefel manifold

M (89)

Next, the equations of motion for λ, Ximply that the fermions take values such that

χA^ = Aχ = 0. (90)

Finally, elimination of Vμ yields the Lagrangian

2U = J?b + tr {ifδ*{dμ + (Aδ^m+faσ*f)2}, (91)

where

$i)2l. (92)

The Lagrangian of Eq. (91) has a gauge invariance: left multiplication of A and
χ by a unitary matrix U leaves the Lagrangian and the constraints unchanged.
Thus, certain degrees of freedom of the maps of spacetime into the Stiefel manifold
are spurious, and the true configuration space consists of gauge-equivalence
classes of maps. Since the equivalence class of matrices A,A~ UA, which satisfy
AAf = 1 defines a point in GM, the Lagrangian of Eq. (91) describes the dynamics of
a nonlinear sigma model with target space Gpq.

The analogy with gauge theories can now be clarified. The constraint AA* = ίp

is not a gauge constraint, so that the proper analog of the space J / ( 4 ) of gauge
theory is not the linear space of p x (p + cf) matrix fields A, but the space

The principal U(p) fibration r:Vpq-+Gpq induces a ^,-fibration
where
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The introduction of fermions is slightly different from the gauge analog. It can
be shown that Eq. (90) implies that the fermions take their values in the tangent
bundle TcGpφ and that the covariant derivative in Eq. (91) corresponds to the
pullback of a connection on TCGM, as required. The anomaly we will find results
from quantum effects which prevent the "gauge modes" <gp from decoupling from
the fermions.

In quantum mechanics the necessary constraints on A and χ are obtained by
functional integration over D, Vμ, and λ in the partition function. That is, one
proceeds from

Z=j idAdAHχdχdλdλdV^Dy^1 (93)

to

p (94)

Note that the delta function constraint in Eq. (94) does not eliminate the gauge
degrees of freedom from the measure. We must therefore study the (possible)
dependence of the integrand on these degrees of freedom.

In perturbation theory, one can parametrize A by A = UC where U e U(p) and
C is p x (p + q) with the first p columns forming a diagonal positive-definite matrix.
The field U does not enter into J£b, but does couple to the fermions through the
vector field

$ § Cψ, (95)

which is a gauge transform of the vector potential \CdμO by U. We can consider
the matrix χ to be (p + q) Fermi fields in the fundamental representation of the
gauge group U(p). Since the fermions are chiral, the anomaly implies that / } M
depends on U:

exp( - ΓflA]) = exp(i(p + q)S*lC, 17])) exp( - Γf\_C]), (96)

where J* again denotes the integrated four-dimensional anomaly for a fermion in
the fundamental representation of U(j>). Having isolated the dependence of the
integrand in Eq. (94) on the gauge modes U we can now perform the functional
integral over these degrees of freedom. This integration imposes constraints
inappropriate to the Gpq model.

Some of these constraints can be exhibited more explicitly by noting that in
perturbation theory one can factor the measure [dU~\ into \_dff] [dμ]9 where θ(x)
denotes the U(l) degree of freedom in (SP and [dμ\ is everything else. The result of
integrating out the θ(x) degree of freedom can be shown to be

Π δlε^β Xr{dμCdpdaCdβ0 +±dμCdpCda&Cdβ&)-\. (97)
X

This is an extra, unwanted constraint if p^2. Clearly the theory defined by Eq. (94)
is not the Gpq sigma model. Note, in particular, that there is an anomaly for the CPn

models, π^2, although the global obstruction vanishes in that case.36

36 In the special case of CP1 = S2 the above anomaly also vanishes. We thank H. Schnitzer for
pointing this out
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One can also consider analogous models in two dimensions. These can be
defined by the Lagrangian of Eq. (88) where σμ are the l x l matrices 1 and i. (Again
these models are not supersymmetric.) The elimination of the nondynamical fields
proceeds as before, except that the quartic fermion interactions vanish. Again, the
chiral anomaly implies

C, E7])exp(-I}[C]) (98)

with

for fermions in the fundamental representation of U(p) and the U(l) degree of
freedom imposes the constraint

τdμCdvC<), (100)
X

wich again is inappropriate for all Grassmannian manifolds.
We can continue the analogy with gauge theoίy by relating the global

obstruction to defining e~Γf as a smooth function on c€pq to the variation of e~Γf

along the fibers of stM. First, recall an example from magnetic monopole theory
which is mathematically similar to our case. On S2 we can consider an abelian
gauge theory defined with respect to some principal U(l) bundle R: P-+S2. If P has
one twist we say that there is a monopole inside the sphere; then P = S3 and R is the
Hopf map. Sections of a line bundle associated to P (e.g. the monopole harmonics)
correspond exactly to ordinary functions on P itself which satisfy the "equivari-
ance condition"

f((x + δ,x) = eίtδf(oc,x), (101)

where α, x are coordinates for the fiber and base and t is an integer called the
equivariance of/.

In gauge theory one can form a Hopf bundle PC J / ( 4 ) which projects to a
nontrivial two-sphere Y in ^ ( 4 ) if there is a nontrivial loop gθ in ^ 4 . One way to
construct P [9] is by forming the disk in J / ( 4 ) given by

This disk projects to a two-sphere Yin ^, and can be viewed as a (singular) section
of a Hopf bundle R: P->7 with P c ^ ( 4 ) . The "group-loop" gθ is actually a U(l)
subgroup of ^ 4 ) (see Appendix C) and the fibration JR is thus a principal U(l)
fibration. It can be shown that the twist v of the family index Ind|) | y is the same as
the equivariance t of exp[ — Γf(A)~] along the fibers of P [7,9]. Thus the
intrinsically defined fermion determinant has a singularity on Y which can only be
smoothed out by viewing it as an equivariant function on P (and, more generally,
on J^ ( 4 ) ) with equivariance v = t.

In the case of Grassmannian sigma models we have constructed the analog of P
for most of the cases which have a global anomaly. The details of the constructions
are given in Appendix C. There we give explicit examples of maps φ:S2x Sd-^Gpq
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and Φ: S3 x Sd->Vpq and π: S3^>S2 such that the diagram

(102)

commutes. Thus we have a family in ^ parametrized by 7 = S 2 and a family in
j / ^ parametrized by S3. The map π is the restriction of the projection R to
S3Cs/$. From the construction of Appendix C one can see that this three-sphere
can be regarded as the total space P of a Hopf bundle R: P-> Y with the principal
U(l)-fibration given by a homotopically nontrivial U(l) subgroup of &p

d\ which is,
in fact, the generator of π^ψ).

From (96) and (98) we can now find the equivariance of exp(—/}[^4]) along the
fibers of P. For fermions in the fundamental representation of U(p) the restriction
of QxpJd to a circle in a gauge orbit is (homotopic to) an equivariant function with
equivariance t equal to the homotopy class of that circle (see footnote 23).
Therefore the equivariance of exp( — Γf[AJ) along the fibers of P is t = (p + q). For
the explicit families given in Appendix C we show that the twist of Ind$| y is
v = (p + q). Therefore, as in gauge theory, the intrinsically defined fermion
determinant has a singularity on Y which can only be smoothed out by viewing it
as an equivariant function on P (and, more generally, on s/^) with equivariance
t = v.

Thus far we have emphasized the similarities of the sigma model anomaly to
the gauge theory anomaly. Indeed, as far as index theory is concerned they are
almost identical. What we have just shown is that the physical interpretation is
different. We have illustrated the failure of the attempt to define the path integral
for the Grassmannian sigma models by imposing constraints on the linear fields. In
contrast to gauge theory, for which the phase variation along si (not necessarily
homotopically nontrivial) renders the theory ill-defined [2], the logical possibility
remains that there exists some other way to define the quantum sigma model. In
some cases the global analysis of the previous sections precludes this possibility. In
other cases, e.g. the four-dimensional CPn models, the global obstruction vanishes,
and our results are not powerful enough to exclude the existence of an intrinsically
defined theory. A more refined version of this obstruction might eliminate that
possibility as well.

7. Applications to Preon Physics

While four-dimensional nonlinear sigma models are of interest in their own right
[24, 58, 26], they also arise as the low-energy approximations to strongly
interacting gauge theories. In a vectorlike nonsupersymmetric theory such as
QCD, the relevant sigma model contains only bosonic degrees of freedom (the
Goldstone modes corresponding to dynamically broken symmetries) and the
considerations of this paper are irrelevant. In a theory with unbroken supersym-
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metry, however, some fermions must remain massless.37 Some authors have
attempted to identify these massless fermions with quarks and leptons in the
context of supersymmetric preon models [59, 60, 61, 28].

A preon model consists of chiral and gauge superfields together with the
dynamical assumption that a gauge singlet order parameter superfϊeld Φ takes on a
symmetry-breaking vacuum expectation value. Unbroken supersymmetry then
requires that only the scalar component φ of Φ develops a vev. One further
assumes that at energies lower than the confinement scale ΛHC the full theory is
well approximated by a linear sigma model with superfields Φ and an effective
superpotential respecting those symmetries (and only those symmetries) of the
underlying theory [62-65]. Finally, at low energies one eliminates all degrees of
freedom other than those which describe M, the space of absolute minima of the
potential.

There is an important qualitative difference between the nature of the space M
in supersymmetric and in ordinary sigma models. In the latter the potential V is
required to be invariant under the group G of all symmetry transformations
of the full theory, so that M contains (at least) the homogeneous space
G/H, where H = stabG<φ> is the little group. In supersymmetry G is still the
symmetry group of F, but M possesses a larger symmetry. The reason is that
a supersymmetric potential has the special form

(£M£)
where

and JF, D are the functions appearing in the supersymmetric linear sigma-model. In
principle, they are computable from the dynamics of the original preon theory.
Thus, if J is nonsingular,

M = {φ :6φF = 0} (105)

for some analytic function F. This implies that M is invariant under the larger Lie
group G whose Lie algebra is the complexification of the Lie algebra of G,

[66-68]. Roughly speaking, if G consists locally of elements exp(z'π T), then we get
G by letting π become complex. For example, U(1) = C*, the nonzero complex
numbers, while U(n) = GL(n, C). These examples illustrate the important fact that
the complexifications of compact groups are noncompact.

Thus in supersymmetry M always contains at least G/H\ where W=stab^φ).
Clearly W contains H, although as we will see it can be much larger, depending on
the nature of Φ. In any case, just as in QCD we must add the assumption that the

37 There are other ways to get massless fermions coupled to nonlinear fields, but we will not
consider them here
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effective potential V(φ, φ*) has no flat directions other than those required by
symmetry, since presumably nonperturbative quantum effects will give masses to
every unprotected mode. Thus M in fact equals G/H' and the Hessian d2F/dφidφj

on M is nondegenerate in all directions other than those generated by G (i.e. F is a
"holomorphic equivariant Morse function").

There is an additional subtlety here. To conclude that M = G/H' we must
assume (as do most authors [60, 61, 28, 64, 67-69]) that G acts transitively on
M. This can happen if the strong dynamics chooses either F or D so as to eliminate
fixed points of G in <p-space. (The origin is such a point if G acts linearly.) It should
be borne in mind that this is a dynamical question which can radically affect the
topology we will discuss.

Thus, two important features about effective supersymmetric models stand
out. First, it is not enough to specify the unbroken symmetry group HQG oϊthe
theory since W need not be the complexification of H. One must instead assume a
particular vev <<p> and find the stability group explicitly. Second, some
homogeneous spaces GjW cannot be realized for any choice of (φ}. In particular,
if G/H is a symmetric space then Lerche [67] has shown that H'=H, so that G/W
has real dimension twice that of G/H, a situation he refers to as "full doubling."

In the remainder of this section we will examine in detail three sigma models
which have appeared in the literature and a fourth of our own. Two of these will
prove to be anomalous, and hence untenable (as they stand) as the low-energy limit
of any well-defined theory. The other two turn out to be anomaly-free. We
conjecture that all nonlinear models which arise by setting to zero the nondegen-
erate potential of a well-defined, renormalizable supersymmetric model are
anomaly-free. We have not proved this statement. Indeed our fourth example is
designed as a counterexample to the stronger assertion that whenever M is
analytically imbedded in a linear space (not necessarily as a critical surface) then M
is anomaly-free.

As a first example [57], consider the symmetry breakdown

>U(p)xU(ί). (106)

Since Gpq is itself a Kahler manifold it is possible that the low-energy theory
exhibits no doubling at all. Then the considerations of Sect. 4 show that this leads
to an ill-defined theory. Thus the no-doubling theory cannot be realized as the low-
energy effective theory of some preon model. Actually, since Gpq is a symmetric
space [70], the result of Lerche gives an independent reason for believing that the
no-doubling scenario is impossible.

The second example is the fully doubled G 2 4 model, which has been proposed
in the literature as being phenomenologically interesting [61]. We will now show
that this model has no anomaly. More generally, we will show that whenever the
sigma-model is fully doubled there is no anomaly. Heuristically, the fermions
tangent to G/H are nonchiral when restricted to G/H.

In Appendix D we show that if G is compact then the inclusion of G/H into G/H
has a homotopy inverse. That is, there is a map R: G/H-^ G/H such that ί<> R and
R o i are homotopic to the identity, where ί: gHh^gH is the inclusion. This result is
reasonable, since we can think of deforming G/H along its noncompact directions
until it fits onto G/H, just as we can shrink C* onto S1. Now define the pullbacks of
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bundles R* and i*. In particular i* just takes bundles on the larger space and
restricts them to the subspace. Hence ΐ*R* = 1 and R*i* = 1, and the topology of
Tfi/H is determined by its restriction to G/H:

R*(TCG/H\G/H) = R*i*(TcG/H) s TcG/fl. (107)

So, if φ: S2 x S4^G/H is a family of configurations, then

φ*(chTcG/H) = (R o φ)*c/ι(ΓcG/iί)|G/H. (108)

Along G/H the fermions are nonchiral,

TCG/H\G/H = TRG/H®C, (109)

where TRG/H denotes the real tangent bundle to G/H considered as a real
manifold. If E is a real vector bundle then E®C is a complex vector bundle with
real transition functions, so [25, 39]

chi(E®C) = chi(E®C) = (- XychiE®^. (110)

[See the remark following Eq.(79).] Therefore ch3(TRG/H®C) = 0 and four-
dimensional supersymmetric sigma models with full doubling have no topological
anomaly.

For our third example we consider a model which is neither fully doubled nor
fully undoubted. This model has been proposed by Bϋchmuller et al. as a preon
theory reproducing the weak interactions of quarks and leptons [28].

Bϋchmuller et al. consider a supersymmetric SU(2) hypercolor model with six
doublet chiral superfϊelds χa

p α = 1,...,6; p= 1,2. The global symmetry is U(6).38

These authors further assume that the gauge-invariant superfield operator

38

develops a vacuum expectation value, e.g. <φ 5 6 ) + 0 while the other (φaβ} = 0, so
the pattern of symmetry breaking is U(6)->SU(2) x U(4).

An effective theory for Φaβ will have a superpotential which is U(6) = GL(6, C)
invariant. The stability group H'oϊ(φ} has a Lie algebra which can be represented
by complex 6x6 matrices of the form

ί c)
where A is 4 x 4 while C is 2 x 2 and traceless. The low-energy theory has target
space

^ = GL(6,C)/#'. (113)

To decide if this model has an anomaly we need to consider the geometry of <2).

38 The U(l) subgroup of U(6) does not generate a symmetry in the quantum theory since it is
anomalous. However, the theory also has an unbroken \5{\)R symmetry and a linear combination
of U(l) and U(l) κ is nonanomalous. Taking proper account of these U(l) factors gives a low
energy manifold which is the same as the one we consider
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First, note that one can enlarge the above Lie algebra by dropping the
condition that C be traceless. This new Lie algebra generates a group K and
GL(6, C)/K = G24 follows from considering the transitive action of GL(6, C) on
G2 4. Since the Lie algebras of W and K differ by a single generator we learn that 3
can also be regarded as the total space of a C*-bundle over G24. We will use this
interpretation of 3 below. Furthermore, given a principal C*-bundle like
Π: ^ - * G 2 4 , we can introduce yet another space 3' by contracting each C* fiber of
3 to a circle. Then 3'-*G24 is a principal U(l)-bundle.

The geometry of 3 is most easily understood by considering the exterior
algebra on C6 [55]. In particular, in Λ2(C6) = C15 consider the space of nonzero
"decomposable" two-forms, i.e. those which can be written as products of single
vectors

VΛW, v,weC 6 . (114)

GL(6, C) acts transitively on this space and the stability group of a point is H'.
Hence the space is precisely 3. In fact the map

i7:C 1 5-{0}->CP 1 4, (115)

which projects a vector to its equivalence class under identification by a complex
factor, projects 3 to G2 4. Since 3 is holomorphically imbedded in the Kahler
manifold C1 5-{0}, it is Kahler [55,27].

Considering Π: ^->G 2 4 as a C*-bundle, tangent vectors to the total space 3
can lie along the fiber direction or along the base direction, that is

T3 = Π*S®Π*TG24. (116)

Here S refers to the restriction to G 2 4 of the canonical line bundle y1-^CP14'. The
bundles S and 3 are both associated to the circle bundle 3)' mentioned above;
explicitly

0 ' = U(6)/SU(2) x U(4). (117)

One can show [55] that chx(β') is the same as chί(y2).
We are now in a position to demonstrate that the ^-sigma-model has no

anomaly. Suppose these exists an anomalous family

φ:S2xS4-+3. (118)

Consider the projected map φ = Π°φ:S2 xS4->G2 4. Then φ is a lift of φ. See
Fig. 7.1. Since

G24, (119)

S2 x 5A • 02u Fig. 7.1. Some maps used in the text
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we have that φ is anomalous iff φ is. On the other hand, the cohomology of G 2 4 is
generated by the Chern classes c/ί1(y2) and ch2(^^) [25]. That is, if φ is anomalous
then

φ*ch ̂ β*) = chί(φ*@/) Φ 0, (120)

so the circle bundle φ*(^ /) is twisted and does not admit a section. This is
incompatible with Fig. 7.1, for if φ has a lift φ, then φ*(®/) must have a section.
(Recall that 2 retracts to 3i') Thus, there is no anomalous map φ.

This example suggests a generalization which leads to an interesting family of
anomalous target spaces. Consider Q)'ω the space of nonvanishing decomposable

p-forms of vectors in Cp+q. Then S)pq lies in C ζ-{0}, ζ= [P+J and the map

Π:Cζ-{0}-+CPζ-ί (121)

projects 3)pq to Gpq. Thus 3)pq is a C*-bundle over Gpq.
We will construct anomalous maps to<@tpq using a classifying map φ: S6-*Gpq,

P, q ̂  3, for the bundle B3 0 Jp _ 3 considered at the end of Sect. 4. Now φ*(β'pq) is a
U(l)-bundle over S6, but all such bundles are trivial, so φ has a lift φ: Se-*3}pq.
Composing φ with a degree-one map from S2 x S4 to S6 gives an anomalous
family.39

This last example raises the question of the existence of theories which predict a
£^-sigma-model at low energies. If such models exist then either naive decou-
pling, or the assumed pattern of chiral symmetry breakdown, or the assumption of
unbroken supersymmetry must fail. Indeed, there exist explicit superpotentials for
which the manifold of supersymmetric vacua is an anomalous target space (a
vector bundle over Bpq). These potentials are degenerate: they have quadratically
(but not quartically) flat directions not associated with the vacuum manifold. Thus
naive decoupling breaks down. We conjecture that this is a general rule.

8. Conclusion

The topological interpretation of the anomaly is simple, even though the analysis
needed to back it up has been difficult. An anomalous theory is one in which we
cannot regard the fermionic effective action as an ordinary complex function on
boson configuration space because the Green functions have a true geometrical
meaning different from their naive one. We think this is the most illuminating way
to think about the global sigma model anomalies the alternate approach of Sect. 6,
when available, is somewhat artificial. On the other hand, the latter approach may
be needed to resolve the issue of local obstructions (see below).

While the interpretation we have emphasized is similar to the topological
interpretation of the gauge anomaly, the physical meaning is somewhat different.
When the fermionic bundle B over the target manifold is twisted, perturbative

39 This trick did not work for G 2 4 because the latter is too simple: every 6-cycle in G 2 4 is
cohomologous to a product of lower-dimensional ones
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expansions around different points of ^ (in particular, around different choices of
vacua) lead to discrepancies which have nontrivial physical consequences for the
low-energy behavior of the theory. The addition of compensating WZ counter-
terms which are well-defined in the domain of validity of perturbation expansions
will alter these discrepancies but cannot eliminate them if the obstruction v Φ 0. In
other words, the local bosonic counterterm needed to untwist exp —/} cannot be
smoothly extended even over the regions on which the fermion effective action is
smoothly defined. It is in this respect that our situation differs from analogous
cases involving the parity anomaly in odd-dimensional spacetimes [71,11] and the
SU(2) anomaly in four dimensions for a theory with an odd number of both quarks
and leptons [42,72]. In both of these cases the bosonic counterterm is ill-defined
only in those regions where exp(—Γf[A~\) is ill-defined.

We have shown that the topological approach leads naturally to index theory,
where powerful results already exist. Part of the reason for their power lies in the
"universal" property of the Dirac operator: since its symbol always looks the same
in any coordinate system and for any connection and metric, the index depends
solely on the topology of the spaces involved. This is evident in Eq. (61), which
makes no reference to connections or metrics. Thus it is possible and desirable to
compute the anomaly without writing down specific field configurations. We did
this in Sects. 5 and 7, and for gauge theory in Appendix A.

The index is also easy to work with due to its simple algebraic properties. These
arise because Ind is a natural construction in K-theory, as we described.

We have seen that the anomaly for Grassmannian sigma models is almost
identical to that of nonabelian gauge theory. This analysis raised a problem: Is
there a consistent theory for the four-dimensional supersymmetric CPn model? We
have noted that the global obstruction measured by v vanished for this model, but
we have suggested, based on the analogy to chiral U(l) gauge theories, that a more
refined obstruction might show that the CPn model is inconsistent.

Sigma models are of interest primarily as the low-energy approximations to
strongly-interacting gauge theories with certain assumed patterns of symmetry
breakdown. By ruling out some sigma models, then, we can rule out some sym-
metry-breaking patterns. We did this for some preon models in Sect. 7.

The physical considerations of Sect. 7 suggested the mathematical conjecture
that all nonlinear models which arise by setting to zero the nondegenerate
potential of a well-defined, renormalizable, supersymmetric model are anomaly-
free. The validity of this conjecture is still an open question. Finally we note that we
have by no means analyzed all interesting supersymmetric sigma models. For
example, some recently considered models involve M = £6/Spin(10)xSO(2),
E7/SU(5) x SU(3) x U(l), and E8/SO(10) x SU(3) x U(l) [73]. We do not know
whether these models are anomalous.

Appendix A: Anomalies in Gauge Theory

With the machinery developed in the text we can easily describe gauge anomalies
[7]. The gravitational case is only slightly more subtle [8]. What we must do is to
find the analogs of E±. A general reference for this section is [22].
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Consider the principal ^-bundle &\ J / - ^ = J / / ^ , where si = {connections
on P}, and P is a principal bundle with gauge group G. Suppose for concreteness
that G = SU(n) n^ 3, X = S4, and that F is untwisted; that is, we work in the zero-
instanton sector. Then ̂  = {Maps: X^G} and we can obtain a generator of π ^ )
as follows (see also Appendix C): take a generator g of π5(G). Compose this with
the "pinch" map r(θ,x) from S1xX to S5, which has degree one. Let gθ(x)
= (0oΓ)(0,χ).

Now tyA in gauge theory is defined on si, not (€. It takes sections of EA to those
of EA, where E% =S±®& are completely independent of A. Here 88 is a bundle
associated to P by the matter representation ρ. Since we are assuming P is trivial,
J* is also trivial and the action of ^ on @ί is g (x, ϋ) = (x, βC*))1*)-

Before anything interesting can happen, then, we must pass to #. This is the
mathematical way of enforcing gauge-invariance.40 Define a bundle B over ^ x l
by B = {si x J3)/ ~, where

(^x,ι;)~(^x,ρ(0(x)>). (122)

Here v e 8S\X, ge^Λn other words, B = si x ^ J*. Just like φ*(B) in the sigma model
case, we can define jf/ =Γ(S ± ®β I ) to obtain bundles f̂± over V. Unlike # , 5
need not be trivial over ^, since (122) mixes up the vector-bundle structure of 8&
with the parameter space.

The form of (122) is fixed by the requirement that $ descend to an operator
Px'.Jtfjt - ^ i ~ Since p is gauge covariant, (122) correctly eliminates the gauge
redundancy of 8$, and so we get an elliptic family on Jίf?±. We can now repeat the
arguments of Sects. 2 and 4 to conclude that the gauge theory will be anomalous if
this family has an index which twists over any two-sphere YcΉ.

We proceed as usual to construct a noncontractible Y as in Sect. 6 [9].
Consider the loop A%β) of gauge transforms of some initial Ao. Extend this
smoothly to a disk Ar>θ, with Ar=1>θ = A^θ) and project to get 7 c # . The principal
bundle &\&~~γ{y)-*Y then has transition function (homotopic to) gθ on the
equator of S2, and Jd?± have transition functions ρ(gθ). The anomaly (17) is then
just f ch3(B).

For example, let ρ contain an n of left-handed fermions, i.e. ρ(g) is the SU(n)
matrix g. Then B has transition functions gθ(x), so it is the pullback r*B3 of the
Bott bundle B3 over S6 with transition function g, and

anomaly = f ch3<r*B3)= f r*c/z3(B3) = f ch3(B3). (123)
Y x X Y x X S6

In fact, ΰ 3 generates X(S6), so this expression equals one and the theory is
anomalous.

Appendix B: The Symbol Bundle

In this appendix we define precisely the symbol bundle Σ{$) used in Sect. 3. This
will give the factorization (55).

40 The appropriate construction has already been given in a somewhat more general form in
[-50]
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S(T*X) B(T*X)

Fig. B.l. If X is a circle T*X is an infinite cylinder, B{T*X) is a finite cylinder, and S(T*X) is the
rim of this cylinder. Thus B(T*X)/S{T*X) is the pinched torus shown

We consider an elliptic differential operator D:£ 1 ->£ 2 between two vector
bundles Eί,E2 over a compact spacetime X. The symbol bundle is to be defined as
an element of K{T*X). Unfortunately, the definition of K-theory given in the text
is not quite the one appropriate for noncompact spaces like T*X. Consider for
example the space RN, on which all bundles are trivial. In order to get any
interesting K-theory on this space (and similarly to get a X-theory on T*X
containing more information than that on X itself) we must modify our definitions
slightly to get "K-theory with compact supports." This modified definition turns
out to be the one relevant to index theory.

If N is any locally compact space one might try to define

K(N) = K(N+), (124)

where N+ denotes the one-point compactification of JV, obtained by identifying all
points at infinity. This is almost right, but if N is in fact compact then N+ is the
disjoint union of N with the point at infinity and K(N+) = K(N)@Z9 so (124) does
not agree with the definition of K(N) given in the text. This difficulty can be
overcome by eliminating the trivial information contained in K concerning the
dimensions of the bundles involved. That is, for compact Q we can define K(Q) as
the kernel of dim: K(Q)^Z. Then

K(Q) = K(Q)®Z, (125)

and for arbitrary N we can consistently define K(N) = K(N+).4'1

We are interested in the case JV= T*X for compact spacetime X. In this case
there is a particularly convenient description of the one-point compactification. If
X has a Riemannian metric then cotangent vectors, i.e. elements of T*X, can be
assigned a length. Let ΰ(T*X), the "unit ball bundle," be the set of elements of
length ^ 1, and let S(Γ*X), the unit sphere bundle, consist of elements of length
exactly 1. If we identify the subset S(T*X) of £(T*X) to a point we obtain (T*X)+,
that is,

) + =B(T*X)/S(T*X). (126)

For example, if X = S1, then T*X = SιxR and (T*X)+ is the pinched torus
illustrated in Fig. B.I. Note that we do not compactify each fiber separately:
(Γ*S 1 ) + =S 1 + T2, the torus.

41 Note that now K(R2n) =K(S2n) = Z, by the Bott periodicity theorem
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The characterization of (T*X)+ given in (126) suggests an extension of
K-theory we will need called "relative K-theory." If A is a closed subset of N such
that N/A is compact define the relative K group by K(N,A) = K(N/A), the
equivalence classes of bundle pairs which have zero net dimension and are trivial
on A. In particular,

K(T*X) = K(B(T*X\ S(T*X)). (127)

We want to define Σ(D) as an element of K(T*X). The definition is slightly
awkward if we use (127) directly, and so we will use an equivalent description of
K(N, A) which takes as its basic objects the triples J' = [α: Jχ~^J2\ where Jl9 J2

are vector bundles on N and α is a homomorphism between them. The "support"
of a triple is the set of points x where ax: Ji|x-» J2\x fails to be an isomorphism. We
will consider triples which have support in a compact subset of N—A. Two triples
J' and (jy are considered the same if there exist isomorphisms ξl9 ξ2 such that the
diagram

«2

commutes on A.
The set of isomorphism classes of such triples, L(N, A), is a semigroup under

the addition

but there is no obvious subtraction. Thus L(N, A) is much like Vect x Vect in
Sect. 3, and as in that case we can pass to a group by dividing out an equivalence
relation. In this case the relation can be defined in terms of "elementary triples."
These are triples R' with empty support, i.e. whose map is everywhere an
isomorphism. Two triples J' and (jy are then considered equivalent if they
become isomorphic upon the addition of elementary triples. That is, J' ~ (jy if
there exist elementary triples R' and S' such that J"®Λ' = (J')'ΘS\ It turns out
that UN9A)I~ has a subtraction and is in fact isomorphic to K{N,A)
[36, 74-76]. The correspondence between triples and elements of K involves
the "clutching construction," which we must now describe.

Given a triple J' we will define an element of K(N/A). We begin by glueing
together two copies of JV (call them Nl9 N2) along A to produce a space ΛΓiU Λ̂/̂ .
Note that

(N1uAN3)/N2 = N/A. (128)

Next we construct a bundle J on NιvAN2 from the triple J" by taking Jγ over
NUJ2 over N2 and identifying fibers over A using α, which is an isomorphism there
since the triple has compact support in N — A. See Fig. B.2. Now in light of (128) we
would like J to be trivial and of dimension zero on N2. Since this is not necessarily
the case, we finally consider not J but J — J2 e X(JV1u^iy2). Since this is trivial on
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Fig. B.2. The clutching construction

N2 it defines an element of K(N/A) = K(N, A). This element corresponds to the
original triple J".

We can now return to index theory by letting N = B(T*X), A = S(T*X). A
general elliptic operator D:Γ(E1)-+Γ(E2) has a symbol σ(D) as described in
Sect. 3. This symbol together with its domain and range constitutes a triple
Σ' = [σ(D): π*(E1)-+π*(E2)'] over T*X as described above, since by definition an
elliptic operator is one whose symbol has as support the zero section of T*X,
a compact set not touching the sphere of unit radius. The element of
L(B(T*X\S(T*X))/~ ^K(B(T*X),S(T*X)) = K(T*X) is the symbol bundle
Σ(D).42

We are finally ready to demonstrate (55). The free Dirac operator has symbol
represented by the triple σ($):π*S+-»π*S~. The coupled Dirac operator
$:S+®(/>*(β)->S~®φ*(£) has symbol σ 0 ) = σ($)(x)l and so defines the triple

σ0)<g)l:π*(S+ ®φ*(B))-+π*(S~ ®φ*(B)).

Working through the clutching construction given above now shows that π*φ*(J3)
factors out of Σφ), as stated in the text.

Appendix C: Anomalous Grassmannian Families

In this appendix we give the construction of the maps φ and Φ which we used in
Sect. 6 for various target spaces Gpq. We give two basic examples. The first example
is a family for the two-dimensional chiral CPn model with B = T(CPn), and n^2.
Each member of the family is an instanton, that is, the family lies in a nontrivial
component of c€. The second example is an anomalous family for the four-
dimensional Gpq models with p, g^4. The family lies in the zero instanton sector.
The method used in the second example can be used to construct two-dimensional
Gpq families when p,q^2. We have not constructed φ and Φ for the four-
dimensional G2n and G3n models with n^3,2, although these have a global
obstruction.

(a) The Double Instanton. By representing CPn as equivalence classes of
nonzero (n+l)-tuples of complex numbers: [(zl5 ...,zM+1)] one can define the
"double instanton" family A : S2 x S2-+CPn by

t,0,...,0)]. (129)

42 Using the above clutching construction this definition of Σ(D) is equivalent to that given in
039,48]
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Here s, t are complex numbers obtained from y, x by stereographic projection
S2-+C on each of the two S2 factors. Thus we have only given A on the product of
northern hemisphere patches 0>N x 0^9 but Eq. (129) can be extended consistently
to the other patches.

One can compute the twist of the family index

v = f A*ch2TCPn = n+l (130)
S2 x S2

and the instanton number

k=\ A*ch1TCPn = n+l (131)
s2

for fixed s, where As=A(s, ), using the following observations. The canonical line
bundle j^CP" is associated to the principal U(l) fibration r: S2n+1 ->CP" by the
fundamental representation. This allows one to compute A*c1(y1) since the
natural connection on S 2 π + 1,

Θ=~(z dz*-z* dz) (132)

gives r*ci = dΘ. Here S2n+ί is considered as the set of complex (n+l)-tuples
constrained to satisfy z* z = 1. It is sufficient to compute c^γ^) because [25]

=~c2.

After some computation one then finds v = (n+1), while the generalization

Al^(s,t) = l(l,sh + t\sln\0,...,0n (133)

has v = (n+1)/^ a n d instanton number

fc= f (Aι

s>
l2)*chίTCPn = (n+1)/2. (134)

2

(These "ring homomorphism" properties are a consequence of the external
product construction of Sect. 4.)

If we consider the first factor of S2 in the domain of A as the parameter two-
sphere Y, then one can show that fixing Landau gauge

which eliminates all but constant gauge transformations, defines a Hopf bundle
PCR~ί(Y) C s/2

n. This is the bundle described in Sect. 6 since the U(l) subgroup of
<§\ which generates πx(^l) is the group of constant gauge transformations.

If one replaces B=TCPn by B = γu the zero-modes of Jj)y:Ey ->E~ can be
readily found for each y e Y= S2. One finds that py always has exactly one zero-
mode, and that the line in the Hubert space J^ + spanned by this zero-mode fits
into a one-dimensional subbundle of the Hubert bundle f̂+. In this case the
family index just measures the twist of this line bundle. For B = y1 the twist is one
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and the "zero-mode-bundle" J f0

+ is isomorphic to the associated Hopf bundle
B^S2.

(b) The Group-loop Family. We will construct a family &:S2xS4--+Gpq,
p,q^4, by first constructing a family Φ: S3 x S4^>Vpq. Recall that the principal
U(p) fϊbration r:Vpq-+Gpq induces a ^p-fϊbration R\srfpq-*y>pq where
sίpq = {Maps: S4-> Vpq} and <$p = {Maps: S4-»U(p)}. We will use this fibration to
construct <£ from Φ realizing the diagram (102) with φ = j£f.

We begin with a representative of the generator of nx(^p) for p ^ 4 . The
nontrivial generator of π5((U(4))) can be represented in terms of five anti-
hermitian y-matrices yί5 i= 1,..., 5 as

&->ίo+ Σ titi, (135)

where ξ is a unit vector in R6 [74]. We may compose Eq. (135) with a degree two
map S1 x S4^S5 given by (e/v, ρ)ι-^(cosφ, sinipρ) (here ρ is a unit vector in R5) to
get

i i ί _ , (136)

where P ± = i ( l ±ίg y) are projection operators: P2

±=P±, P+PT=0. However,
we can write

(e~iψP+ +eiψP_) = (e-iψP+ +P_)(P+ +eiψP_). (137)

Each of the two factors on the right-hand side of (137) must wind the same way
since they are mapped into one another by the orientation-preserving involution
(eίψ,Q)-*(e~iψ, — ρ). We conclude that the generator of π x(^ p) is represented by
(έ?iv,ρ)->P+ +eiψP_.*3 In fact, the group-loop is a U(l) subgroup of (SP since

This will be useful below.
We are now in a position to write an interesting family Φ: S3 x S4->Vpq for

p = q = 4. One can trivially embed this into spaces with larger p and q. Let
Ao = (1 4 x 4 , 0 4 x 4) and Bo = (04 x 4 , 1 4 x 4) be 4 x 8 matrices representing two stan-
dard elements in F 4 4 . [Recall that Vpq can be regarded as the set of complex
P χ (p + ώ matrices A satisfying AA^ = l r ] Represent S3 as 2-dimensional SU(2)
matrices q. These act on the "2-vector"

( I 3 8 )

43 More precisely, a representative α of the fundamental generator of [S1 x S4, SU(iV)] can
be deformed into a map from S5 to SU(iV). Therefore [74, 77] the integral w(α)

= r f t r ί α " 1 ^ ) 5 , which is a homotopy invariant, is an integer. If we compose the map
240πz siχs<

(135) with a degree one map r:S1x S4->55 we obtain a map β: S1 x S4->SU(iV) with w(β) = 1. For
maps into Lie groups the composition of maps is homotopic to the pointwise product of maps. For
the pointwise product of two maps ylt2'.S

1xS4~-*SU(N)i w is a homomorphism: w(y1-y2)
= w(y1) + w(y2) Therefore w(α) = 1 and if w(ζ) — 1 for some ζ then ζ represents the fundamental
generator. The map (136) has w = 2 so each of the factors in (137) must have w = 1. The fact that
each factor maps into U(4) rather than SU(4)is irrelevant, again by the homomorphism property
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Then each component of

( P + ® 1 2 X 2 + P_®4)(^M (139)

defines an element in V44. for every ρ, q. That is, either component describes an
interesting map (with the two components wrapping oppositely). Let Φ be the
upper component obtained by taking the "inner product" of the above 2-vector
with the vector (1 0). If we project Φ with R defined above the parametrization of
the resulting family by S3 is partially redundant.

Indeed, we can consider S3 as the total space of a principal Hopf bundle
P Q stfpq. The U(l) action on SU(2), e^ q = eiσ3ψq** is represented by the principal
U(l) action of the group-loop on Φ. That is, if q-+eίσ3ψq, then Φ is rotated to

= (P++ei*P-)4>. (140)

Thus if = R © Φ is unambiguously parametrized not only by P in s/pq but also by its
projection YQ%>pφ where 7is a copy of S2. The fibration R.P-+Yis the Hopf
fibration with a principal U(l) action given be the nontrivial loop in (Sp.

We claim that Jδf :S 2 xS4-»G4 4 and its embeddings into higher Gpq are
anomalous families in the zero instanton sector. Thus we need to compute,

v= f ch3<?*TGpq=-(p + q) ί ch3X*γp (141)
s2 χ s 4 s 2 x s4

a n d 4 5

k = ί cft2if * TGpq = (« - p) J cΛ 2 ^*y p . (142)
S 4 5 4

As in the case of the double instanton we note that yp is associated to the
principal U(p) bundle r: Vpq~*Gpq by the defining representation and Vpq has a
natural connection

(143)

which allows one to compute Ω = dΘ — Θ 2 4 6 and hence r*chkγp = [ — I — trΩk.

A little computation shows that Φ* trΩ2 = 0 so that 5£ is in the zero instanton
sector and,

Φ* trΩ3 = - |-sin 4^(sin0d0#) tr(y • dρfy ρ (144)

so that for if, and B=T(CPn), the family index is v = (p + q).

44 Note this is a left action. We do this since for our representation of the Stiefel manifold
r: Vpq-+Gpq projects by a left Ό(p) action
45 For G 4 4 (142) is trivially zero. However this is not true for arbitrary Gpq, or for bundles other
than TCGM

46 The minus sign is a consequence of the left U(p) action
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An explicit solution of the zero modes of the Dirac operator would show that
for at least one point y on Y~ S2 the lowest eigenvalue λx{y) o{$\$y drops to zero
(Fig. 2.2), and that around this point the eigenmodes uγ and v1 have a relative twist,
as described in Sect. 2.

Appendix D: The Homotopy Type of GjH

In this appendix we prove that G/H has the same homotopy type as G/H, where G
is a compact Lie group and H is a subgroup.

We need the Cartan decomposition [70,78] which in this case is

= £(G)Θί£(G). (145)

If G is a compact Lie group there is a diffeomorphism

£(G)xG-+G (146)

withExp(i£(G)) G = G.

Lemma 1. G/H deformation retracts to G/H.

Proof. Define maps

G/H Φ G/H (147)

by

i1(gH) = gH,
M > » ( 1 4 8 )

r(gH) = gH,
where in (148) g has the unique decomposition g = Έxp(p)g. We also see that
r o i1 = 1, and ix o γ ̂  1 because we can define the homotopy

H (149)

as was to be shown. D

Now we have a fiber bundle

π:G/H->G/H, (150)

where π(gH) = gH with fiber H/H and structure group H. Note that the fiber is
contractible by the Cartan decomposition

H/H%fExp(i£(H)). (151)

Since G/H is triangulable, and hence a CW complex, and H/H is contractible,
there is a section

π — , —
G/H ^ G/H. (152)

Lemma 2. s ° π s l .
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Proof. We use induction on the dimension of the cell complex.
On the zero cells {v} we have a diffeomorphism

G/H\[v)^{v}xH/H. (153)

Since H/H is contractible we can choose F: H/H x 1-+H/H with

F{KH,0) = EH,

F(EH,l) = π2(φ(s(v))),

where π 2 is the projection π 2 : {v} x H/H-+H/H. Define

F(gH, t) = φ- ι(υ, F(π2 o φ(gH), ί)). (155)

This defines the homotopy on the 0-cells.
Assume we have a continuous map

(156)

with

F(gHA) = s(gH) = sπ(gH), K '

where Kn~ίis the (n — l)-skeleton, which satisfies the further property that iϊπ(gH)
lies in some cell E, then the curve π(F(gH, t)) remains in E. (We will use this
condition.)

Let E be a closed n-cell, then

1 = δjE = S « S r ι - 1 (158)

is a union of closed (n — l)-cells. Choose a diffeomorphism

G/H\E^ExH/H (159)

and define

^:(SXH/HXI)KJ(EXH/HX{0})KJ(EXH/HX{1})-+EXH/H (160)

as follows. For 0<£<l, xeS,

^•(x, KH, t) = φF(φ ~ \x, KH), t). (161)

Since π{φ~\x, hH)) is in some (n— l)-cell, F(φ~ ι(x, hH), i) remains in that cell so
the composition with φ is defined. Also define for e e E

#r(e,hH,0) = (e,KH),

Pie, hH,l) = (e,π2oφoSoπoφ-1(e, hH)). (162)

This gives a map

&: dDn+* x H/H->E x H/H (163)

for some (n+ l)-cell D. Since E x H/H is contractible there is an extension

β:Dn+ix H/H-+E x H/H (164)
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G/H

G/H

R
G/H

and defining (take Dn+ί=ExI)

P=φ-1^φ (165)

on G/H\ExI we can extend F in this way on all the n-cells satisfying the

appropriate conditions. Thus there is a homotopy of s°π with 1. D

Consider the maps in Fig. D.I. We have ί(gH) = gH and R = r°s. Note that

j = π o j . . T h u s Roi:G/H->G/H satisfies Roi = rosonoi1^roi1z=l a n d

i o R: G/Jί -• G/H satisfies i<>R = πoi1oros^πos=l. N o t e that R is not a deforma-

tion retract, but it is a homotopy equivalence, which is sufficient for our pur-

poses.
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